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Abstract
Thread-Level Speculation (TLS) allows us to automatically

parallelize general-purpose programs by supporting parallel ex-
ecution of threads that might not actually be independent. In
this paper, we show that the key to good performance lies in the
three different ways to communicate a value between speculative
threads: speculation, synchronization, and prediction. The diffi-
cult part is deciding how and when to apply each method.

This paper shows how we can apply value prediction, dynamic
synchronization, and hardware instruction prioritization to im-
prove value communication and hence performance in several
SPECint benchmarks that have been automatically-transformed
by our compiler to exploit TLS. We find that value prediction can
be effective when properly throttled to avoid the high costs of mis-
prediction, while most of the gains of value prediction can be more
easily achieved by exploiting silent stores. We also show that
dynamic synchronization is quite effective for most benchmarks,
while hardware instruction prioritization is not. Overall, we find
that these techniques have great potential for improving the per-
formance of TLS.

1 Introduction

Microprocessors which can simultaneously execute multiple
parallel threads are becoming increasingly commonplace. Pro-
cessors such as the Sun MAJC [34], IBM Power4 [18], and
the Sibyte SB-1250 [8] aresingle-chip multiprocessors (CMPs),
while the Alpha 21464 was designed to supportsimultaneous-
multithreading [36]. Using this multithreaded hardware to im-
prove the throughput of a workload is straightforward, but improv-
ing the performance of a single application requires paralleliza-
tion.

How can we parallelize all of the applications that we care
about? Writing parallel software can be a daunting task; we
would much rather have the compiler parallelize our code for
us. Traditionally, compilers have parallelized by proving that
potential threads are independent [3, 17, 33]—but this is ex-
tremely difficult if not impossible for many general purpose pro-
grams due to their complex data structures and control flow,
and use of pointers and runtime inputs. One promising alter-
native for overcoming this problem isThread-Level Speculation
(TLS) [2, 7, 14, 15, 16, 20, 23, 26, 32, 35] which allows the com-
piler to create parallel threads without having to prove that they
are independent.
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Figure 1. A memory value may be communicated between two
epochs (E1 and E2) through (a) speculation, (b) synchroniza-
tion, or (c) prediction.

1.1 The Importance of Value Communication for
Thread-Level Speculation

In the context of TLS, value communication refers to the satis-
faction of any true (read-after-write) dependence betweenepochs
(sequential chunks of work performed speculatively in parallel).
From the compiler’s perspective, there are two ways to communi-
cate the value of a given variable. First, the compiler may spec-
ulate that the variable is not modified (Figure 1(a)). However, if
at run-time the variable actuallyis modified then the underlying
hardware ensures that the misspeculated epoch is re-executed with
the proper value. This method only works well when the variable
is modified infrequently, since the cost of misspeculation is high.
Second, if the variable is frequently modified, then the compiler
may instead synchronize and forward� the value between epochs
(Figure 1(b)). Since a parallelized region of code will contain
many variables, the compiler will employ a combination of specu-
lation and synchronization as appropriate.

To further improve upon static compile-time choices between
speculating or synchronizing for specific memory accesses, we
can exploit dynamic run-time behavior to make value commu-
nication more efficient. For example, we might exploit a form
of value prediction [2, 13, 22, 24, 28, 29, 37], as illustrated in
Figure 1(c). To get a sense of the potential upside of enhancing
value communication under TLS, let us briefly consider the ideal
case. From a performance perspective, the ideal case would cor-
respond to a value predictor that could perfectly predict the val-
ues of any inter-thread dependences. In such a case, speculation

�This is also known asdoacross [10, 27] parallelization.
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Figure 2. Potential impact of optimizing value communication. Relative to the normalized, original sequential version, U shows the
unoptized speculative version and P shows perfect prediction of all inter-thread data dependences.

would never fail and synchronization would never stall. While
this perfect-prediction scenario is unrealistic, it does allow us to
quantify the potential impact of improving value communication
in TLS. Figure 2 shows the impact of perfect prediction on several
speculatively-parallelized SPECint [9] benchmarks, running on a
4-processor CMP that implements our TLS scheme [32] (details
are given later in Section 3.2). Each bar shows the total execution
time of all speculatively-parallelized regions of code, normalized
to that of the corresponding original sequential versions of these
same codes. As we see in Figure 2, efficient value communica-
tion often makes the difference between speeding up and slowing
down relative to the original sequential code. Hence this is clearly
an important area for applying compiler and hardware optimiza-
tions.

1.2 Techniques for Improving Value Communica-
tion

Given the importance of efficient value communication in TLS,
what solutions can we implement to approach the ideal results
of Figure 2? Figure 1 shows the spectrum of possibilities: i.e.
speculate, synchronize, or predict. In our baseline scheme, the
compiler synchronizes dependences that it expects to occur fre-
quently (by explicitly “forwarding” their values between succes-
sive epochs), and speculates on everything else. How can we use
hardware to improve on this approach? Hardware support for effi-
cientspeculation has already been addressedin a number of papers
on TLS [2, 6, 14, 15, 16, 20, 23, 26, 32, 35]. Therefore our focus
in this paper is how to exploit and enhance the remaining spectrum
of possibilities (i.e.prediction andsynchronization) such that they
are complementary to speculation within TLS. In particular, we
explore the following techniques:

Value Prediction: We can exploitvalue prediction by having the
consumer of a potential dependence use a predicted value
instead, as illustrated in Figure 1(c). After the epoch com-
pletes, it will compare the predicted value with the actual
value; if the values differ, then the normal speculation re-
covery mechanism will be invoked to squash and restart
the epoch with the correct value. We explore using value
prediction as a replacement for bothspeculation andsyn-
chronization. In the former case (which we refer to later
as “memory value prediction”), successful value prediction
avoids the cost of recovery from an unsuccessful specu-
lative load. In the latter case (which we refer to later as
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Figure 3. Reducing the critical forwarding path.

“ forwardedvalue prediction”), successfulprediction avoids
the need to stall waiting for synchronization. Because the
implementation issues and performance impact differ for
these two cases, we evaluate them separately.

Silent Stores: An interesting program phenomenon that was re-
cently discovered [21] is that many stores have no real side-
effect since they overwrite memory with the same value
that is already there. These stores are calledsilent stores,
and we can exploit them when they occur to avoid failed
speculation. Although one can view silent stores as a form
of value prediction, the mechanism to exploit them is radi-
cally different from what is shown in Figure 1(c) since the
changes occur with theproducer of a communicated value,
rather than the consumer.

Hardware-Inserted Dynamic Synchronization: In cases where
the compiler decided to speculate that an ambiguous
store/load dependencebetween speculative threads was not
likely to occur, but where the dependence does in fact
occur frequently and the communicated value is unpre-
dictable, the best option would be to explicitly synchronize
the threads (Figure 1(b)) to avoid the full cost of failed spec-
ulation. However, since the compiler did not recognize that
such synchronization would be useful, another option is for
the hardware to automatically switch from speculating to
synchronizing when it dynamically detects such bad cases.

Reducing the Critical Forwarding Path: Once synchronization
is introduced to explicitly forward values across epochs, it
creates a dependence chain across the threads that may ul-
timately limit the parallel speedup. We can potentially im-
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prove performance in such cases by using scheduling tech-
niques to reduce the critical path between the first use and
last definition of the dependent value, as illustrated in Fig-
ure 3. We implement both compiler and hardware methods
for reducing the critical forwarding path.

1.3 Contributions and Overview

This paper makes the following contributions. First, we eval-
uate a comprehensive set of techniques for enhancing value com-
munication within a system that supports thread-level speculation,
and demonstrate that many of them can result in significant per-
formance gains. While we evaluate these techniques within the
context of our own implementation of TLS, we expect to see sim-
ilar trends within other TLS environments since the results are
largely dependent on application behavior rather than the details
of how speculation support is implemented. Second, and perhaps
most importantly, we evaluate these techniquesafter the compiler
has eliminated obvious data dependences and scheduled any crit-
ical forwarding paths, thereby removing the “easy” bottlenecks
to achieving good performance. This leads us to very different
conclusions than previous studies on exploiting value prediction
within TLS [24, 26]. Third, we demonstrate the importance of
throttling back value prediction to avoid the high cost of mispre-
diction, and propose and evaluate techniques for focusing predic-
tion on the dependences that matter most. Fourth, we present
the first exploration of howsilent stores can be exploited within
TLS; compared with using traditional value prediction mecha-
nisms to predict speculative memory loads, our silent stores ap-
proach yields comparable (if not better) performance while requir-
ing considerably less hardware support. Finally, we evaluate two
novel hardware techniques for enhancing the performance of syn-
chronized dependences across speculative threads, but find mixed
or disappointing results compared with what our compiler can do
to optimize such cases in software.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe our approach to TLS support, including our
hardware implementation and compiler infrastructure. We take a
closer look at the potential for improving value communication in
Section 3, and show that our compiler optimizations have a large
impact. In Section 4 we investigate techniques for improving value
prediction, and explore methods to improve synchronization. Fi-
nally, in Section 5 we evaluate the combination of all techniques,
and conclude in Section 6.

2 Our Support for Thread-Level Speculation
This section describes the goals of our approach, how we im-

plement support for TLS in hardware, our compiler support, and
our experimental framework. While this study is within the con-
text of our approach to TLS support [31, 32], the techniques that
we suggest for improving value communication are applicable to
other approaches as well.

2.1 Goals of Our Approach

Before we begin our investigation of value communication for
TLS, it is important to understand the philosophy behind our ap-
proach. First and foremost, our goal is to parallelize general-
purpose programs. Our scheme supports parallelization of scien-
tific codes, but for now we focus on the more difficult problem

of parallelizing integer applications. Second, we want to keep the
hardware support simple and minimal: we avoid large structures
that are specialized for speculation, and preserve the performance
of non-TLS workloads. Third, we take full advantage of the com-
piler which selects the regions of code to speculatively parallelize,
eliminates data dependenceswhere possible, and otherwise inserts
synchronization and schedules the critical paths.

2.2 Underlying Hardware Support

Our scheme [31, 32] is applicable to shared-cache architec-
tures, but for now we focus on single-chip multiprocessors where
each processorhas its own physically-private first-level data cache,
connected to a unified second-level cache by a crossbar switch.
TLS hardware support must implement two important features:
buffering speculative modifications from regular memory, and de-
tecting and recovering from failed speculation. In our scheme we
implement this support by using the data caches and an extended
version of standard invalidation-based cache coherence.

In a nutshell, our coherence scheme works by tracking which
cache lines have been speculatively loaded or modified, and pig-
gybacking a sequence number on coherence messages to de-
tect when an epoch has violated a data dependence. We buffer
speculative modifications from regular memory by ensuring that
speculatively-modified cache lines are not evicted� so that only
committed, non-speculative modifications are visible to the rest of
the memory hierarchy. We also provide support formultiple writ-
ers, where two epochs can each speculatively modify their own
copy of the same cache line: the coherence mechanism uses the
sequence numbers to properly combine the cache lines when they
are committed.

2.3 Compiler Support

In contrast with hardware-only approaches to TLS, we rely on
the compiler to define where and how to speculate. Our compiler
infrastructure is based on the Stanford SUIF 1.3 compiler sys-
tem [33], and performs the following phases when compiling an
application to exploit TLS.

Deciding Where to Speculate: For this paper, we focus solely
on loops. With the help of automatically-gathered profile
information, the compiler selects loops to maximize cov-
erage while meeting heuristics for epoch size and loop trip
counts: each loop must comprise at least 0.1% of overall
execution time and have an average of at least 1.5 epochs
per instance, as well as an average of at least 15 instructions
per epoch. Once the key loops are selected, the compiler
automatically applies loop unrolling to small loops to help
amortize the overheads of speculative parallelization.

Transforming to Exploit TLS: Once speculative regions are
chosen, the compiler inserts new TLS-specific instructions
into the code that interact with the TLS hardware to cre-
ate and manage the speculative threads (aka “epochs”) [31].
We must also satisfy register dependences between specu-
lative threads; to accomplish this, the compiler “forwards”
register values between successive epochs by accessing a

� If a speculative cache line must be evicted, we simply cause specula-
tion to fail for the corresponding epoch.
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special portion of the stack called theforwarding frame
which allows hardware to manage synchronization and
communication for these values. Before the first use of a
forwarded value, the compiler inserts await instruction,
and then reads the value from the forwarding frame. After
the last definition, the value is written back to the forward-
ing frame and asignal instruction allows the next epoch
to proceed.

Optimization: Without optimization, execution can be unnec-
essarily serialized by synchronization (throughwait and
signal operations). A pathological case is a “for” loop
in theC language where the loop counter is used at the be-
ginning of the loop and then incremented at the end of the
loop—if the loop counter is synchronized and forwarded
then the loop will be serialized. However, scheduling can
be used to move thewait andsignal closer to each
other, thereby reducing this critical path. Our compiler
schedules these critical paths by first identifying the com-
putation chain leading to eachsignal, and then using a
dataflow analysis which extends the algorithm developed
by Knoop [19] to schedule that code in the earliest safe lo-
cation. We can do even better for any loop induction vari-
able that is a linear function of the loop index; the scheduler
hoists the associated code to the top of the epoch and com-
putes that value locally from the loop index, avoiding any
extra synchronization altogether. These optimizations have
a large impact on performance, as we show later in Sec-
tion 3.1.

Code Generation: Our compiler outputsC source code which
encodes our new TLS instructions as in-line MIPS assem-
bly code usinggcc’s “asm” statements. This source code
is then compiled withgcc v2.95.2 using the “-O3” flag
to produce optimized, fully-functional MIPS binaries with
TLS instructions.

2.4 Experimental Framework

We evaluate our support for TLS through detailed simulation.
Our simulator models 4-way issue, out-of-order, superscalar pro-
cessors similar to the MIPS R10000 [38]. Register renaming,
the reorder buffer, branch prediction, instruction fetching, branch-
ing penalties, and the memory hierarchy (including bandwidth
and contention) are all modeled, and are parameterized as shown
in Table 1. We simulate up to the first billion instructions� of
SPECint95 and SPECint2000 benchmarks [9].�

3 A Closer Look at Improving Value Com-
munication

In this section, we evaluate the impact of compiler optimization
on performance and then show the potential for further improve-
ment by hardware techniques.

3.1 Impact of Compiler Optimization

�Since the sequential and TLS versions of each benchmark are com-
piled differently, the compiler instruments them to ensure that they termi-
nate at the same point in their executions relative to the source code.

�At the time of publication, our infrastructure could not yet handle
GCC, TWOLF, GAP, nor EON.

Table 1. Simulation parameters.
Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

Table 2. Benchmark statistics.

Portion Average Average
of Dynamic Number Epoch Number
Execution of Unique Size of Epochs

Application Parallelized Parallelized (dynamic Per Dynamic
Name (Coverage) Regions insts) Region Instance

BZIP2 98.1% 1 251.5 451596.0
CRAFTY 36.1% 34 30.8 1315.7

GZIP 70.4% 1 1307.0 2064.8
MCF 61.0% 9 206.2 198.9

PARSER 36.4% 41 271.1 19.4
PERLBMK 10.3% 10 65.1 2.4
VORTEX2K 12.7% 6 1994.3 3.4

VPR 80.1% 6 90.2 6.3

COMPRESS95 75.5% 7 188.2 68.4
GO 31.3% 40 2252.7 56.2

I JPEG 90.6% 23 1499.8 33.8
L I 17.0% 3 176.4 124.9

M88KSIM 56.5% 6 840.4 50.2
PERL 43.9% 4 137.3 2.2

We begin by analyzing the performance impact of our compiler
on TLS execution. Table 2 shows some statistics on our bench-
marks. We observe that ourcoverage (i.e. the portion of dynamic
execution time that has been parallelized using TLS) is reason-
ably good for most benchmarks: 51.4% on average, and as high
as 98.1%. Figure 4 shows the performance on a single-chip, 4-
processor multiprocessor. For each application in Figure 4, the
leftmost bar (S) is the original sequential version of the code, and
the next bar (T) is the TLS version of the code run on a single
processor. For each experiment, we show region execution time
normalized to the sequential case (S); hence bars that are less than
100 are speeding up, and bars that are larger than 100 are slow-
ing down, relative to the sequential version. Comparing the TLS
version run sequentially (T) with the original sequential version
(S) isolates the overhead of TLS transformation. In all cases, this
is roughly 10%. When we run the TLS code in parallel, it must
overcome this overhead in order to achieve an overall speedup.

Each bar in Figure 4 is broken down into six segments explain-
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Figure 4. Performance impact of our TLS compiler. For each experiment, we show normalized region execution time scaled to the
number of processors multiplied by the number of cycles (smaller is better). S is the sequential version, T is the TLS version run
sequentially. There are two versions of TLS code run in parallel: U and B are without and with compiler scheduling of the critical
forwarding path, respectively. Each bar shows a detailed breakdown of how time is being spent.

ing what happened during all potential graduation slots.� Thefail
segment represents all slots wasted on failed thread-level specu-
lation, and the remaining five segments represent slots spent on
successful speculation. Thebusy segment is the number of slots
where instructions graduate; thedcache segment is the number of
non-graduating slots attributed to data cache misses; thesync por-
tion represents slots spent waiting for synchronization for a for-
warded location; theistall segment is all other slots where instruc-
tions cannot graduate; theidle segment represents slots where the
reorder buffer is empty.

We consider two versions of TLS code running in parallel: the
B case includes all of the compiler optimizations described ear-
lier in Section 2.3, and theU case is the same minus the aggres-
sive compiler scheduling to reduce the critical forwarding path.
In nearly every case, the “unoptimized”� version (U) slows down
with respect to the sequential version. The additional impediments
include decreased data cache locality, synchronization, and failed
speculation. Many benchmarks spend a significant amount of time
synchronizingon forwarded values (as shown by thesync portion).
Some benchmarks suffer from non-negligibleidle segments; in
general, this indicates load imbalance and in many cases it is due
to regions that have fewer epochs than there are processors. If the
compiler optimizes forwarded values by removing dependences
due to certain loop induction variables and scheduling the critical
path (B, our baseline), we observe that the performance of several
benchmarks (CRAFTY, GO, IJPEG, M88KSIM, MCF, VORTEX2K,
and VPR) improves substantially through decreased synchroniza-
tion (sync), indicating that this is a crucial optimization.

3.2 The Potential for Further Improvement by
Hardware

To illustrate that the performance of many of our benchmarks is
limited by the efficiency of value communication, we show in Fig-
ure 5 the impact of ideal prediction on performance. First, in the
F experiment we see the impact of perfect prediction of forwarded
values. In effect, this means that there will be no time spent wait-
ing for synchronization of forwarded values. Most benchmarks

�The number of graduation slots is the product of: (i) the issue width (4
in this case), (ii) the number of cycles, and (iii) the number of processors.

�Note that the “unoptimized” case still includes thegcc “-O3” flag,
and is optimized in every way except for the aggressive critical forwarding
path scheduling.

improve slightly, while M88KSIM, MCF, and PARSER show a
substantial improvement: this makes sense since the baseline ex-
periment (B) shows these benchmarks to be somewhat limited by
synchronization. All benchmarks except for IJPEGand VPR suf-
fer from a significant amount of failed speculation in theB andF
experiments.

In theM experiment, we measure the impact of perfect mem-
ory value prediction, which means that no epoch will suffer from
failed speculation. In this case, we see a great improvement in
most benchmarks. CRAFTY, MCF, and PARSER show a signifi-
cant synchronization portion for theM experiment, indicating that
synchronization is still a limiting factor for these benchmarks.

Finally, in the P experiment we evaluate the impact of per-
fect prediction of both memory and forwarded value values. In
this case, MCF and PARSER show a significant benefit com-
pared with perfect memory value prediction alone, while the other
benchmarks show only modest improvements. Evidently, avoid-
ing failed speculation is the main bottleneck to good performance,
while improving synchronization may still be important for some
benchmarks. Also, if we cannot fully eliminate failed specula-
tion then improving synchronization will still be important. Note
that BZIP2, LI, PERL, and PERLBMK do not speed up, even with
perfect prediction of memory and forwarded values. For these four
benchmarks, the decreaseddata cache locality of executing on four
processors is the limiting factor. IJPEGwill not speed up further
even under perfect prediction of both forwarded and memory val-
ues (P).

4 Evaluation of Techniques for Improving
Value Communication

In this section we first focus on the benefits of predicting values
for TLS: we describe the issues related to value prediction in the
midst of speculation, describe how to predict memory values and
how to predict forwarded values, and then discusshow to apply the
technique of optimizing silent stores. Then, we focus on improv-
ing synchronization and automatically applying synchronization
when speculation and prediction are ineffective.

4.1 Techniques for When Prediction Is Best

Value prediction in the context of a uniprocessor is fairly well
understood [13, 22, 29, 37], while value prediction for thread-
speculative architectures is relatively new. Gonzalezet al. [24]
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Figure 5. Potential for improved value communication. For each experiment, we show normalized region execution time (smaller is
better). B is the baseline TLS version run speculatively in parallel, M shows perfect prediction of memory values, F shows perfect
prediction of forwarded values, and P shows perfect prediction of both forwarded and memory values.

evaluated the potential for value prediction when speculating at a
thread-level on the innermost loops from SPECint95 [9] bench-
marks, and concluded that predicting synchronized (forwarded)
register dependences provided the greatest benefit, and that pre-
dicting memory values did not offer much additional benefit. The
opposite is true of our results for two reasons. First, our com-
piler has correctly scheduled easily-predictable but frequently-
synchronized loop-induction variables so that they cannot cause
dependence violations, and has also scheduled the code paths of
forwarded values to minimize the impact of synchronization on
performance. Second, we have selected much larger regions of
code to speculate on, resulting in a greater number of memory
dependences between threads. Concurrent with our work, Cin-
tra et al. [7] investigated the impact of value prediction after the
compiler has optimized loop induction variables in floating-point
applications. Several other works evaluate the impact of value pre-
diction without such compiler optimization. Oplingeret al. [26]
evaluate the potential benefits to TLS of memory, register, and
procedure return value prediction, and Akkaryet al. [2] and Roten-
berget al. [28] also describe designs that include value prediction.

Predicting values for TLS has similar issues to predicting val-
ues in the midst of branch speculation, but at a larger scale. With
branch speculation, we do not want to update the predictor for
loads on the mispredicted path. Also, when a value is mispredicted
we need only squash a relatively small number of instructions,
so the cost of misprediction is not large. Similarly, in TLS we
only want to update the predictor for values predicted in success-
ful epochs, but this will require either a larger amount of buffering
or the ability to back-up and restore the state of the value predictor.
Furthermore, the cost of a misprediction is high for TLS: the entire
epochmust be re-executed if a value is mispredicted becausea pre-
diction cannot be verified until the end of the epoch when all mod-
ifications by previous epochs have been made visible.� Finally,
for TLS we require that each epoch has a logically-separate value
predictor. For SMT or other shared-pipeline speculation scheme,
this does not mean that each requires a physically separate value
predictor, but that the prediction entries must be kept separate by
incorporating the epoch context identifier into the indexing func-
tion. This is necessary since multiple epochs may need to simulta-
neously predict different versions of the same location.

For this paper, we model an aggressive hybrid predictor that
combines a 1K�3-entry context predictor with a 1K-entry stride

�Some schemes support selective-squashing of instructions that have
used a mispredicted value [2], but this requires a large amount of buffering.

predictor, using 2-bit, up/down, saturating confidence counters to
select between the two predictors. We found that the number of
mispredictions can be minimized by simply predicting only when
the prediction confidence is at the maximum value. Finding the
smallest and simplest predictor that produces good results is be-
yond the scope of this paper. It is important to note that we also
model misprediction by re-executing any epoch that has used a
mispredicted-value. A misprediction is not detected until the end
of the epoch when the prediction is verified.

4.1.1 Memory Value Prediction

One potential way to eliminate data dependence violations be-
tween speculative threads is through the prediction of memory val-
ues. But which loads should we predict? A simple approachwould
be to predict every load for which the predictor is confident. Pre-
vious work [4, 11] shows that focusing prediction on critical path
instructions is important for uniprocessor value prediction when
modeling realistic misprediction penalties. Similarly, the cost of
misprediction in TLS is very high, so we instead want to focus
only on the loads that can potentially cause misspeculation. Fortu-
nately, this information is available from the speculative cache line
state: only loads that areexposed� can cause speculation to fail.
Since our scheme tracks which words have been speculatively-
modified in each cache line, we can decide whether a given load is
exposed.

Table 3 shows some statistics for the prediction of exposed
loads using the predictor described above. M88KSIM and PERL

are quite predictable, while the remaining benchmarks also pro-
vide a significant fraction of correct predictions. We see that the
amount of misprediction is quite small—fewer than 4% of predic-
tions are incorrect for all benchmarks. Hence we expect memory
value prediction to work well.

In Figure 6, theE experiment shows the impact of predicting
all exposed loads for which the predictor is confident. In almost
every case, performance is worse due to an increased amount of
failed speculation caused by misprediction. The problem is that it
only takes a single misprediction to cause speculation to fail.

Rather than predict all exposed loads, we can be more selec-
tive by only predicting loads that are likely to cause dependence
violations. We can track these loads with the following two de-
vices. First, we keep a 16-entry table (called theexposed load ta-
ble) that is indexed by the cache line tag, and stores the PC of the

�A load that is not proceeded in the same epoch by a store to the same
location is considered to be exposed [1].
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Figure 6. Performance with memory value prediction. B is the baseline experiment, E predicts all exposed loads, and V only predicts
loads that have caused violations.

Table 3. Memory Value Prediction statistics.

Avg. Exposed
Loads Not

Application per Epoch Incorrect Correct Confident

BZIP2 9.5 0.2% 63.4% 36.3%
CRAFTY 4.5 3.0% 48.6% 48.3%
GZIP 66.6 1.4% 52.8% 45.7%
MCF 2.5 1.7% 34.9% 63.3%
PARSER 3.6 3.2% 48.7% 48.0%
PERLBMK 1.6 0.9% 17.9% 81.0%
VORTEX2K 25.4 2.8% 64.9% 32.2%
VPR 6.3 3.6% 49.8% 46.4%

COMPRESS95 12.0 0.3% 31.8% 67.9%
GO 7.0 2.5% 41.2% 56.2%
IJPEG 4.4 1.6% 35.4% 62.8%
LI 2.3 2.1% 50.8% 46.9%
M88KSIM 7.5 1.2% 90.9% 7.7%
PERL 12.3 1.1% 79.7% 19.1%

corresponding exposed load. Subsequent exposed loads simply
overwrite the appropriate entry—hence we track the most recent
exposed loads. Second, whenever a dependence violation occurs
it is associated with a cache line, so we can use the cache line tag
to index the exposed load table and retrieve the PC of the offend-
ing load. Hence we can keep a list of load PCs which have caused
violations (theviolating loads list), and can now use this list to
decide which loads we should predict. In Figure 6, theV experi-
ment shows the impact of predicting only loads that have caused
violations, as given by the violating loads list. Compared with the
baselineB, we see that every benchmark either improves slightly
or at least remains unchanged, except for VORTEX2K which de-
grades slightly, and M88KSIM which improves significantly by
eliminating much failed speculation. Hence with proper throttling,
memory value prediction can be used to improve the performance
of some applications.

Having explored value prediction for the sake of avoiding
failed speculation, we now turn our attention to using value pre-
diction to mitigate the performance impact of explicit synchroniza-
tion.

4.1.2 Prediction of Forwarded Values

Recall that forwarded values are those that are frequently modi-
fied and so they are synchronizedbetween epochs by the compiler.
Just as we did with memory values, we can also predict forwarded
values. However, while we predict memory values to decrease
the amount of failed speculation, we predict forwarded values to

Table 4. Forwarded Value Prediction statistics.
Not

Application Incorrect Correct Confident

BZIP2 0.0% 0.0% 0.0%
CRAFTY 5.5% 24.6% 69.7%
GZIP 0.2% 98.0% 1.6%
MCF 2.5% 48.5% 48.9%
PARSER 2.8% 11.6% 85.5%
PERLBMK 2.9% 61.7% 35.2%
VORTEX2K 2.2% 81.9% 15.7%
VPR 2.8% 26.4% 70.7%

COMPRESS95 3.7% 31.2% 65.1%
GO 3.7% 28.3% 67.9%
IJPEG 5.8% 72.4% 21.6%
LI 1.0% 18.7% 80.1%
M88KSIM 5.4% 91.0% 3.4%
PERL 1.5% 91.4% 7.0%

decrease the amount of time spent synchronizing. Table 4 shows
some statistics for the prediction of forwarded values. We see that
the fraction of incorrect predictions is somewhat higher than for
memory values, and the fraction of correct predictions is not as
high.

In Figure 7, theF experiment shows the impact of predicting
forwarded values: MCF improves by 4.2%, GZIP by 6.0%, and
M88KSIM by 43.6%. The remaining benchmarks are not greatly
affected, except for CRAFTY and VPR which become slightly
worse due to mispredictions. In an attempt to remedy this prob-
lem, we applied a similar technique to that used in memory value
prediction: we track which forwarded loads that cause the pipeline
to stall waiting for synchronization, and only predict those values.
TheS bars shows the results of this experiment, which maintains
the performance of theF experiment in every benchmark, and
solved the problem for CRAFTY but not for VPR. In summary,
the prediction of forwarded values is an effective way to reduce
the amount of time spent synchronizing for some applications.

4.1.3 Silent Stores

Often, a store does not actually modify the value of its target
location. In other words, the value of the location before the store
is the same as the value of the location after the store. This oc-
currence is known as asilent store [21], and was first exploited
to reduce coherence traffic. A store that is expected to be silent
is replaced with a load, and the loaded value is compared with
the value to be stored. If they are not the same, then the store is
executed after all, otherwise we save the coherence traffic of gain-
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Figure 7. Performance of forwarded value prediction. B is the baseline experiment, F predicts all forwarded values S predicts
forwarded values that have caused stalls.
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Figure 8. Performance of silent stores optimization. B is the baseline experiment, and SS optimizes silent stores.

Table 5. Percent of Dynamic, Non-Stack Stores That Are Silent.
Dynamic, Non-Stack

Application Silent Stores

BZIP2 11%
CRAFTY 16%
GZIP 4%
MCF 19%
PARSER 12%
PERLBMK 7%
VORTEX2K 84%
VPR 26%

COMPRESS95 80%
GO 16%
IJPEG 31%
LI 19%
M88KSIM 57%
PERL 36%

ing exclusive access to the cache line and eliminate future update
traffic. This same technique can be applied to TLS to avoid data
dependence violations so that a dependent store-load pair can be
made independent if the store is silent.

In Table 5 we see that silent stores are abundant, ranging from
4% to 80% of all dynamic non-stack stores within speculative re-
gions. However, what matters is whether the stores which cause
dependence violations are silent. Figure 8 shows that optimizing
silent stores results in a slight improvement for most benchmarks,
and a large improvement in M88KSIM; only LI performs slightly
worse when optimizing silent stores. Compared with using value
prediction to avoid potential memory dependences(as we explored
earlier in Section 4.1.1), this silent stores approach yields similar
if not better performance, but requires significantly less hardware
support (e.g., no value predictor is needed). Hence this appears to
be a very attractive technique for enhancing TLS performance.

T
im

e

E1 E2E2

Memory

✖

E1
E2

store *p

load *q

Memory

store *p

load *q

S
ta

ll

Figure 9. Dynamic synchronization, which avoids failed spec-
ulation (left) by stalling the appropriate load until the previous
epoch completes (right).

4.2 Techniques for When Synchronization Is Best

We now turn focus on the scenarios when synchronization is
the right thing to do. We investigate techniques for dynamic syn-
chronization of dependences, and prioritization of the critical path.

4.2.1 Hardware-Inserted Dynamic Synchronization

For many of our benchmarks, failed speculation is a signifi-
cant performance limitation; and as we observed in Section 4.1,
prediction alone cannot eliminate all dependence violations. For
dependences with unpredictable values that occur frequently, the
only remaining alternative is to synchronize. Our compiler has
already inserted synchronization for local variables. Still many
dependences remain, as demonstrated in Section 3.2, which can
be synchronized dynamically by hardware.

Dynamic synchronization has been applied to both uniproces-
sor and multiprocessor domains. Chrysoset al. [5] present a
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Figure 10. Performance of dynamic synchronization. B is the baseline experiment, D automatically synchronizes all violating loads,
R builds on D by periodically resetting the violating loads list, and M builds on R by requiring a load to have caused at least 4
violations since the last reset before synchronizing it.

design for dynamically synchronizing dependent store-load pairs
within the context of an out-of-order issue uniprocessor pipeline,
and Moshovoset al. [25] investigate the dynamic synchronization
of dependent store-load pairs in the context of the Multiscalar ar-
chitecture [12, 30].

Both of these works differ from ours because they have the
ability to forward a value directly from the store to the load in
a dynamically-synchronized store-load pair: this is trivial in a
uniprocessor since the store and load issue from the same pipeline;
for a multiprocessor like the Multiscalar, this requires that the
memory location in question is implicitly forwarded from the pro-
ducer to the consumer—functionality that is provided by the Mul-
tiscalar’saddress-resolution buffer [12]. Our scheme does not pro-
vide this support because it would require the memory coherence
protocol to perform complex version management.

Figure 9 illustrates how we dynamically synchronize. When
a load is likely to cause a dependence violation, we can prevent
speculation from failing by instead stalling the load until the pre-
vious epoch is complete: at that point, all modifications by previ-
ous epochs will be visible and the load can safely issue. We can
use theviolating loads list described in Section 4.1.1 to identify
the loads most likely to cause a violation that should therefore be
synchronized.

In Figure 10, experimentD shows the performance of dy-
namic synchronization where we have synchronized every load
in the violating loads list. By inspecting both result graphs, we
see that failed speculation has been replaced with synchronization
as expected, resulting in improved performance for 10 of the 14
benchmarks. However, CRAFTY, GZIP, and VPR are now over-
synchronized: we have unwittingly replaced successful specula-
tion with synchronization as well. In an attempt to mitigate this
effect, we periodically reset the violating loads list in experiment
R, and build on that in experimentM by requiring that a load be
responsible for at least 4 violations since the last reset before syn-
chronizing. TheM experiment solves the problem for CRAFTY

but not for VPR, and performance is degraded for PARSER and
VORTEX2K. Overall, this technique has a greater benefit than cost
(an average improvement of 9%), and is a promising technique for
improving the performance of TLS.

4.2.2 Prioritizing the Critical Path

In Section 4.1.2 we observed that even after aggressive predic-
tion of forwarded values, synchronization is still an impediment

(a) Prioritization

✔
✔

✔
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op r6=r5,r8

signal

load r1=X
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store r2,X
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(b) Statistics

Issued Insts
That Are High Improvement in Avg.
Priority and Start-to-Signal Time (cycles)

Application Issued Early Unprioritized Prioritized Speedup

BZIP2 0.0% 0.0 0.0 0.0
CRAFTY 6.8% 118.5 117.7 0.99
GZIP 3.6% 1622.6 1636.2 1.00
MCF 9.9% 86.7 80.2 0.92
PARSER 9.7% 110.9 105.6 0.95
PERLBMK 18.1% 45.5 44.0 0.96
VORTEX2K 3.6% 304.8 290.4 0.95
VPR 4.7% 81.8 79.7 0.97

COMPRESS95 7.1% 136.7 135.9 1.01
GO 12.9% 70.2 70.4 1.00
I JPEG 11.2% 28.1 26.0 0.92
L I 27.5% 37.4 33.1 0.88
M88KSIM 9.1% 212.8 218.4 1.02
PERL 16.6% 42.4 44.5 1.04

Figure 11. Prioritization of the critical path. We show (a) our
algorithm, where we mark the instructions on the input chain
of the critical store and the pipeline’s issue logic gives them
high priority; (b) some statistics, namely the fraction of issued
instructions that are given high priority by our algorithm and
issue early, and also the improvement in number of cycles from
the start of the epoch until each signal.

to good speedup for some benchmarks. We call the instructions
between the first use and the last definition of a forwarded value
thecritical path. A possibility for improving performance when it
is not possible to eliminate synchronization is to instead prioritize
instructions to help reduce the size of the critical forwarding path.
Our compiler already performs this optimization to the best of its
ability, but there may be more that can be done dynamically by
hardware at run-time.

Our hardware prioritization algorithm works as shown in Fig-
ure 11(a). We mark all instructions with registers on the input-
chain of the critical store. We also track the critical path through
memory, so that a critical load also depends on the store which
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Figure 12. Performance impact of prioritizing the critical path: B is the baseline experiment, and S prioritizes the critical path.
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Figure 13. Performance of all techniques combined. B is the baseline experiment, A performs all optimizations except dynamic
synchronization, D performs all optimizations, and P is the perfect prediction result from Section 3.2 for comparison.

produced the value for the given memory location. Ideally, we
would also mark any instructions on the input-chain of an unpre-
dictable conditional branch as being on the critical path, but this
beyond the scope of this paper. The pipeline issue logic then gives
priority to marked instructions so that the associatedsignal may be
issued as early as possible. This algorithm could be implemented
using techniques described by Fieldset al. [11], but for now we
focus on the potential impact.

The impact of prioritizing the critical path is shown in Fig-
ure 12. Note that we model a 128-entry reorder buffer (see Ta-
ble 1), so the issue logic has significant opportunity to reorder pri-
oritized instructions. Despite this fact, all benchmarks remain rel-
atively unchanged, while MCF and PARSERimprove slightly, and
the performance of LI and PERLBMK degrades slightly. To clarify
whether our prioritization has had any impact, Figure 11(b) shows
the fraction of issued instructions that are given high priority by
our algorithm and also issue early. This is between 4% and 28%
of issued instructions, an average of 10.8% across all benchmarks
with the exception of BZIP2 (which does not have forwarded val-
ues). Figure 11(b) also shows the change in the average number
of cycles from the start of an epoch to the issue of each signal,
for which the results are mixed: COMPRESS95, M88KSIM, and
PERL have improved somewhat, GZIP and GO are unchanged,and
the remaining benchmarks have slowed-down slightly. Given the
potential complexity for implementing this technique and the re-
sulting uncompelling performance, we do not advocate the use of
this technique.

5 Combining the Techniques

In this Section, we evaluate the impact of all of our techniques
combined. Most techniques are orthogonal in their operation with
the exception of memory value prediction and dynamic synchro-
nization: we only want to dynamically synchronize on memory

values that are unpredictable. This cooperative behavior is imple-
mented by having the dynamic synchronization logic check the
prediction confidence for the load in question, and synchronizing
only when confidence is low.

Figure 13 shows the performance of all techniques combined,
whereA performs all optimizations except dynamic synchroniza-
tion, D performs all optimizations, andP is the perfect prediction
result from Section 3.2 for comparison. We achieve very close to
the ideal speedup for M88KSIM, and we have improved CRAFTY

and MCF significantly. After all of our optimizations, we observe
that failed speculation remains a problem for many benchmarks.
For BZIP2 theD experiment shows how some techniques can be
complementary since its performance is better than that of any one
technique alone.	 Since including dynamic synchronization (D)
degrades performance for more than half of the benchmarks, we
do not advocate this technique in its current form.

6 Conclusions

We have shown that improving value communication in TLS
can yield large performance benefits, and examined the techniques
for taking advantage of this fact. Our analysis provides several
important lessons. First, we discovered that prediction cannot be
applied liberally when the cost of misprediction is high: predic-
tors must be throttled to target only those dependences that limit
performance. We observed that silent stores are prevalent, and
squashing them can greatly improve the performance of TLS ex-
ecution. We found that dynamic synchronization improves per-
formance for many applications but can degrade performance for
others—this technique requires further throttling before it can be

	The D bar out-performs the perfect prediction estimate (P) because
that estimate does not account for the coherence traffic savings of mem-
ory value prediction and silent stores—only for the savings in failed
speculation.
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applied liberally. We also found that hardware prioritization to re-
duce the critical forwarding path does not work well, even though
a significant number of instructions can be reordered. Finally, we
have shown that compiler transformations can impact conclusions
about hardware TLS support, and demonstrated that the compiler
can be quite effective at improving the performance of TLS.
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