
Summary Part 1

Architectural Support for Copy and Tamper Resistant Software

Mrinal Nath (ID: 3307043)

February 14, 2005

What are the problems solved by this paper?

People can copy the Software Intellectual Property illegally by tracing the instructions and the data
produced by copyrighted programs (assuming that the binary cannot be hacked). To prevent such IP
rights violations, the authors are proposing architectural (hardware) support so that the instructions
and data produced by a protected program are not visible to anyone in the outside world.

What are the approaches attempted by this paper?

The authors propose a machine called ‘XOM’ or Execute Only Memory. In this model, they do not
trust any storage location outside the machine. So, if data and/or instructions are to be stored outside
the machine, they are encrypted using cryptographic techniques. When these data or instructions are
read into the machine they are suitably decrypted. They use the concept of compartments to isolate
different ‘principals’ or processes that may be running concurrently on the machine. Each principal will
have its session key, and thus no process can access the data and/or instructions of another process.
(The session key itself is encrypted using asymmetric cipher while transmitting it to the machine. Each
machine has its own private key embedded in the hardware, which is used to decrypt the asymmetric
cipher). Each principal will have an identifier which is used to tag instructions and data belonging to
that principal. To allow movement of data between processes, and also to allow a XOM program to be
interrupted, the authors have proposed various instructions. These instructions vary greatly in their
complexity and the amount of work that they do.

Security against spoofing and splicing attacks is guaranteed by the use of MAC which is dependent on
the position of the data/instruction it encrypts. However, the proposed architecture is not immune to
replay attacks.

A XVMM (XOM virtual machine monitor) is used to provide a suitable execution environment for the
execution of the XOM code. To improve performance of the encryption/decryption processes, they
propose that special hardware be built for these purposes.

What are the main conclusions of this paper?

Apparently, the overall execution time does not increase much (only about 5%). I find this result
surprising, since the XOM requirements of encryption and decryption seem to require significant com-
putation. Also, storing the MACs will cost memory space, and this overhead is not mentioned.

However, the XOM machine model is capable of preventing people from unauthorized access to code
and data, thus preventing copying and/or tampering of software IP.

1


