
A Scalable Approach to Thread-Level Speculation

J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

fsteffan,colohan,zhaia,tcmg@cs.cmu.edu

Abstract
While architects understandhow to build cost-effective parallel

machines across a wide spectrum of machine sizes (ranging from
within a single chip to large-scale servers), the real challenge is
how to easily createparallel software to effectively exploit all of
this raw performancepotential. One promising technique for over-
coming this problem isThread-Level Speculation (TLS), which en-
ables the compiler to optimistically create parallel threads despite
uncertainty as to whether those threads are actually independent.
In this paper, we propose and evaluate a design for supporting
TLS that seamlessly scales to any machine size because it is a
straightforward extension of writeback invalidation-based cache
coherence (which itself scales both up and down). Our experi-
mental results demonstrate that our scheme performs well on both
single-chip multiprocessors and on larger-scale machines where
communication latencies are twenty times larger.

1. Introduction
Machines which can simultaneously execute multiple parallel

threads are becoming increasingly commonplace on a wide vari-
ety of scales. For example, techniques such as simultaneous mul-
tithreading[23] (e.g., the Alpha 21464) and single-chip multipro-
cessing[16] (e.g., the Sun MAJC [21] and the IBM Power4 [10])
suggest that thread-level parallelism may become increasingly im-
portant even within a single chip. Beyond chip boundaries, even
personal computers are often sold these days in two or four-
processor configurations. Finally, high-end machines (e.g., the
SGI Origin [14]) have long exploited parallel processing.

Perhaps the greatest stumbling block to exploiting all of this
raw performance potential is our ability to automatically convert
single-threaded programs into parallel programs. Despite the sig-
nificant progress which has been made in automatically paralleliz-
ing regular numeric applications, compilers have had little or no
success in automatically parallelizing highly irregular numeric or
especially non-numericapplications due to their complex control
flow and memory access patterns. In particular, it is the fact that
memory addresses are difficult (if not impossible) to statically
predict—in part because they often depend on run-time inputs and

This paper originally appeared in the ACM/IEEE International Symposium on Computer Architecture 2000
(ISCA2000), Vancouver, Canada, June 2000. Reprinted with permission. Definitive copy available from ACM’s Digital
Library, which is located at http://www.acm.org/dl/.

ACM COPYRIGHT NOTICE. Copyright 2000 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

behavior—that makes it extremely difficult for the compiler to stat-
ically prove whether or not potential threads are independent. One
architectural technique which may help us overcome this problem
is thread-level speculation.

1.1 Thread-Level Speculation
Thread-Level Speculation (TLS) [9, 18, 20] allows the com-

piler to automatically parallelize portions of code in the pres-
ence of statically ambiguous data dependences, thus extracting
parallelism between whatever dynamic dependences actually ex-
ist at run-time. To illustrate how TLS works, consider the simple
while loop in Figure 1(a) which accesses elements in a hash ta-
ble. This loop cannot be statically parallelized due to possible
data dependences through the array hash. While it is possible
that a given iteration will depend on data produced by an imme-
diately preceding iteration, these dependences may in fact be in-
frequent if the hashing function is effective. Hence a mechanism
that could speculatively execute the loop iterations in parallel—
while squashing and reexecuting any iterations which do suffer
dependence violations—could potentially speed up this loop sig-
nificantly, as illustrated in Figure 1(b). Here a read-after-write
(RAW) data dependenceviolation is detected between epoch 1and
epoch 4; hence epoch 4is squashed and restarted to produce the
correct result. This example demonstrates the basic principles of
TLS—it can also be applied to regions of code other than loops.

In this example we assume that the program is running on a
shared-memory multiprocessor, and that some number of proces-
sors (four, in this case) have been allocated to the program by the
operating system. Each of these processors is assigned a unit of
work, or epoch, which in this case is a single loop iteration. We
timestamp each epoch with an epoch numberto indicate its order-
ing within the original sequential execution of the program. We
say that epoch Xis “logically-earlier” than epoch Yif their epoch
numbers indicate that epoch Xshould have preceded epoch Yin
the original sequential execution. Any violationof the data depen-
dences imposed by this original program order is detected at run-
time through our TLS mechanism. Finally, when an epoch is guar-
anteed not to have violated any data dependences with logically-
earlier epochs and can therefore commit all of its speculative mod-
ifications, we say that the epoch is homefree. We provide this
guarantee by passing a homefree tokenat the end of each epoch.
Further examples of the use of thread-level speculation, and an ex-
ploration of the interface between TLS hardware and software, can
be found in an earlier publication [19].

1.2 Related Work

(a) Example psuedo-code
while(continue condition) f

...
x = hash[index1];
...
hash[index2] = y;
...

g

(b) Execution using thread-level speculation

Epoch 1 Epoch 2
Epoch 3

Epoch 4

hash[10] = hash[21] = hash[30] =
hash[25] =

= hash[3] = hash[19]
= hash[33]

= hash[10]

attempt_commit()attempt_commit()
attempt_commit()

attempt_commit()

Violation!

Redo

Processor1 Processor2 Processor3 Processor4

Epoch 4

hash[25] =

= hash[10]

attempt_commit()

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
Epoch 5

= hash[30]

...

...
Epoch 6

= hash[9]

...

... Epoch 7

= hash[27]

...

T
im

e

Figure 1. Example of thread-level speculation.

Knight was the first to propose hardware support for a form of
thread-level speculation [12]; his work was within the context of
functional languages. The Multiscalar architecture [6, 18] was the
first complete design and evaluation of an architecture for TLS.
There have since been many other proposals which extend the ba-
sic idea of thread-level speculation [2, 7, 8, 9, 13, 15, 17, 20, 22,
25]. In nearly all of these cases, the target architecture has been a
very tightly coupled machine—e.g., one where all of the threads
are executed within the same chip. These proposals have often
exploited this tight coupling to help them track and preserve de-
pendences between threads. For example, the Stanford Hydra ar-
chitecture [9] uses special write buffers to hold speculative modifi-
cations, combined with a write-through coherence scheme that in-
volves snooping these write buffers upon every store. While such
an approach may be perfectly reasonable within a single chip, it
was not designed to scale to larger systems.

One exception (prior to this publication) is a proposal by
Zhang et al. [25] for a form of TLS within large-scale NUMA
multiprocessors. While this approach can potentially scale up to
large machine sizes, it has only been evaluated with matrix-based
programs, and its success in handling pointer-based codes has yet
to be demonstrated. In addition, it does not appear to be a good
choice for small-scale machines (e.g., within a single chip).

Concurrent with our study, Cintra et al. [5] have proposed us-
ing a hierarchy of MDTs (Memory Disambiguation Tables) to sup-
port TLS across a NUMA multiprocessor comprised of speculative
chip multiprocessors. While there are many subtle differences be-
tween our respective approaches, perhaps the most striking differ-
ence is that their hardware enforces a hierarchical ordering of the
threads, with one level inside each speculative multiprocessor chip
and another level across chips. In contrast, since we separate or-
dering from physical location through explicit software-managed
epoch numbers and integrate the tracking of dependenceviolations

directly into cache coherence (which may or may not be imple-
mented hierarchically), our speculation occurs along a single flat
speculation level(described later in Section 2.2), and does not im-
pose any ordering or scheduling constraints on the threads.

1.3 Objectives of This Study
The goal of this study is to design and evaluate a unified

mechanism for supporting thread-level speculation which can han-
dle arbitrary memory access patterns (i.e. not just array refer-
ences) and which is appropriate for any scale of architecture with
parallel threads, including: simultaneous-multithreaded proces-
sors [23], single-chip multiprocessors [16, 21], more traditional
shared-memory multiprocessors of any size [14], and even mul-
tiprocessors built using software distributed shared-memory [11].
Our approach scales (both up and down) to all of these architec-
tures because it is built upon writeback invalidation-based cache
coherence, which itself scales to any of these machines. Our uni-
fied approach to supporting thread-level speculation offers the fol-
lowing advantages. First, we could build a large-scale parallel ma-
chine using either single-chip multiprocessors or simultaneously-
multithreaded processors as the building blocks, and seamlessly
perform thread-level speculation across the entire machine (or any
subset of processors within the machine). Second, once we com-
pile a program to exploit thread-level speculation, it can run di-
rectly on any of these machines without being recompiled. We
demonstrate this in our our experimental results: the same executa-
bles (buk and equake) exploit our unified thread-level specula-
tion mechanism to achieve good speedup not only on a single-chip
multiprocessor, but also on multi-chip multiprocessors (where
inter-chip communication latencies are 20 times larger).

The remainder of this paper is organized as follows. Section 2
describes how invalidation-based cache coherencecan be extended
to detect data dependence violations, and Section 3 gives a pos-
sible hardware implementation of this scheme. We describe our
experimental framework in Section 4, evaluate the performance of
our scheme in Section 5, and conclude in Section 6.

2. A Coherence Scheme For Scalable Thread-
Level Speculation

To support thread-level speculation, we must perform the dif-
ficult task of detecting data dependence violations at run-time,
which involves comparing load and store addresses that may have
occurred out-of-order with respect to sequential execution. These
comparisons are relatively straightforward for instruction-level
data speculation (i.e. within a single thread), since there are few
load and store addresses to compare. For thread-leveldata specu-
lation, however, the task is more complicated since there are many
more addresses to compare, and since the relative interleaving of
loads and stores from different threads is not statically known.

Our solution is to leverage invalidation-based cache coherence.
Recall that under invalidation-based cache coherence, a processor
must first invalidate other cached copies of a line to get exclusive
ownership before it can modify that line. The key insight in our
scheme is that we can extend these existing invalidation messages
to detect data dependence violations by noticing whenever an in-
validation arrives from a logically-earlierepoch for a line that we
have speculativelyloaded in the past.

T T

Epoch # = 5

Violation? = False

3

Processor 1 Processor 2

L1 Cache

...

...

...
STORE *q = 2;
...
...

2

1

1
become_speculative()
LOAD a = *p;
...
...
...
attempt_commit()

L1 Cache

X = 1 2

Read
Request2

Invalidation
(Epoch #5)

X = 1

(p = q = &X)

Epoch 5 Epoch 6

FAIL

Epoch # = 6

Violation? = TRUE

SL SM

T F
SL SM

2

Speculatively
Loaded?

Speculatively
Modified?

Time

Figure 2. Using cache coherence to detect a RAW dependence
violation.

2.1 An Example
To illustrate the basic idea behind our scheme, we show an

example of how it detects a read-after-write (RAW) dependence
violation. Recall that a given speculative load violates a RAW de-
pendence if its memory location is subsequently modified by an-
other epoch such that the store should have preceded the load in
the original sequential program. As shown in Figure 2, we aug-
ment the state of each cache line to indicate whether the cache
line has been speculatively loaded (SL) and/or speculatively mod-
ified (SM). For each cache, we also maintain a logical timestamp
(called an epoch number) which indicates the sequential ordering
of that epoch with respect to all other epochs, and a flag indicating
whether a data dependence violation has occurred.

In the example, epoch 6performs a speculative load, so the cor-
responding cache line is marked as speculatively loaded. Epoch 5
then stores to that same cache line, generating an invalidation con-
taining its epoch number. When the invalidation is received, three
things must be true for this to be a RAW dependence violation.
First, the target cache line of the invalidation must be present in
the cache. Second, it must be marked as having been speculatively
loaded. Third, the epoch number associated with the invalidation
must be from a logically-earlierepoch. Since all three conditions
are true in the example, a RAW dependence has been violated;
epoch 6is notified by setting the violation flag. As we will show,
the full coherence scheme must handle many other cases, but the
overall concept is analogous to this example.

In the sections that follow, we define the new speculative cache
line states and the actual cache coherence scheme, including the
actions which must occur when an epoch becomes homefreeor is
notified that a violation has occurred. We begin by describing the
underlying architecture assumed by the coherence scheme.

2.2 Underlying Architecture
The goal of our coherence scheme is to be both general and

scalable to any size of machine. We want the coherence mech-
anism to be applicable to any combination of single-threaded or
multithreaded processors within a shared-memory multiprocessor
(i.e. not restricted simply to single-chip multiprocessors, etc.).

For simplicity, we assume that the shared-memory architec-
ture supports an invalidation-based cache coherence scheme where
all hierarchies enforce the inclusion property. Figure 3(a) shows

(a) General architecture

M MM MM M

P P

Private
Caches

Shared
Caches

P P

Interconnection Network

External
Actions

Processor
Actions

C C

C C

C C

C C

C C C C C C

C C

Physically

Physically

(b) Simplified architecture

P P P P

External
Actions

Processor
Actions

Cache

P P P P

Cache

Shared-Memory

Figure 3. Base architecture for the TLS coherence scheme.

a generalization of the underlying architecture. There may be
a number of processors or perhaps only a single multithreaded
processor, followed by an arbitrary number of levels of physi-
cally private caching. The level of interest is the first level where
invalidation-based cache coherence begins, which we refer to as
the speculation level. We generalize the levels below the spec-
ulation level (i.e. further away from the processors) as an inter-
connection network providing access to main memory with some
arbitrary number of levels of caching.

The amount of detail shown in Figure 3(a) is not necessary
for the purposes of describing our cache coherence scheme. In-
stead, Figure 3(b) shows a simplified model of the underlying ar-
chitecture. The speculation level described above happens to be a
physically shared cache and is simply referred to from now on as
“the cache”. Above the caches, we have some number of proces-
sors, and below the caches we have an implementation of cache-
coherent shared memory.

Although coherence can be recursive, speculation only occurs
at the speculation level. Above the speculation level (i.e. closer to
the processors), we maintain speculative state and buffer specula-
tive modifications. Below the speculation level (i.e. further from
the processors), we simply propagate speculative coherence ac-
tions and enforce inclusion.

2.3 Overview of Our Scheme
The remainder of this section describes the important details

of our coherence scheme, which requires the following key ele-
ments: (i) a notion of whether a cache line has been speculatively
loaded and/or speculatively modified; (ii) a guarantee that a spec-
ulative cache line will not be propagated to regular memory, and
that speculation will fail if a speculative cache line is replaced; and

(a) Cache line states

State Description

I Invalid
E Exclusive
S Shared
D Dirty
SpE Speculative (SM and/or SL) and exclusive
SpS Speculative (SM and/or SL) and shared

(b) Coherence messages

Message Description

Read Read a cache line.
ReadEx Read-exclusive: return a copy of the cache

line with exclusive access.
Upgrade Upgrade-request: gain exclusive access to

a cache line that is already present.
Inv Invalidation.
Writeback Supply cache line and relinquish ownership.
Flush Supply cache line but maintain ownership.
NotifyShared Notify that the cache line is now shared.

ReadExSp Read-exclusive-speculative: return cache
line, possibly with exclusive access.

UpgradeSp Upgrade-request-speculative: request exclusive
access to a cache line that is already present.

InvSp Invalidation-speculative: only invalidate
cache line if from a logically-earlier epoch.

Condition Description
=Shared The request has returned shared access.
=Excl The request has returned exclusive access.
=Later The request is from a logically-later epoch.
=Earlier The request is from a logically-earlier epoch.

(c) Responses to processor events

StoreSp:ReadExSp=Excl,
LoadSp:Read=Excl

StoreSp:ReadExSp=Shared
LoadSp:Read=Shared,

LoadSp,
StoreSp:UpgradeSp=Shared

StoreSp:UpgradeSp=Shared
LoadSp,

Store,
Load

LoadSp, StoreSp

StoreSpLoadSp,

Store

Load:Read=Excl

Load
Load

SpS

SpE

D

E
S

I

Store:Upgrade

StoreSp:UpgradeSp=Excl

StoreSp:UpgradeSp=Excl

Load:Read=Shared

LoadSp:Upgrade, StoreSp:Update

Store

(d) Responses to external coherence events

InvSp=Later,
NotifyShared

InvSp,
NotifyShared

InvSp:Flush
Read:flush,

InvSp

Inv

Inv

InvSp=Earlier, Inv

InvSp=Later

Inv:WriteBack

InvSp=Earlier, Inv

E

D

SpE

SpS

S I

Viol

Figure 4. Our coherence scheme for supporting thread-level speculation.

(iii) an ordering of all speculative memory references (provided by
epoch numbers and the homefree token). Following the description
of our baseline scheme, we will discuss some additional support
that can potentially improve its performance.

2.4 Cache Line States
A cache line in a basic invalidation-based coherence scheme

can be in one of the following states: invalid (I), exclusive(E),
shared(S), or dirty (D). The invalid state indicates that the cache
line is no longer valid and should not be used. The sharedstate de-
notes that the cache line is potentially cached in some other cache,
while the exclusivestate indicates that this is the only cached copy.
The dirty state denotes that the cache line has been modified and
must be written back to memory. When a processor attempts to
write to a cache line, exclusive access must first be obtained—if
the line is not already in the exclusivestate, invalidations must be
sent to all other caches which contain a copy of the line, thereby
invalidating these copies.

To detect data dependences and to buffer speculative mem-
ory modifications, we extend the standard set of cache line states
as shown in Figure 4(a). For each cache line, we need to track
whether it has been speculatively loaded(SL) and/or speculatively
modified(SM), in addition to exclusiveness. Rather than enumer-
ating all possible permutations of SL, SM, and exclusiveness, we
instead summarize by having two speculative states: speculative-
exclusive(SpE) and speculative-shared(SpS).

For speculation to succeed, any cache line with a speculative
state must remain in the cache until the corresponding epoch be-
comes homefree. Speculative modifications may not be propa-
gated to the rest of the memory hierarchy, and cache lines that
have been speculatively loaded must be tracked in order to detect
whether data dependence violations have occurred. If a specula-
tive cache line must be replaced, then this is treated as a viola-
tion causing speculation to fail and the epoch is re-executed—note
that this will affect performance but neither correctness nor for-
ward progress. Previous work has shown that a 16KB, 2-way set-
associative cache along with a four-entry victim cache is sufficient
to avoid nearly all failed speculation due to replacement [20].

2.5 Coherence Messages

To support thread-level speculation, we also add the three
new speculative coherence messages shown in Figure 4(b): read-
exclusive-speculative, invalidation-speculative, and upgrade-
request-speculative. These new speculative messages behave sim-
ilarly to their non-speculative counterparts except for two impor-
tant distinctions. First, the epoch number of the requester is piggy-
backed along with the messages so that the receiver can determine
the logical ordering between the requester and itself. Second, the
speculative messages are only hints and do not compel a cache to
relinquish its copy of the line (whether or not it does is indicated
by an acknowledgment message).

2.6 Baseline Coherence Scheme
Our coherence scheme for supporting TLS is summarized by

the two state transition diagrams shown in Figures 4(c) and 4(d).
The former shows transitions in response to processor-initiated
events (i.e. speculative and non-speculative loads and stores), and
the latter shows transitions in response to coherence messages
from the external memory system.

Let us first briefly summarize standard invalidation-based
cache coherence. If a load suffers a miss, we issue a read to the
memory system; if a store misses, we issue a read-exclusive. If
a store hits and the cache line is in the shared(S) state, we issue
an upgrade-requestto obtain exclusive access. Note that read-
exclusiveand upgrade-requestmessages are only sent downinto
the memory hierarchy by the cache; when the underlying coher-
ence mechanism receives such a message, it generates an invalida-
tion message (which only travels up to the cache from the memory
hierarchy) for each cache containing a copy of the line to enforce
exclusiveness. Having summarized standard coherence, we now
describe a few highlights of how we extend it to support TLS.

2.6.1 Some Highlights of Our Coherence Scheme
When a speculative memory reference is issued, we transi-

tion to the speculative-exclusive(SpE) or speculative-shared(SpS)
state as appropriate. For a speculative load we set the SLflag, and
for a speculative store we set the SMflag.

When a speculative load misses, we issue a normal read to
the memory system. In contrast, when a speculative store misses,
we issue a read-exclusive-speculativecontaining the current epoch
number. When a speculative store hits and the cache line is in the
shared(S) state, we issue an upgrade-request-speculativewhich
also contains the current epoch number.

When a cache line has been speculatively loaded (i.e. it is in
either the SpEor SpSstate with the SLflag set), it is susceptible
to a read-after-write (RAW) dependence violation. If a normal
invalidationarrives for that line, then clearly the speculation fails.
In contrast, if an invalidation-speculativearrives, then a violation
only occurs if it is from a logically-earlierepoch.

When a cache line is dirty, the cache owns the only up-to-date
copy of the cache line and must preserve it. When a speculative
store accesses a dirty cache line, we generate a flushto ensure that
the only up-to-date copy of the cache line is not corrupted with
speculative modifications. For simplicity, we also generate a flush
when a speculative load accesses a dirty cache line (we describe
later in Section 2.7 how this case can be optimized).

A goal of this version of the coherence scheme is to avoid slow-
ing down non-speculative threads to the extent possible. Hence
a cache line in a non-speculative state is not invalidated when an
invalidation-speculativearrives from the external memory system.
For example, a line in the shared(S) state remains in that state
whenever an invalidation-speculativeis received. Alternatively,
the cache line could be relinquished to give exclusiveness to the
speculative thread, possibly eliminating the need for that specula-
tive thread to obtain ownership when it becomes homefree. Since
the superior choice is unclear without concrete data, we compare
the performance of both approaches later in Section 5.4.

2.6.2 When Speculation Succeeds
Our scheme depends on ensuring that epochs commit their

speculative modifications to memory in logical order. We imple-

ment this ordering by waiting for and passing the homefree token
at the end of each epoch. When the homefree tokenarrives, we
know that all logically-earlierepochs have completely performed
all speculative memory operations, and that any pending incom-
ing coherence messages have been processed—hence memory is
consistent. At this point, the epoch is guaranteed not to suffer
any further dependence violations with respect to logically-earlier
epochs, and therefore can commit its speculative modifications.

Upon receiving the homefree token, any line which has only
been speculatively loaded immediately makes one of the following
state transitions: either from speculative-exclusive(SpE) to exclu-
sive(E), or else from speculative-shared(SpS) to shared(S). We
will describe in the next section how these operations can be im-
plemented efficiently.

For each line in the speculative-shared(SpS) state that has
been speculatively modified (i.e. the SM flag is set), we must
issue an upgrade-requestto acquire exclusive ownership. Once
it is owned exclusively, the line may transition to the dirty (D)
state—effectively committing the speculative modifications to reg-
ular memory. Maintaining the notion of exclusiveness is therefore
important since a speculatively modified line that is exclusive (i.e.
SpEwith SM set) can commit its results immediately simply by
transitioning directly to the dirty (D) state.

It would obviously take far too long to scan the entire cache for
all speculatively modified and shared lines—ultimately this would
delay passing the homefree tokenand hurt the performance of our
scheme. Instead, we propose that the addresses of such lines be
added to an ownership required buffer(ORB) whenever a line be-
comes both speculatively modified and shared. Hence whenever
the homefree tokenarrives, we can simply generate an upgrade-
requestfor each entry in the ORB, and pass the homefree tokenon
to the next epoch once they have all completed.

2.6.3 When Speculation Fails
When speculation fails for a given epoch, any specula-

tively modified lines must be invalidated, and any speculatively
loaded lines make one of the following state transitions: either
from speculative-exclusive(SpE) to exclusive(E), or else from
speculative-shared(SpS) to shared(S). In the next section, we will
describe how these operations can also be implemented efficiently.

2.7 Performance Optimizations
We now present several methods for improving the perfor-

mance of our baseline coherence scheme.

Forwarding Data Between Epochs: Often regions that we
would like to parallelize contain predictable data dependences be-
tween epochs. We can avoid violations due to these dependences
by inserting wait–signal synchronization. After producing the fi-
nal value of a variable, an epoch signals the logically-next epoch
that it is safe to consume that value. Our coherence scheme can
be extended to support value forwarding through regular memory
by allowing an epoch to make non-speculative memory accesses
while it is still speculative. Hence an epoch can perform a non-
speculative store whose value will be propagated to the logically-
next epoch without causing a dependence violation.

Dirty and Speculatively Loaded State: As described for
the baseline scheme, when a speculative load or store accesses a

dirty cache line we generate a flush, ensuring that the only up-to-
date copy of a cache line is not corrupted with speculative modifi-
cations. Since a speculative load cannot corrupt the cache line, it
is safe to delay writing the line back until a speculative store oc-
curs. This minor optimization is supported with the addition of the
dirty and speculatively loadedstate (DSpL), which indicates that a
cache line is both dirty and speculatively loaded. Since it is trivial
to add support for this state, we include it in the baseline scheme
that we evaluate later in Section 5.

Suspending Violations: Recall that if a speculatively ac-
cessed line is replaced, speculation must fail because we can no
longer track dependence violations. In our baseline scheme, if
an epoch is about to evict a speculative line from the cache, we
simply let it proceed and signal a dependence violation. (Since
one epoch is always guaranteed to be non-speculative, this scheme
will not deadlock.) Alternatively, we could suspendthe epoch un-
til it becomes homefree, at which point we can safely allow the
replacement to occur since the line is no longer speculative.

Support for Multiple Writers: If two epochs speculatively
modify the same cache line, there are two ways to resolve the sit-
uation. One option is to simply squash the logically-later epoch,
as is the case for our baseline scheme. Alternatively, we could al-
low both epochs to modify their own copies of the cache line and
combine them with the real copy of the cache line as they commit,
as is done in a multiple-writer coherence protocol [3, 4].

To support multiple writers in our coherence scheme—thus al-
lowing multiple speculatively modified copies of a single cache
line to exist—we need the following two new features. First, an
invalidation-speculativewill only cause a violation if it is from a
logically-earlier epoch and the line is speculatively loaded; this al-
lows multiple speculatively modified copies of the same cache line
to co-exist. Second, we must differentiate between normal invali-
dations (triggered by remote stores) and invalidations used only to
enforce the inclusion property (triggered by replacements deeper
in the cache hierarchy). A normal invalidation will not invali-
date a speculative cache line that is only speculatively modified;
hence the homefreeepoch can commit a speculatively modified
cache line to memory without invalidating logically-later epochs
that have speculatively modified the same cache line.

3. Implementing Our Scheme
We now describe a potential implementation of our coherence

scheme. We begin with a hardware implementation of epoch num-
bers. We then give an encoding for cache line states, and describe
the organization of epoch state information. Finally, we describe
how to allow multiple speculative writers and how to support spec-
ulation in a shared cache.

3.1 Epoch Numbers
In previous sections, we have mentioned that epoch numbers

are used to determine the relative ordering between epochs. In
the coherence scheme, an epoch number is associated with every
speculatively-accessed cache line and every speculative coherence
action. The implementation of epoch numbers must address sev-
eral issues. First, epoch numbers must represent a partial ordering
(rather than total ordering) since epochs from independent pro-
grams or even from independent chains of speculation within the

same program are unordered with respect to each other. We im-
plement this by having each epoch number consist of two parts:
a thread identifier (TID) and a sequence number. If the TIDs
from two epoch numbers do not match exactly, then the epochs
are unordered. If the TIDs do match, then the signed difference
between the sequence numbers is computed to determine logical
ordering. (Signed differences preserve the relative ordering when
the sequence numbers wrap around.)

The second issue is that we would like this comparison of
epoch numbers to be performed quickly. At the same time, we
would like to have the flexibility to have large epoch numbers
(e.g., 32 or even 64 bits), since this simplifies TLS code gener-
ation when there is aggressive control speculation [19]. Rather
than frequently computing the signed differences between large
sequence numbers, we instead precomputethe relative ordering
between the current epoch and other currently-active epochs, and
use the resulting logically-later maskto perform simple bit-level
comparisons (as discussed later in Section 3.4).

The third issue is storage overhead. Rather than storing large
epoch numbers in each cache line tag, we instead exploit the
logically-later maskto store epoch numbers just once per chip.

3.2 Implementation of Speculative State
We encode the speculative cache line states given in Figure 4(a)

using five bits as shown in Figure 5(a). Three bits are used to en-
code basic coherence state: exclusive(Ex), dirty (Di), and valid
(Va). Two bits—speculatively loaded(SL) and speculatively mod-
ified (SM)—differentiate speculative from non-speculative states.
Figure 5(b) shows the state encoding which is designed to have the
following two useful properties. First, when an epoch becomes
homefree, we can transition from the appropriate speculative to
non-speculative states simply by resetting the SMand SLbits. Sec-
ond, when a violation occurs, we want to invalidate the cache line
if it has been speculatively modified; this can be accomplished by
setting its valid (Va) bit to the AND of its Va bit with the comple-
ment of its SMbit (i.e. Va= Va& !SM).

Figure 5(c) illustrates how the speculative state can be ar-
ranged. Notice that only a small number of bits are associated
with each cache line, and that only one copy of an epoch number
is needed. The SLand SMbit columns are implemented such that
they can be flash-reset by a single control signal. The SMbits are
also wired appropriately to their corresponding Va bits such that
they can be simultaneously invalidated when an epoch is squashed.
Also associated with the speculative state are an epoch number, an
ownership required buffer (ORB), the addresses of the cancel and
violation routines, and a violation flag which indicates whether a
violation has occurred.�

3.3 Allowing Multiple Writers
As mentioned earlier in Section 2.7, it may be advantageous to

allow multiple epochs to speculatively modify the same cache line.
Supporting a multiple writer scheme requires the ability to merge
partial modifications to a line with a previous copy of the line; this
in turn requires the ability to identify any partial modifications.
One possibility is to replicate the SMcolumn of bits so that there
are as many SM columns as there are words (or even bytes) in

�The cancel and violation routines are used to manage unwanted and
violated epochs respectively. See [19] for more details.

(a) Cache line state bits

Bit Description

Va valid
Di dirty
Ex exclusive
SL speculatively loaded
SM speculatively modified

(b) State encoding

State SL SM Ex Di Va

I X X X X 0
E 0 0 1 0 1
S 0 0 0 0 1
D 0 0 X 1 1
DSpL 1 0 X 1 1
SpE 1 0 1 0 1

0 1 1 1 1
1 1 1 1 1

SpS 1 0 0 0 1
0 1 0 1 1
1 1 0 1 1

(c) Hardware support

Tags DataEx Di Va

Cache Line State

Speculative
Context

ORB

Cancel Handler

Epoch Number

Address

Violation Handler
Address

SL

Logically-Later Mask

Violation Flag

SM[0..N-1]SM

Speculative
Context

ORB

Cancel Handler

Epoch Number

Address

Violation Handler
Address

SL

Violation Flag

SM

Logically-Later Mask

Figure 5. Encoding of cache line states.

0 0

A B

0 0

C D

SM[0..N-1]

Data

Original Cache Line

1 0

E B

0 1

C F

SM[0..N-1]

Data

Epoch i

1 0

G B

1 0

H D

SM[0..N-1]

Data

Epoch i+1

0 0

G B

0 0

H F

SM[0..N-1]

Data

Combined Copy

Figure 6. Support for combining cache lines.

a cache line, as shown in Figure 5(c). We will call these fine-
grain SMbits. When a write occurs, the appropriate SMbit is set.
If a write occurs which is of lower granularity than the SM bits
can resolve, we must conservatively set the SL bit for that cache
line since we can no longer perform a combine operation on this
cache line—setting the SLbit ensures that a violation is raised if a
logically-earlier epoch writes the same cache line.

Figure 6 shows an example of how we combine a speculatively
modified version of a cache line with a non-speculative one. Two
epochs speculatively modify the same cache line simultaneously,
setting the fine-grain SMbit for each location modified. A specu-
latively modified cache line is committed by updating the current
non-speculative version with only the words for which the fine-
grain SMbits are set. In the example, both epochs have modified
the first location. Since epoch i+1is logically-later, its value (G)
takes precedence over epoch i’svalue (E).

Because dependence violations are normally tracked at a cache
line granularity, another potential performance problem is false
violations—i.e. where disjoint portions of a line were read and
written. To help reduce this problem, we observe that a line only

needs to be marked as speculatively loaded(SL) when an epoch
reads a location that it has not previously overwritten (i.e. the load
is exposed[1]). The fine-grain SMbits allow us to distinguish
exposed loads, and therefore can help avoid false violations.

3.4 Support for Speculation in a Shared Cache
We would like to support multiple speculative contexts within a

shared cache for three reasons. First, we want to maintain specula-
tive state across OS-level context switches so that we can support
TLS in a multiprogramming environment. Second, we can use
multiple speculative contexts to allow a single processor to exe-
cute another epoch when the current one is suspended (i.e. during
a suspending violation). Finally, multiple speculative contexts al-
low TLS to work with simultaneous multithreading(SMT) [23].

TLS in a shared cache allows epochs from the same program
to access the same cache lines with two exceptions: (i) two epochs
may not modify the same cache line, and (ii) an epoch may not
read the modifications of a logically-later epoch. We can enforce
these constraints either by suspending or violating the appropri-
ate epochs, or else through cache line replication. With the latter
approach, a speculatively modified line is replicated whenever an-
other epoch attempts to speculatively modify that same line. This
replicated copy is obtained from the external memory system, and
both copies are kept in the same associative set of the shared cache.
If we run out of associative entries, then replication fails and we
must instead suspend or violate the logically-latest epoch owning
a cache line in the associative set. Suspending an epoch in this
case must be implemented carefully to avoid deadlock.

Figure 5(c) shows hardware support for shared-cache specula-
tion where we implement several speculative contexts. The Ex,
Di, and Vabits for each cache line are shared between all specula-
tive contexts, but each speculative context has its own SLand SM
bits. If fine-grain SMbits are implemented, then only one group
of them is necessary per cache line (shared by all speculative con-
texts), since only one epoch may modify a given cache line. The
single SMbit per speculative context indicates which speculative
context owns the cache line, and is simply computed as the OR of

all of the fine-grain SMbits.
To determine whether a speculative access requires replication,

we must compare the epoch number and speculative state bits with
other speculative contexts. Since epoch number comparisons may
be slow, we want to use a bit mask which can compare against
all speculative contexts in one quick operation. We maintain a
logically-later maskfor each speculative context (shown in Fig-
ure 5(c)) that indicates which speculative contexts contain epochs
that are logically-later, thus allowing us to quickly make the com-
parisons using simple bit operations [19].

3.5 Preserving Correctness
In addition to data dependences, there are a few other issues re-

lated to preserving correctness under TLS. First, speculation must
fail whenever any speculative state is lost (e.g., the replacement
of a speculatively-accessed cache line, the overflow of the ORB,
etc.). Second, as with other forms of speculation, a speculative
thread should not immediately invoke an exception if it derefer-
ences a bad pointer, divides by zero, etc.; instead, it must wait un-
til it becomes homefreeto confirm that the exception really should
have taken place, and for the exception to be precise. Third, if
an epoch relies on polling to detect failed speculation and it con-
tains a loop, a poll must be inserted inside the loop to avoid infinite
looping. Finally, system calls generally cannot be performed spec-
ulatively without special support. We will explore this issue more
aggressively in future work; for now, we simply stall a speculative
thread if it attempts to perform a system call until it is homefree.

4. Experimental Framework
We evaluate our coherence protocol through detailed simula-

tion. Our simulator models 4-way issue, out-of-order, superscalar
processors similar to the MIPS R10000 [24]. Register renaming,
the reorder buffer, branch prediction, instruction fetching, branch-
ing penalties, and the memory hierarchy (including bandwidth and
contention) are all modeled, and are parameterized as shown in Ta-
ble 1. We simulate all applications to completion.

Our baseline architecture has four tightly-coupled, single-
threaded processors, each with their own primary data and instruc-
tion caches. These are connected by a crossbar to a 4-bank, unified
secondary cache. Our simulator implements the coherence scheme
defined in Section 2 using the hardware support described in Sec-
tion 3. To faithfully simulate the coherence traffic of our scheme,
we model 8 bytes of overhead for coherence messages that contain
epoch numbers. Because epoch numbers are compared lazily (and
in parallel with cache accesses), they have no impact on memory
access latency.

The simulated execution model makes several assumptions
with respect to the management of epochs and speculative threads.
Epochs are assigned to processors in a round-robin fashion, and
each epoch must spawn the next epoch through the use of a
lightweight fork instruction. For our baseline architecture, we as-
sume that a fork takes 10 cycles, and this same delay applies to
synchronizing two epochs when forwarding occurs. Violations are
detected through polling, so an epoch runs to completion before
checking if a violation has occurred. When an epoch suffers a
violation, we also squash all logically-later epochs.

We are simulating real MIPS binaries which contain TLS in-
structions. Unused coprocessor instruction encodings are used for

Table 1. Simulation parameters.
Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 32
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16K, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 8 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles
Intra-Chip Communication Latency 10 cycles
Inter-Chip Communication Latency 200 cycles

TLS primitives, and are added to the applications using gcc ASM
statements. To produce this code, we are using a set of tools based
on the SUIF compiler system. These tools, which are not yet com-
plete, help analyze the dependencepatterns in the code, insert TLS
primitives into loops, perform loop unrolling, and insert synchro-
nization code. The choice of loops to parallelize and other op-
timizations (described below) were made by hand, although we
plan to have a fully-automatic compiler soon. We only parallelize
regions of code that are not provably parallel (by a compiler).

Table 2 shows the applications used in this study: buk is an
implementation of the bucket sort algorithm; compress95 per-
forms data compression and decompression;equake uses sparse
matrix computation to simulate an earthquake; and ijpeg per-
forms various algorithms on images. The buk application has
been reduced to its kernel, removing the data set generation and
verification code—the other applications are run in their entirety.
For compress95, certain loop-carried dependences occur fre-
quently enough that we either hoist them outside of the loop or
else explicitly forward them using wait-signal synchronization.

5. Experimental Results
We now present the results of our simulation studies. To quan-

tify the effectiveness of our support for TLS, we explore the impact
of various aspects of our design on the performance of the four ap-
plications. Our initial sets of experiments are for a single-chip
multiprocessor, and later (in Section 5.5) we evaluate larger-scale
machines that cross chip boundaries.

5.1 Performance of the Baseline Scheme
Table 3 summarizes the performance of each application on

our baseline architecture, which is a four-processor single-chip
multiprocessor that implements our baseline coherence scheme.
Throughout this paper, all speedups (and other statistics relative
to a single processor) are with respect to the original executable
(i.e. without any TLS instructions or overheads) running on a sin-
gle processor. Hence our speedups are absolute speedupsand not

Table 2. Applications and their speculatively parallelized regions.

Speculative Region Unrolling Avg. Insts. Parallel
Suite Application Input Data Set (src file:line, loop type) Factor per Epoch Coverage

NAS-Parallel buk 4MB buk.f:111, do loop 8 81.0 22.8%
buk.f:123, do loop 8 135.0 33.8%

Spec95 compress95 test [test.in] compress.c:480, while loop 1 196.7 24.6%
compress.c:706, while loop 1 240.4 22.7%

ijpeg test jccolor.c:138, for loop 32 1467.9 8.2%
[specmun.ppm] jcdctmgr.c:214, for loop 1 80.8 2.2%

quality 10 jidctint.c:171, for loop 1 84.0 5.0%
smoothing factor 10 jidctint.c:276, for loop 1 100.3 6.7%

Spec2000 equake test [inp.in] quake.c:1195, for loop 1 2925.5 39.3%

Table 3. Performance impact of TLS on our baseline architecture
(a four-processor single-chip multiprocessor).

Overall Region Parallel Program
Application Speedup Coverage Speedup

buk 2.26 56.6% 1.46
compress95 1.27 47.3% 1.12
equake 1.77 39.3% 1.21
ijpeg 1.94 22.1% 1.08

self-relative speedups. As we see in Table 3, we achieve speedups
on the regions of code that we parallelized ranging from 27% to
126%. The overall program speedups are limited by the cover-
age(i.e. the fraction of the original execution time that was paral-
lelized), and they range from 8% to 46%. To simplify our discus-
sion, we will focus only on the speculatively parallelized regions
of code throughout the remainder of this section.

Figure 7 shows how performance varies across a number of
different processors from two different perspectives. Figure 7(a)
shows execution timenormalized to the original (i.e. non-TLS) se-
quential execution. (Note that the 1 processorbars in Figure 7 are
this original executable, rather than the TLS executable running
on a single processor.) Figure 7(b) shows aggregate cycles, which
is simply the normalized number of cycles multiplied by the num-
ber of processors. Ideally, the aggregate cycleswould remain at
100% if we achieved linear speedup; in reality, it increases as the
processors become less efficient.

The bars in Figure 7 are broken down into seven segments ex-
plaining what happened during all potential graduation slots.� The
top three segments represent slots where instructions do not grad-
uate for the following TLS-related reasons: waiting to begin a new
epoch (spawn); waiting for synchronization for a forwarded loca-
tion (sync); and waiting to become homefree (homefree). The re-
maining segments represent regular execution: the busysegment is
the number of slots where instructions graduate; the dcachemiss
segment is the number of non-graduating slots attributed to data
cache misses; and the istall segment is all other slots where in-
structions do not graduate. Finally, the idle segment represents
slots where a processor has nothing to execute. It is somewhat
easier to directly compare these categories in Figure 7(b), where
an increase in the size of a segment means that a problem is get-
ting worse. Also note that time wasted on failed speculation can
contribute to any one of these segments.

�The number of graduation slots is the product of (i) the issue width (4
in this case), (ii) the number of cycles, and (iii) the number of processors.

(a) Execution Time

|

0

|
50

|

100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

100

1

75

2

56

3

44

4*

33

6

29

8

buk

100

1

93

2

81

3

78

4*

81

6

87

8

compress95

100

1

74

2

63

3

56

4*

56

6

58

8

equake

100

1

75

2

58

3

51

4*

91

6

105

8

ijpeg

spawn

sync

homefree

idle

istall

dcache_miss

busy

(b) Aggregate Cycles

|

0

|

200

|

400

|

600

|

800

 N
o

rm
al

iz
ed

 A
g

g
re

g
at

e
C

yc
le

s
in

 R
eg

io
n

s

100

1

151

2

167

3

177

4*

200

6

228

8

buk

100

1

186

2

242

3

314

4*

483

6

693

8

compress95

100

1

149

2

189

3

226

4*

333

6

467

8

equake

100

1

151

2

173

3

205

4*

544

6

843

8

ijpeg

spawn

sync

homefree

idle

istall

dcache_miss

busy

Figure 7. Performance of our TLS scheme on a single-chip mul-
tiprocessor. Part (a) shows normalized execution time, and
part (b) is scaled to the number of processors multiplied by the
number of cycles. The number of processors in our baseline
architecture is four, as indicated by the *.

Looking at the single-processor results, we see that buk and
equake are limited by memory performance (since they have
large dcachemiss segments), while the other applications are
more computationally intensive and have relatively large busy
and istall segments. As we increase the number of proces-
sors and begin to speculatively execute in parallel, we achieve
speedup in all cases. All applications with the exception of
compress95 experience an increase in time spent waiting for
the lightweight fork (spawn), since we fork epochs in sequential
order. For compress95, this overhead is hidden by synchroniza-
tion (synch) for forwarded values, which increases quickly with
the number of processors.

As we see in Figure 7(a), buk continues to enjoy speedups up
through eight processors. For the other three cases, however, per-
formance levels off and starts to degrade prior to eight processors.

Table 4. TLS overhead statistics for our baseline architecture (a
four-processor single-chip multiprocessor).

Dynamic Misses ORB Statistics
Instr. to Other Avg. Flush Size (entries)

Application Overhead Caches Latency (cycles) Avg. Max.

buk 5.3% 34.47% 13.95 2.38 9
compress95 30.6% 3.02% 0.04 0.01 8
equake 3.7% 1.67% 0.13 0.04 12
ijpeg 7.0% 65.00% 1.06 0.17 5

The most dramatic case is ijpeg, where performance degrades
sharply beyond four processors for the following reasons: (i) some
of the speculative regions in ijpeg contain only four epochs (af-
ter loop unrolling); and (ii) an unfortunate mapping conflict in the
cache causes many violations due to replacements. In general,
the more epochs one attempts to execute in parallel, the greater
the likelihood of dependence violations. Fortunately, there are ap-
plications which scale well to eight processors and beyond using
TLS, as we will see later in Section 5.5.

5.1.1 Overheads of Thread-Level Speculation
We now investigate the overheads of our baseline scheme in

greater detail using the statistics in Table 4. The first column in
this table shows the TLS instruction overhead as a percentage of
the original dynamic instructions. This instruction overhead is sig-
nificant for compress95 (over 30%) due to the large amount of
data forwarding and the relatively small size of each epoch. The
instruction overheads are much smaller (7% or less) for the re-
maining applications.

A second potential source of overhead with TLS is decreased
cache locality due to data being distributed across multiple proces-
sors. The second column in Table 4 shows the percentage of cache
misses with TLS on four processors where the data was found in
another processor’s cache. This rough indication of cache local-
ity suggests that in two cases (buk and ijpeg), there may be
significant room for improvement through more intelligent data
placement and thread scheduling.

The ORB presents a third potential source of overhead. Re-
call that the ORB maintains a list of addresses of speculatively-
modified cache lines that are in the speculative-shared(SpS) state.
When the homefree tokenarrives, we must issue and complete
upgrade requests to obtain exclusive ownership of these lines
(thereby committing their results to memory) prior to passing the
homefree token on to the next logically-later epoch. In addition,
speculation fails if the ORB overflows. For these reasons, we hope
that the average number of ORB entries per epoch remains small.
As we see in Table 4, the average number of ORB entries is in
fact small: less than 2.5 for buk, and less than 0.2 for the other
three cases. This translates into an average ORB flush latency of
roughly fourteen cycles for buk, and roughly one cycle or less for
the other cases. Despite buk’s fourteen cycle ORB flush latency,
it still speeds up quite well. To further mitigate the impact of this
latency on performance, we could design the hardware to begin
flushing the ORB as soon as the homefree tokenarrives (in our
experiments, we take the less aggressive approach of also waiting
until the epoch finishes before flushing the ORB). The rightmost
column in Table 4 shows that a twelve-entry ORB is sufficient to
eliminate the possibility of ORB overflow for these applications.

Finally, Figure 8 shows a breakdown of the causes of viola-

|

0

|

20

|

40

|

60

|

80

|

100

 P
er

ce
n

t
o

f
V

io
la

ti
o

n
s

(0.1840)

buk
(0)

compress95
(0.2662)

equake
(0.0001)

ijpeg

replacement

invalidation

speculative invalidation

Figure 8. Breakdown of causes of violations on our four-
processor baseline architecture. The ratio of violations to
epochs committed is shown below each bar.

|

0

|

50

|

100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

99

5

100

10*

100

15

101

20

101

25

101

30

buk

95

5

100

10*

105

15

111

20

116

25

122

30

compress95

100

5

100

10*

100

15

100

20

100

25

100

30

equake

97

5

100

10*

105

15

110

20

116

25

122

30

ijpeg

spawn

sync

homefree

idle

istall

dcache_miss

busy

Figure 9. Impact of varying communication latency (in cycles).
The baseline architecture has a communication latency of 10
cycles, as indicated by the *.

tions, which vary across the applications. Below each bar, we
show the ratio of the number of violations to the number of epochs
committed. (Note that this ratio can be greater than one, since an
epoch can suffer multiple violations prior to committing.) The vi-
olations are broken down into the following three categories: (i)
those due to the replacement of speculatively-accessed lines from
the cache; (ii) those due to normal invalidations, which correspond
to logically-earlier epochs flushing the given address from their
ORB at commit time; and (iii) those due to speculativeinvalida-
tions, which correspond to another epoch speculatively modifying
a line that the given epoch had speculatively loaded earlier. As
we see in Figure 8, compress95 does not suffer any violations
(in part due to the use of explicit data forwarding), and the few
violations that occur in ijpeg are due to cache replacements. Vi-
olations occur far more frequently in buk and equake, where
they are caused primarily by either normal or speculative invali-
dations. Given the choice, speculative invalidations are preferable
over normal ones because they help reduce then size of the ORB
and give earlier notification of violations.

In summary, the overheads of TLS remain small enough that
we still enjoy significant performance gains. We now focus on
other aspects of our design.

5.2 Impact of Communication Latency
Figure 9 shows the impact of varying the communication la-

tency within the single-chip multiprocessor from five to thirty cy-
cles (in the baseline architecture, it is ten cycles). As we see in
Figure 9, buk and equake are insensitive to communication la-

|

0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

100.0

Base

87.4

SpI

buk

100.0

Base

99.8

SpI

compress95

100.0

Base

91.1

SpI

ijpeg

100.0

Base

100.0

SpI

equake

spawn

sync

homefree

idle

istall

dcache_miss

busy

Figure 10. Benefit of allowing speculative invalidations to inval-
idate non-speculative cache lines (SpI) vs our baseline coher-
ence scheme (Base).

tencies within this range because their performance is mostly lim-
ited by data cache capacity misses rather than inter-epoch commu-
nication. Compress95 and ijpeg are more latency-sensitive:
they suffer from increased synchronization and thread spawning
times, respectively. Given the region and program speedups in Ta-
ble 3, we observe that all of these applications would still enjoy
speedups with higher communication latencies than the ten cycles
assumed in our baseline architecture.

5.3 Support for Multiple Writers
As discussed earlier in Sections 2.7 and 3.3, a potential en-

hancement of our baseline coherence scheme is to allow for multi-
ple writers to the same cache line. We simulated such a multiple-
writer scheme, and found that it offered no performance benefit
for any of our four applications. While this is hardly sufficient
evidence to claim a negative result, we can offer the following
insights into why our applications did not require multiple writer
support (i.e. write-after-write (WAW) dependenceviolations rarely
occurred). In buk and equake, we see fairly random access pat-
terns for many of the stores; these cases are not a problem since the
likelihood of successive epochs storing to the same cache line is
low. The case that we did see that can be pathologically bad (e.g.,
in ijpeg) is when each loop iteration stores the next sequential
element in an array. Fortunately this case is easy to identify and
fix: we simply unroll (or strip-mine) the loop body such that each
epoch gets a block of iterations that perform all of the sequen-
tial stores to a given cache line. In other words, we use block-
cyclic rather than cyclic (aka “round-robin”) scheduling, which is
a common technique for avoiding the analogous problem of false
sharingin traditional shared-memory multiprocessors. Since loop
unrolling (or strip-mining) is also attractive in TLS for the sake
of creating larger epochs to help reduce the relative communica-
tion overhead, this may be a valuable technique for machines that
support TLS but not multiple writers.

5.4 Speculative Invalidation of Non-Speculative
Cache Lines

As discussed earlier in Section 2.6.1, one design choice is
whether a speculative invalidation can invalidate a cache line in a
non-speculative state. Recall that our baseline scheme did not al-
low this, with the goal of not impeding the progress of a homefree
epoch. However, as we see in Figure 10, both buk and ijpeg

|

0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e spawn

sync

homefree

idle

istall

dcache_miss

busy

100.0

1x1

72.2

1x2

42.8

1x4

25.8

1x8

Single Node

67.7

2x2

38.3

2x4

23.2

2x8

2 Nodes

52.8

4x2

29.8

4x4

4 Nodes
buk

100.0

1x1

64.1

1x2

48.0

1x4

43.3

1x8

Single Node

48.6

2x2

37.9

2x4

42.9

2x8

2 Nodes

38.6

4x2

40.8

4x4

4 Nodes
equake

Figure 11. Region performance of buk and equake on a va-
riety of multiprocessor architectures (NxM means N nodes of
M processors).

achieve significantly better performance if we do allow specula-
tive invalidations of non-speculative lines since this reduces the
average number of ORB entries, and hence the latency of flush-
ing the ORB and passing the homefree token. These additional
speedups of roughly 10% within the parallelized regions of buk
and ijpeg translate into overall program speedups of 53% (vs.
46%) and 10% (vs. 8%), respectively. Hence allowing speculative
invalidations to invalidate non-speculative lines is clearly a worth-
while enhancement to our baseline scheme.

5.5 Scaling Beyond Chip Boundaries
Having demonstrated the effectiveness of our TLS scheme on

single-chip multiprocessors, we now evaluate how well it scales
to larger-scale, multi-chipmultiprocessors, where each node in the
system is itself a single-chip multiprocessor. Figure 11 shows the
performance of buk and equake across a range of these multi-
node architectures. Starting with single-node performance, notice
that both of these applications speed up well within a single chip,
although equake shows diminishing returns with eight proces-
sors. (Note that these results differ slightly from those given ear-
lier in Section 5.1, since we are now simulating an extra level of
interconnection in the memory hierarchy.)

Now consider the multi-node architectures, where the commu-
nication latency between nodes is twenty times larger than that
within a node (i.e. 200 vs. 10 cycles). As we see in Figure 11, both
buk and equake speed up well on many of these multi-node ar-
chitectures. Given a fixed total number of processors, there are
both advantages and disadvantages to splitting those processors
across multiple nodes. One advantage is that the total amount of
secondary cache storage increases (since there is a fixed amount
per chip); this is the reason why both the 2x4and 4x2configura-
tions are faster than the 1x8 configuration for equake. On the
other hand, an obvious disadvantage is that having more nodes
increases the average cost of inter-processor communication; for
this reason, the 2x4and 4x2configurations are both slowerthan
the 1x8configuration for buk.

Overall, we observe that the best performance for each applica-
tion was achieved on a multi-node architecture: 2x8for buk, and
2x4for equake. These region speedups of 331% and 164% for
buk and equake, respectively, translate into program speedups
of 75% and 39%. These results demonstrate that our mechanisms
for flushing the ORB and passing the homefree token are scalable,
and do not limit the scope of our TLS scheme.

6. Conclusions
We have presented a cache coherence scheme that supports

thread-level speculation on a wide range of different parallel archi-
tectures, from single-chip multiprocessors or simultaneously mul-
tithreaded processors up to large-scale machines which might use
single-chip multiprocessors as their building blocks. Our exper-
imental results demonstrate that our baseline TLS scheme offers
absolute program speedups ranging from 8% to 46% on a four-
processor single-chip multiprocessor, and that two of the appli-
cations we studied achieve even larger speedups (up to 75%) on
multi-chip architectures. We observe that the overheads of our
scheme are reasonably small—in particular, the ORB mechanism
used to commit speculative modifications at the end of an epoch
is not a performance bottleneck, and only a relatively small ORB
(e.g., twelve entries) is necessary.

We make two observations regarding the applications we stud-
ied. First, we notice that some applications are sensitive to com-
munication latency and are likely to perform well only in a tightly-
coupled environment (e.g., compress and ijpeg), while others
are also suitable for larger-scale multiprocessors with longer com-
munication latencies (e.g., buk and equake). Second, we ob-
serve that the applications benefit from TLS without special sup-
port for multiple speculative writers, in part because we can use
loop unrolling to avoid problems with false dependenceviolations.

Our scheme does not require a large amount of new hardware;
in fact, we are currently implementing a purely software-based
version of our scheme within a software DSM system. As parallel
architectures become increasingly commonplace in the future on
a wide variety of scales, we expect that thread-level speculation
will become an increasingly important technique for helping com-
pilers automatically create parallel programs to exploit all of this
processing potential.

7. Acknowledgments
This research is supported by a grant from NASA. Todd C.

Mowry is partially supported by an Alfred P. Sloan Research Fel-
lowship.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, 1986.

[2] H. Akkary and M. Driscoll. A Dynamic Multithreading Processor.
In MICRO-31, December 1998.

[3] C. Amza, S. Dwarkadas A.L. Cox, and W. Zwaenepoel. Soft-
ware DSM Protocols that Adapt between Single Writer and Multi-
ple Writer. In Proceedings of the Third High Performance Computer
Architecture Conference, pages 261–271, February 1997.

[4] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for re-
ducing consistency-related information in distributed shared memory
systems. ACM Transactions on Computer Systems, 13(3):205–243,
August 1995.

[5] M. Cintra, J. F. Martı́nez, and J. Torrellas. Architectural Support for
Scalable Speculative Parallelization in Shared-Memory Multiproces-
sors. In Proceedings of ISCA 27, June 2000.

[6] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dy-
namic Reordering of Memory References. IEEE Transactions on
Computers, 45(5), May 1996.

[7] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Version-
ing Cache. In Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture, February 1998.

[8] M. Gupta and R. Nim. Techniques for Speculative Run-Time Paral-
lelization of Loops. In Supercomputing ’98, November 1998.

[9] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessor. In Proceedings of ASPLOS-VIII, October
1998.

[10] J. Kahle. Power4: A Dual-CPU Processor Chip. Microprocessor
Forum ’99, October 1999.

[11] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and
Operating Systems. In Proceedingsof the Winter Usenix Conference,
January 1994.

[12] T. Knight. An Architecture for Mostly Functional Languages. In
Proceedings of the ACM Lisp and Functional Programming Confer-
ence, pages 500–519, August 1986.

[13] V. Krishnan and J. Torrellas. The Need for Fast Communication in
Hardware-Based Speculative Chip Multiprocessors. In International
Conference on Parallel Architectures and Compilation Techniques
(PACT), October 1999.

[14] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th ISCA, pages 241–251,
June 1997.

[15] P. Marcuello and A. Gonzlez. Clustered Speculative Multithreaded
Processors. In Proc. of the ACM Int. Conf. on Supercomputing, June
1999.

[16] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The Case for a Single-Chip Multiprocessor. In Proceedings of
ASPLOS-VII, October 1996.

[17] J. Oplinger, D. Heine, and M. S. Lam. In Search of Speculative
Thread-Level Parallelism. In Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques
(PACT’99), October 1999.

[18] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar Processors.
In Proceedings of ISCA 22, pages 414–425, June 1995.

[19] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural Sup-
port for Thread-Level Data Speculation. Technical Report CMU-CS-
97-188, School of Computer Science, Carnegie Mellon University,
November 1997.

[20] J. G. Steffan and T. C. Mowry. The Potential for Using Thread-
Level Data Speculation to Facilitate Automatic Parallellization.
In Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture, February 1998.

[21] M. Tremblay. MAJC: Microprocessor Architecture for Java Com-
puting. HotChips ’99, August 1999.

[22] J.-Y. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. Yew. The Su-
perthreaded Processor Architecture. IEEE Transactions on Comput-
ers, Special Issue on Multithreaded Architectures, 48(9), September
1999.

[23] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. In Proceedingsof ISCA
22, pages 392–403, June 1995.

[24] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE
Micro, April 1996.

[25] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for Specula-
tive Parallelization of Partially-Parallel Loops in DSM Multiproces-
sors. In Fifth International Symposium on High-Performance Com-
puter Architecture (HPCA), pages 135–141, January 1999.

