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Abstract. Instruction hints have become an important way to commu-
nicate compile-time information to the hardware. They can be gener-
ated by the compiler and the post-link optimizer to reduce cache misses,
improve branch prediction and minimize other performance bottlenecks.
This paper discusses different instruction hints available on modern
processor architectures and shows the potential performance impact on
many benchmark programs. Some hints can be effectively selected at
compile time with profile feedback. However, since the same program
executable can behave differently on various inputs and performance
bottlenecks may change on different micro-architectures, significant per-
formance opportunities can be exploited by selecting instruction hints
dynamically.

1 Introduction

Cache misses and branch mispredictions have become the major bottlenecks of
modern microprocessors. Attacking such performance issues has been a chal-
lenge for both hardware designers and software developers. Many modern ar-
chitectures, including RISC, VLIW and EPIC, have paid much attention to the
effective cooperation between the compiler and the hardware to achieve highly
efficient execution. For instance, new instructions such as data and instruction
cache prefetch have been introduced and they have been effectively used by the
compiler and post-link optimizers (including runtime optimizers) to reduce cache
miss penalties. Besides introducing new instructions, recent architectures also
use instruction hints as another way to facilitate the communication between
the compiler and the hardware. Unlike adding new instructions, using hints does
not compromise binary compatibility. Instruction hints use a small number of
available bits in the instruction encoding to allow programmers, compilers and
other software tools to convey suggestions to the hardware. Since they are de-
fined as hints, they do not pose correctness issues. Their presence can be simply
ignored if the underlying micro-architecture does not support the needed feature.
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Instruction hints are often used in architecture extensions and new architectures
to expose new hardware features to software via some reserved bits.

Judiciously selecting the instruction hints can have very significant perfor-
mance impact on applications. The selection of instruction hints relies on in-
formation such as working set, access patterns and effective memory latencies,
which are not generally available at the compile time. Although profile-guided
optimization (also known as profile-based or profile-directed optimization) can
assist the selection process by using profile information collected via training
runs, applications can behave differently on various inputs, and the profile col-
lected from the training input may not be representative for the actual run.
Furthermore, the runtime behavior of a program can change even within one
run (i.e. execution phase changes). Although we have seen encouraging results
from static hint selection, we believe there are significant performance potentials
to be exploited with dynamic hint selection.

Dynamic binary optimizers [6][7] can monitor the execution of a program and
perform the cost-effective optimization based on observed hot spots and respec-
tive performance bottlenecks. Dynamic hint selection requires relatively small
amount of code analysis and binary modification and can be a good candidate
for dynamic optimization. However, the extension of current dynamic binary
optimization frameworks and the enhancement of current microprocessors are
needed to support comprehensive dynamic hint selection.

The paper makes the following contributions,

– We show the performance impact of several architecture hints using the
SPEC2000 CPU programs.

– We show the potential of using correct architecture hints over what have
been done statically by the compiler.

– We discuss the limitations and difficulties associated with static hint selec-
tion.

– We discuss the current limitation on the hardware performance monitoring
capability for exploiting dynamic hint selection.

The rest of the paper is organized as follows. Section 2 will provide a survey of
instruction hints available on the mainstream architectures. Section 3 shows the
performance impact of several instruction hints. In section 4, we discuss the se-
lection of hints by some production compilers, the effectiveness of such selection,
and the limitations. In section 5, we discuss the upside potential of selecting such
hints at runtime, and the constraints and challenges for the dynamic optimizers.
Related work is highlighted in section 6. Section 7 contains the conclusion and
future work.

2 Instruction Hints

Most instruction hints are targeting at the two major performance bottlenecks,
cache misses and branch mis-predictions. They can be divided into three main
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categories, branch prediction hints to improve branch prediction, memory local-
ity hints to improve both data and instruction cache performance, strong/weak
prefetch hints to improve the effectiveness of the data prefetch instructions.

2.1 Branch Prediction Hints

Many architectures use one or two bits in the conditional branches as a hint for
static branch prediction. Itanium [14] uses one bit to indicate whether prediction
resources should be allocated for the branch and the other bit to indicate the
direction. Similarly Power4 [8] uses two previously reserved bits in conditional
branch instructions for software branch prediction. Hardware branch prediction
can be overridden by software branch prediction on Power4. One bit is used for
that purpose while the other bit indicates the direction. PA-RISC 2.0 [15][17]
does not have the luxury of one available bit but it defines the branch prediction
convention to achieve the same effect. If the register numbers of the two operands
in a conditional branch is in increasing order, the backward branch is predicted
taken and the forward branch is predicted not taken; otherwise the branch is
predicted the other direction. Compared with using a dedicated hint bit, this
approach adds complexity to the instruction decoding.

Many microprocessors uses a return address stack to predict the target of a
procedure return. When a procedure call is executed, the address of the next
instruction is pushed onto the stack. The stack will be popped during the ex-
ecution of a procedure return and the instruction fetching will start from the
popped address. But in architectures such as Alpha [1], PowerPC [12] and PA-
RISC [11][15], there are no dedicated instructions for procedure call and return.
In Alpha [1], hints are introduced to push and pop procedure return addresses.
PA-RISC 2.0 [15] and Power4 [8] adopted the same approach.

2.2 Memory Locality Hints

Memory locality hints are designed to achieve better cache performance by im-
proving the allocation and replacement policy or initiating hardware prefetching.
The temporal locality hints are used to indicate whether the data will be reused
to help the hardware decide whether to allocate the data in a higher cache level.
The temporal locality hints can be applied to all memory instructions including
load, store and data prefetching. HP PA-RISC 1.1 architecture [11] defines a
2-bit cache control field, cc, which provides a hint to the processor on how to
allocate data in the cache hierarchy. On PA-7200 [16], the processor will not
allocate the cache line on the off-chip cache if the cc is specified to indicate
poor temporal locality. The cache control field is also included in the prefetch
instruction introduced in PA-RISC 2.0 [15].

Five variants of prefetch are defined in Sparc V9 [18], read many, read once,
write many, write once and prefetch page1. The once and many hints are used

1 prefetch page has not been implemented in any existing Sparc v9 microprocessors.
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to indicate the temporal locality. UltraSparc III [20] implements a small pre-
fetch cache (2KB) which can be accessed in parallel with the L1 data cache for
floating-point loads. The once/many hint specifies whether the data should be
brought into P-cache. However, no temporal hints are available for other memory
instructions.

Itanium [14] provides locality control with finer granularity. Four completer
(t1, nt1, nt2 and nta) are used to specify whether the data has temporal locality
at a given cache level. These completers will affect how cache lines are allocated
in the cache hierarchy and whether the LRU bit should be updated. Using t1
will cause the data to be allocated at all cache levels while using nt1 suggests
the data not to be allocated at L1. The Itanium 2 processor does not have a non-
temporal buffer and L2 is used for that purpose. nt2 accesses are still allocated
in L2 but the LRU bit will not updated and thus the line has a high probability
to be replaced. nta completer further causes the line not to be allocated in L3.
Only lfetch instructions can use all four possible completers and the completers
for different memory instructions may have different meanings.

Instruction references exhibit good sequential locality. Many microproces-
sors implement hardware prefetcher to sequentially prefetch instruction cache
lines. Itanium [14] introduces the sequential prefetch hint to initiate instruc-
tion prefetching. The sequential prefetch hint on branches indicates how many
cache lines the processor should prefetch starting at the branch target. On Ita-
nium 2 [13], a branch with the many completer initiates the hardware streaming
prefetching and the prefetch engine will continuously issue prefetch requests for
subsequent instruction cache lines till a stop condition2 happens.

2.3 Weak/Strong Prefetch Hints

The effectiveness of prefetching can be affected by whether micro-architecture
implementations allow a prefetch to continue if it triggers a data TLB miss or
there is not enough resource to handle the prefetch request. The UltraSparc
IV+ processor [21] implements two more variants of prefetch instructions in ad-
dition to the five flavors defined in Sparc V9 [18]. Weak prefetches are dropped
if the target address translation misses the TLB, while strong prefetches will
generate software traps and be re-issued after the TLB entries are filled. The
prefetch requests are tracked by an eight-entry prefetch queue. A strong prefetch
will not be dropped even if the prefetch queue is full when it is issued and the
pipeline will stall until one of the outstanding prefetches completes. The PCM
(P-Cache Mode) in DCU (Data Cache Unit) control register provides further
control on the behavior of weak prefetches under a prefetch queue full event.
When the bit is on, a weak prefetch will also be recirculated if the prefetch
queue is full.

On Itanium [14], a TLB miss will not necessarily generate a fault since it im-
plements hardware page walker to reduce the latency of a TLB miss. If a lookup

2 A stop condition can be a branch misprediction, the execution of an taken branch
or the execution of a special instruction explicitly indicating the stop condition.
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fails in both levels of the DTLB, hardware page walker can be triggered to re-
solve the miss by searching the page table. Slightly different with strong prefetch
on UltraSparc IV+, fault completer is used to indicate whether a fault raised
by an lfetch instruction should be handled by the processor. If the hardware
page walker fails, only lfetch.fault will raise a software fault. Unlike UltraSparc
IV+ [21], there is no dedicated resource for tracking data prefetching requests
on Itanium. They share the same resource with the other memory requests. An
lfetch instruction will not be dropped if there is not enough resource to handle
it. Instead it will wait for the resource to be available.

3 Performance Impact of Instruction Hints

Though the instruction hints do not affect the correctness of a program’s exe-
cution, they can have great impact on program performance. This section uses
several instruction hints to show the compiler can improve program performance
by judiciously using the available hints.
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Fig. 1. Performance comparison of prefetch variants with different locality hints on
UltraSparc III Cu for SPEC CPU2000 [19]. All binaries are compiled with the base
option including PBO using Sun Studio 11 compiler and the data are collected on
Sun Blade 1000. The execution time is normalized using the binaries generated by the
compiler as the bases. The first bars are all 1 since the compiler only generates many
hints.

Figure 1 shows the comparison of using two different locality hints for data
prefetching on UltraSparc III Cu. By using the read many hint, the prefetched
data are brought into both P-cache and L2 cache while the data are only
brought to P-cache for read once. The compiler only generates read many hint
for prefetches intended for data reads. Although only using the read many hint
gives better performance in most cases, for 183.equake, only using read once
actually has a 27% speedup.

The comparison of using different locality hints for load on Itanium 2 is shown
in figure 2. For every possible completer allowed, we convert all loads into that
single flavor and compare the performance with the binaries generated by the
compiler. Two separate graphs are shown for SPEC CINT2000 and CFP2000
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(a) CINT2000
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Fig. 2. Performance comparison of load variants with different locality hints on Itanium
2. All binaries are compiled with the base option including PBO using Intel C/C++
Compiler 9.0 and the data are collected on HP zx6000. The execution time is normalized
using the binaries generated by the compiler as the bases. The first bars are all 1 since
the compiler only generates t1 hints.

[19] since t1 and nt1 have different meanings for floating point loads 3. Intel
compiler only uses t1 for loads and using t1 is clearly a better choice than using
nt1 or nta as shown in figure 2. But there is one exception that mcf benefits
from only using ld.nta.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

176.gcc 186.crafty 254.gap 178.galgel 191.fma3d 301.apsi

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

all_few

all_many

Fig. 3. Performance impact of streaming prefetch hint on Itanium 2. The same envi-
ronment as specified in figure 2 is used for data collection.

The performance impact of streaming prefetch hint on Itanium 2 is shown in
figure 3. The many completer is clearly preferable than the few completer. On
three occasions (gcc, crafty and apsi), triggering streaming prefetches on every
branch delivers better performance. Only using few completers can slow down a
program as much as 17% in the case of fma3d.

Figure 4 shows the comparison for weak and strong prefetches on UltraSparc
IV+. Again we show two extreme cases by converting all prefetches into weak or
strong versions. In general, the compiler chooses strong versions for the majority
3 For floating point loads, data are not allocated in L1 even t1 is used and LRU bit

is not updated for nt1.
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Fig. 4. Performance comparison of weak/strong prefetches on UltraSparc IV+. The
data are collected on a Sun Fire E4900 sever and all binaries are compiled with the
latest Sun Studio compiler [22] with the base option including PBO. The execution
time is normalized using the binaries generated by the compiler as the bases.

of the prefetches and it yields better performance for six programs compared with
only using the weak versions. Only using strong prefetches provides even slightly
better performance overall. For 168.wupwise, 3% speedup can be obtained by
only using strong prefetches.

4 Static Selection of Instruction Hints

As shown in section 3, prudently using instruction hints can significantly im-
prove program performance. In this section, we discuss the issues involved in
static selection of these hints, including the branch prediction hints, instruction
prefetching hints, data cache locality hints and weak/strong prefetch hints. We
also show limitations of static selection using case studies for several benchmark
programs.

4.1 Issues in Static Selection

Locality Hints for Data Prefetching. The cache hierarchies in modern
processors are increasingly more complex. The cache hierarchy in the Itanium 2
has three levels of on-chip caches. They are non-blocking and can handle cache
miss requests out-of-order. Therefore, it is difficult to estimate the precise cost
of an lfetch instruction. In general, lfetch instructions with t1 completers are
more expensive than those with nt completers while lfetch instructions with nt
completers (nt1, nt2, and nta) have similar costs.

On Itanium 2, every memory request that cannot be satisfied by L1D will be
sent to L2 and must be scheduled within a 32-entry queue called OzQ. If the
OzQ is full, the L1D pipeline must stall and it in turn causes the main pipeline
to stall. Bank conflicts and multiple misses to the same cache line can increase
the lifetime of the entries in the OzQ. An lfetch can be expensive if it cause
either case to happen. Placing one of the nt completers mitigates those effects
and reduces the cost of an lfetch. However, using the nt completer reduces the
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benefit of an lfetch since the prefetched data will only be brought up to the L2
cache. When deciding to use the t1 completer, the compiler needs to be confident
that the benefit outweighs the cost. The Intel compiler tends to use nt more often
than t1 for SPEC CINT2000 programs. But choosing between t1 and nt relies
largely on the application’s working set as discussed in 4.2 and neither of them
works best all the time.

Streaming Prefetch Hints. The Itanium 2 processor has a relative small
instruction cache (16K), from the perspective that it has a very strong issue
bandwidth (up to 6 instructions can be issued per cycle). Overly aggressive
streaming prefeching can cause instruction cache pollution and have negative
impact on the pipeline front-end. The benefit of streaming prefetching can be
determined by whether the lines brought into the L1I are used in the near future.
A good indicator will be the number of instructions between the branch target
to the first statically predicted taken branch. ISpike [4] defines this as span and
uses a size of 128 bytes as a threshold to trigger streaming prefetching.

Intel compiler is rather conservative in selecting many completers. On average
only one out of four branches uses the many completer for SPEC CPU2000
programs even we compile all programs with high optimization level (O3) and
profile based optimization. Three programs (gcc, crafty and apsi) benefit as
much as 4.5% from only using many completers as show in figure 3. All three
programs have large instruction footprints and streaming prefetch can reduce
the stalls when the pipeline front-end is unable to supply new instructions to
the back-end.

Weak/Strong Prefetch Hints. As shown in section 3, strong prefetch can
provide additional benefits over weak prefetchs on UltraSparc IV+, but a strong
prefetch could be more expensive than a weak one. Firstly, a strong prefetch
must wait when the prefetch queue is full while a weak prefetch can be simply
dropped in this case. Secondly, a TLB miss triggered by a strong prefetch must
be handled. The compiler must carefully use strong prefetches and make sure
the performance gain from the prefetches is higher than the additional cost.
The weak prefetches can be made ”stronger” on UltraSparc IV+ by setting the
PCM bit to 1 so that they will not get dropped when the prefetch queue is full.
With the PCM bit set on, the difference between weak and strong prefetches
becomes smaller, which makes it easier to select strong prefetch as the default.
However, we have observed that setting the PCM bit on does not always yield
better performance since programs may spend a significant portion of execution
on waiting for available entries in the prefetch queue. The stall can be avoidable
by providing flexible control over the PCM bit and relying on the compiler to
more intelligently select the more suitable prefetch variants.

4.2 Limitations of Static Selection

As shown in section 3, though overall the compilers do well in selecting in-
struction hints, there are cases the compilers still leave significant performance



A Study of the Performance Potential 75

opportunities on the table. This is evident when we blindly convert all instruc-
tion hints into one flavor. Static selection of instruction hints is also limited by
lacking knowledge of a program’s runtime behavior.

while (node) {
...
temp = node;
node = node->child;

}

(p17) adds r46=40,r37
...

(p17) ld8 r36=[r46]
...

(p17) cmp.eq p0,p16=r36,r0
...

(p16) br.wtop.dptk.few

(a) C code (b) assembly code

Fig. 5. Code snippet from 181.mcf

Ambiguous Memory Access. The static analysis can be hindered by some
programming language features. Figure 5 shows a code snippet from function
refresh potential in SPEC CINT2000 benchmark 181.mcf. The loop is software
pipelined but no prefetch instructions are generated by the compiler. The ld8
instruction which tries to access node → child is delinquent and the program
stalls on the cmp instructions. Since the data loaded by ld8 are not reused,
changing its completer to nta can reduce its latency without increasing the
number of cache misses. The program can be sped up by 8.7% after this simple
change. However, it is unlikely that the compiler can determine whether the data
are reused with the presence of intensive dynamic memory objects and frequent
pointer references.

void daxpy(double *x, int ix, double *y, int iy, int a, int n)
{

int i;

for (i = 0; i < n; i++)
y[i * iy] += a * x[i * ix];

}

Fig. 6. DAXPY loop

Memory Access Pattern. The behavior of a program can change dramat-
ically with different memory access patterns. Figure 6 shows a typical DAXPY
loop with the strides for both arrays passed as the parameters. The Sun Studio
compiler generates one strong prefetch for each array on UltraSparc IV+. As
seen in the figure 7, the benefit of using weak prefetches is decreasing as the
stride gets larger. When the memory stride (1024 for the arrays) is equal to
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the page size (8KB), we can see a sharp increase on average cycles spent on
each iteration because of the TLB pressure. Using weak prefetches cannot pro-
vide better performance since most of the prefethes will cause TLB misses and
get dropped. Strong prefetches clearly outperform weak prefetches for the large
strides. But when the stride is no larger than 512 bytes (64 for ix and iy), using
strong prefetches is hardly better than using weak prefetches. If the PCM bit is
set to be off, weak prefetches may be more profitable for smaller strides because
of their lower costs.
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Working Set Size. The runtime behavior of a program can largely rely on its
working set. A static hint is unlikely to provide good performance across different
working sets. To show the effect of t1 completer, we change the DAXPY loop
in figure 6 to IAXPY (i.e., both x and y are changed to integer arrays and the
strides are fixed to be 1). The Intel C compiler generates a software-pipelined
loop for IAXPY and one prefetch is included to prefetch both array x and y
alternatively. Figure 8 shows the average cycles per iteration for the IAXPY on
an Itanium 2 machine for two cases when the temporal completer of the prefetch
is nt1 or t1. When the working set of the loop is bigger than the size of L1D (16K)
and but less than the size of L2 (256KB), using t1 gives better performance. But
if the size of array exceeds the size of L2, nt1 will provide better performance
and the performance gap is increasing as the work set increases.
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5 Dynamically Selecting Instruction Hints

Static selection of instruction hints is limited by the lack of knowledge of pro-
gram’s runtime behavior and a static hint cannot adapt to behavior changes at
runtime. Two ways can be used to select instruction hints dynamically. The first
approach uses the compiler to generate multiple copies of an instruction with all
possible hints, and have check instructions to select the desirable one based on
the runtime performance information. The second approach is to use a dynamic
binary optimizer, such ADORE [6], to adjust the hint bits at runtime.

5.1 Generating Multiple Copies

Compiler can generate multiple copies of an instruction with different hints and
the corresponding code to select the hints at runtime as discussed in [2][3].
The selection can be based on the calculation on various runtime parameters
(working set, stride and etc.). This scheme has two disadvantages which make it
impractical. Firstly, it is known to cause severe code expansion since the compiler
has to generate extra instructions to select the instruction with the wanted hint.
Secondly, the cost of the additional calculations can offset the performance gain
of using the right hints.

5.2 Adjusting Instruction Hints Using Dynamic Binary Optimizers

Using compiler to generate multiple copy of an instruction with different hints
causes code expansion and has high runtime overhead. This approach has another
limitation since the compiler can only generate the instruction hints with the
knowledge of the target architecture. A binary compiled for an older micro-
architecture cannot benefit from the additional instruction hints available on
the newer micro-architecture. Recompilation is one possible solution but the
source code for the legacy binaries may not be available.

A dynamic binary optimizer can monitor a program’s performance during the
execution of the program. It can identify program hot spots as well as pin down
the performance bottlenecks. Based on the observed performance bottleneck and
hot spots, the dynamic optimizer can perform the most needed optimizations,
and deploy the optimized code by patching the binary. It has been shown to
effectively address runtime performance bottlenecks such as data cache misses.
Compared with generating multiple copies at the compile time, using dynamic
binary optimizers to adjust instruction hints can have very low overhead and
adapt to different target micro-architectures and computing environments.

Compared with other optimizations currently implemented in dynamic bi-
nary optimizers, dynamically adjusting the instruction hints is less expensive.
Optimizations such as partial dead code elimination requires flow analysis of
the binary. Those optimizations also need to be carefully applied since they can
change the architecture state and cause imprecise exceptions. Most optimiza-
tions require some free registers and acquiring them from the binary at runtime
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is very challenging. For dynamically adjusting instruction hints, if sufficient in-
formation can be obtained from hardware, the optimization only needs to patch
one or two bits for some instructions. Trace formation and register acquisition,
two of the most difficult tasks in dynamic optimizers, can be avoided.

However, similar to other runtime optimizations, dynamic hint selection needs
proper support from software and hardware. The lack of appropriate performance
counter information related to the instruction hints may limit the effectiveness of
hint selection. Furthermore, the lack of comprehensive control flow information
may also limit the code region where hint selection can be applied.

Hardware Support. Dynamic binary optimizers rely on the runtime perfor-
mance monitoring features provided by recent architectures. Itanium 2 provides
more than 400 different counters and advanced monitoring features such as
Branch Trace Buffer (BTB) and Event Address Registers (EAR). Those fea-
tures are very useful in the design of a dynamic binary optimizer. However, they
are still insufficient for dynamically adjusting instruction hints. For example, to
select the memory locality hints, nta, no temporal locality at all cache levels,
requires cache reuse information. We need to know if the cache line referenced
by one memory operation is not going to be reused, or the line may be replaced
before it is used again. Current hardware performance counters do not provide
this type of details. Furthermore, it is important that the cache line reuse in-
formation should be associated with the PC address of the memory instruction.
One näıve hardware implementation is to tag the cache line with the full ad-
dress of the instruction which requests the line. This may be too expensive to be
practical. So using partial address (e.g. lower bits) may be a good compromise.
A few bits like the LRU bits can also be added to track whether the line has
been used recently.

Software Support. Data cache prefetching is the major optimization per-
formed in current dynamic binary optimizers such as ADORE/Itanium [6] and
ADORE/Sparc [7]. Therefore the trace selection and formation in these two
systems focus on loops which are the best candidates for data cache prefetch-
ing. Dynamically adjusting instruction hints requires different type of traces.
The effect of changing some instruction hints such as the temporal hints may
not be visible immediately. For example, adjusting the temporal hints for a
loop may not improve the performance of itself but the performance of another
loop next to it. In such cases, we need a larger scope such as a complex loop
nest in the trace selection in order to effectively apply hint selection. Secondly,
self monitoring and dynamically undoing and redoing the optimization become
critical. For example, the dynamic optimizer may initiate some hint selection
to a loop, and monitor what performance change it may have. If the perfor-
mance degrade in the monitored region, the optimizer should undo the selected
hints.
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6 Related Work

Even though there are quite a few instruction hints available on recent architec-
tures, very limited research has been done to evaluate their performance impacts
and no one has tried to select instruction hints using dynamic binary optimizers.

Memory Locality Hint: Wang et al. [10] propose to add an evict-me bit to
each cache line, which indicates a cache line is a good candidate for replacement.
Compilers set this bit for memory instructions based on locality analysis. Their
study shows that using the evict-me algorithm in both L1 and L2 caches can
improve the performance of a set of scientific programs over LRU policy by
increasing the cache hit rate. Yang [5] et al. has a detailed study on the compiler
algorithms to generate cache hints. Beyles and D’Hollander [2][3] proposes a
compiler framework using reuse distance profile to generate temporal hints for
memory instructions. Their study is based on the temporal completers available
on Itanium architecture [14] and they used a physical Itanium server for their
experiment. They also propose to use prediction or extending the format of the
memory instructions to support dynamic cache hint for an individual access.

Weak/Strong Prefetch: Song et al. [9] briefly describe the weak and strong
prefetch on UltraSparc VI+ [21]. They only use strong prefetches in the statically
generated helper thread by the compiler and they claim the benefit of helper
thread will be greatly reduced if prefetches are dropped on TLB misses. In
[7], Lu et al. evaluate the performance impact of using strong prefetches in
their dynamic helper threaded prefetching on UltraSparc IV+ [21]. Even though
they conclude using strong prefetches in the helper thread code is generally
a preferable strategy, they also find cases when weak prefetches yield better
performance.

Sequential Prefetch Hint: Luk et al. [4] study the performance potential of
streaming prefetching on Itanium [14] using a post-link optimizer (Ispike). They
find streaming prefetching helps a little for SPEC CPU2000 Int [19] programs
but they observe larger speedup on a commercial database application with a
much bigger code footprint.

7 Conclusions and Future Work

Modern processors have increasingly relied on using hints associated with in-
structions to pass performance related information from software to hardware.
We have shown the use of such hints could have significant performance impact
on recent Itanium and Sparc processors. The statically hint selection by the com-
piler cannot address the performance opportunities created by dynamic program
behavior changes and has room for improvement. With appropriate software and
hardware support, we believe a dynamic optimizer can make more effective use
of instruction hints for future systems.

Our future work will focus on the software and hardware support for dynamic
selecting instruction hints. We want to enhance the current dynamic binary



80 R. Fu et al.

optimizer to handle more complex trace types other than loops. We also plan
to improve the self-monitoring ability and add support for undoing and redoing
optimizations. Finally we would like to have more detailed study and evaluation
for possible hardware support to assist future dynamic selection of instruction
hints.
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