
Architectural Support for Copy and Tamper Resistant
Software

David Lie Chandramohan Thekkath
∗

Mark Mitchell Patrick Lincoln
†

Dan Boneh John Mitchell Mark Horowitz

Computer Systems Laboratory
Stanford University
Stanford CA 94305

ABSTRACT
Implementing copy protection on software is a difficult prob-
lem that has resisted a satisfactory solution for many years.
This paper proposes a set of features that allows a machine
to execute XOM code: code where neither the instructions
or the data are visible to entities outside the running pro-
cess. To support XOM code we use a machine that sup-
ports internal compartments, where a process in one com-
partment cannot read data from another compartment. All
data that leaves the machine is encrypted, since we assume
secure compartments cannot be guaranteed by anything out-
side the machine. The design of this machine poses some
interesting trade-offs between security, efficiency and flexi-
bility. We explore some of the potential security issues as
one pushes the machine to become more efficient and flexi-
ble. Our analysis indicates, while not cheap, it is possible to
create a normal multi-tasking machine where nearly all ap-
plications can be run in XOM mode. While a virtual XOM
machine is possible, the underlying hardware needs to sup-
port a unique private key, asymmetric decryption, private
memory, fast symmetric ciphers, and traps on cache misses
for efficient operation.

1. INTRODUCTION
The protection of intellectual property is an important is-

sue in today’s world. The Business Software Alliance, an in-
ternational software piracy watchdog, has stated that piracy
has cost the software industry 11 billion dollars in 1998 [1].
Implementing copy protection to combat software piracy is
not a new problem, but it is one that has been difficult
to solve. This has led to a widespread effort to find solu-
tions to to intellectual property protection and models for
secure computing [2, 5, 6]. This paper introduces a design

∗Compaq Systems Research Center
†SRI International

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS-IX 2000 Cambridge, Massachusetts USA
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

that allows a machine to execute programs so that neither
its instructions nor data is visible outside the running pro-
cess. Our design uses cryptographic techniques to prevent
the program code and the data values produced by the code
from being read. Since this system creates code that the
user can only execute, but cannot read, we call the the new
architectural feature, XOM, for eXecute Only Memory [?].

To support a secure execution environment, we use the
concept of a compartment , which is a logical “box” that
provides isolation between the principals [12]. The com-
partment is built from a session key , used to encipher data.
The key acts as the walls of the compartment: those who
know the session key are inside the compartment and can de-
crypt data hidden by the key. In XOM, only one principal
or program knows the session key for each compartment,
and thus has access to data within it. There is a special
compartment, referred to as the unprotected or null com-
partment, that has no key. All data in this compartment is
unencrypted and is readable by all. As long as the notion of
a compartment is not violated, then the privacy of all code
and data is guaranteed.

The difficult part of creating compartments is securely
sending the corresponding session keys to the appropriate
processor for execution. Cryptography provides a solution to
this problem in the form of asymmetric ciphers, also known
as public key ciphers. Asymmetric key cryptography uses
pairs of keys whose members are designated “private” and
“public”. The private key is kept secret by a principal, while
the public key is freely distributed to the world. When one
wishes to send a message to the owner of the private key,
one encrypts the message with the public key. Only the
private key can be used to decrypt the message, and since
only the owner has the private key, the sender can be sure
that only the intended recipient will be able to decrypt the
message properly. In addition, neither key gives any infor-
mation about its counterpart. Our design uses asymmetric
cipher to transmit a symmetric session key used to create
a XOM compartment. Using symmetric session ciphers has
important performance implications because they are com-
putationally less intensive than asymmetric ciphers. Our
approach is related to that suggested by Gilmont [6].

A XOM machine has the private key of an asymmetric
cipher as a unique identifier. A XOM program for this ma-
chine is encrypted with a symmetric key, and then this key
is encrypted with the public key of the destination machine.
Both the public key and XOM programs must be certified

if authentication is also required. When the machine starts
to execute the program,it decrypts the session key and uses
this to create the compartment. The session key is protected
by treating it as part of the data generated by the program,
protected by the compartment.

The next section of the paper (Section 2) describes the ab-
stract XOM machine architecture in more detail, explaining
how the machine internally protects information in compart-
ments. There are many ways one can use this abstract ma-
chine to provide XOM functionality and we describe some of
these. We first describe a very limited form of XOM where
only small sections of the application code are “XOMed”,
and most of the application runs in the null compartment.
The XOM sections form opaque functions that the program-
mer can use to secure the application. This functions have
access to the session key, and can use it to encode or decode
data it needs to use. The limitation of this approach is that
the application design needs to consider which parts of the
application to XOM, and what to include in these sections
to ensure that the application is both copy and tamper re-
sistant. To remove this restriction, we next describe a more
general form where a possibly untrusted operating system
can schedule and manage XOM processes, and full applica-
tions can run in XOM mode.

Section 3 looks at some of the security issues with XOM,
addressing different methods that information might leak
out of the compartments that we have constructed. Our
security model does not trust external memory or the op-
erating system that can control the execution of the XOM
program. Providing guarantees in such a model is a partic-
ularly challenging problem.

Section 4 describes hardware implementation issues for a
XOM processor. We construct a XOM processor using a
modest amount of hardware and Sections 5 and 6 evaluate
performance implications of executing XOM code. Finally,
we close the paper with a summary of the XOM architecture
in Section 7.

2. THE ABSTRACT MACHINE
The abstract XOM machine has three principal tasks: de-

coding the session key using an asymmetric cipher, decoding
the instruction stream from external memory using the ses-
sion key, and providing secure storage for the XOM code to
store its results. The first two tasks have been discussed in
the previous section and are conceptually straightforward,
we therefore describe how the abstract machine provides se-
cure storage.

Our basic approach to secure storage is to tag all data with
a XOM identifier. This identifier is a shorthand for a session
key and is an index into a table, called the session key table,
that maps XOM identifiers to a decrypted session key. The
null session always has the identifier zero. Programs that
run in the clear without encrypting their code, by default,
belong to the null principal.

The size of the session key table and tags depend on the
number of concurrently executing principals that can have
data in the machine. In the simplest machine, the identifier
can be one bit and the table contains only two entries, the
session key of the currently active XOM program, and the
null session.

At any one time, only one principal is executing and thus,
only one XOM identifier is active. We refer to this principal
as the “active principal”. The session key and the corre-

sponding XOM identifier belonging to the active principal
are called the “active key” and the “active XOM identifier”.
When data is produced by the program, the abstract ma-
chine automatically tags it with the active XOM identifier
When data is read, the tag on the data is compared with the
active XOM identifier. If the comparison succeeds, the read
is allowed, otherwise the read causes an exception. Thus, no
principal can access the data of another principal; the tags
create the compartments that provide the isolation discussed
above.

MH - Why do you want to cause an exception?
I think you also need to make sure the read only
returns zero, since the running XOM process will
not catch the exception, right?

DL - Chandu and I figured that even having the
ability to write zeros at anytime still qualifies as
tampering and may be cause undue leakage of in-
formation. I guess Dan and John are the ultimate
authorities on this

In addition to protecting the data, the abstract machine
provides two instructions: enter xom and exit xom. XOM
code is preceded by an enter xom instruction, where the
source register is the starting address of the encrypted ses-
sion key for the XOM code to follow. This instruction indi-
cates to the XOM machine that all following code belongs
to a principal associated with the session key. The machine
checks to see if the session key has already been decoded. If
the session key is already in the table, we set the active iden-
tifier to this entry and we start to fetch XOM code. If no
entries in the session key table match, the machine chooses
a free entry, sets the active identifier to this entry, and runs
the asymmetric decryption algorithm on the key and then
enters the key pair in the table before fetching the first XOM
instruction.

While in XOM mode, all instructions are decrypted us-
ing the session key before they are placed in the instruction
stream for execution. Other than decrypting the instruc-
tions and tagging the data, the machine operates like a con-
ventional machine. There are two kinds of events that will
cause the active identifier to change. The normal event is
the execution of an exit xom instruction. This instruction
changes the active identifier back to null, and the machine
stops decrypting instructions. The “abnormal” event occurs
when a trap or interrupt is taken. In this case, an implicit
exit xom instruction is executed before the instructions from
the handler are executed.

To complete the abstract machine we need two additional
instructions to allow communication between principals. This
communication is provided by the mv to null and mv from null
instructions. These instructions allow a controlled way to
change the tags associated with a piece of data. The mv to null
instruction takes data that is tagged with the active XOM
identifier and changes the tag on it to the null principal.
After this instruction is executed, access to the data by the
original principal results in an exception. Executing this
instruction on data that is not originally tagged with the
currently executing principal also results in an exception.
The mv from null instruction changes data tagged by the
null principal to the active XOM tag. Once again data has
to be originally tagged with null before this instruction can
be executed.

These instructions and the semantics of tagging guarantee
that when a principal reads data it will only get values that

was either created by itself or explicitly brought into its
compartment. The simplicity of this compartment-based
protection method appeals to us—it seems simple enough
that it could be implemented correctly.

In summary, the abstract machine described thus far pro-
vides the following four mechanisms.

1. A scheme to decrypt symmetric keys using the private
half of a public key.

2. Facilities for decoding the program code using a de-
crypted session key.

3. Instructions for entering and exiting XOM mode, with
traps and interrupts causing an implicit exit from XOM
mode.

4. A data tagging scheme that prevents principals from
accessing data belonging to other principals.

2.1 Simple Usage Model
The simple abstract machine described above can be used

to execute copy-protected code, especially in a scenario where
one expects XOM code to run significantly slower than or-
dinary code due to decryption overheads. In this scenario,
propose a software model where most of the application to
run unencrypted and only have certain sensitive sections of
the code encrypted and run in XOM mode.

Since we are running on small sections of XOM code, a
small (tagged) on-chip scratchpad could be used as tempo-
rary storage. All stores to main memory have an implicit
mv to null instruction, i.e., no secure data is stored outside
the machine.

There are several real-world examples of sensitive code
that fit this scenario. For example, XXX John, Dan:
what are these?.

Short Description of these examples

2.2 Full Usage Model
An important restriction of the simple abstract model pre-

sented so far is that the XOM tag is only applied to the
machine structures that hold program data, such as regis-
ters and any on-chip memory such as caches. If all copy-
protected data fit within these machine structures, the sim-
ple tagging scheme described so far would be sufficient. Once
again, for the examples described above, this would not be
an undue constraint.

However, for most programs access to external memory for
data can be a serious issue if we expect entire applications
to be run in XOM mode. Handling external data memory
accessed by programs poses a problem with the current ap-
proach, since we assume that anything off-chip is subject
to electrical probing and hence cannot be guaranteed to be
secure.

Another restriction imposed by the simple abstract ma-
chine model is that it does not satisfactorily deal with inter-
rupts and traps. The XOM code may not be restartable after
the interrupt handler returns since the handler is unable to
save away interrupted state without reading the registers.
For some XOM applications, dealing with interrupts might
not a big constraint. For instance, it might be possible to
make the XOM code functions restartable and idempotent,
so if there were interrupted they could simply be restarted
and rerun. This may indeed be a feasible option if the code
fragments are small as in the examples above, but we wanted

to explore the possibility of running all code in XOM mode
assuming the overhead of running XOM mode code could
be made small enough.

The full XOM model enhances the previous model by ex-
tending compartments to include main memory and by al-
lowing XOM code to be interrupted and resumed.

Conceptually, we extend compartments to external mem-
ory by using cryptography. That is, when tagged data leaves
the confines of the machine, we encrypt the data using the
appropriate session key and store it in external memory.
This ensures that the guarantees of tagging is also available
to data in external memory. Since external memory is un-
trusted we implicitly assume that it is owned by the null
principal.

We provide 3 pairs of instructions to move data between
external memory and the machine: store/load, store secure/load secure,
and save secure/restore secure.

The store and load instructions take as arguments a reg-
ister and a memory location and behave very much like or-
dinary store and load instructions in a standard CPU. The
essential difference is that the store instruction takes a reg-
ister tagged with the null identifier as the source; a tagged
source register raises an exception. The load instruction
loads the destination register with the contents of the mem-
ory location and tags it with the null identifier.

The store secure and load secure take a register and a
memory location as their arguments. They are used by the
currently executing XOM program to move data between
memory and registers that are tagged with its own identi-
fier. If the register named in a store secure or load secure is
either tagged with the null identifier or an identifier other
than the active one, the instruction raises an exception.

The store secure instruction atomically encrypts the con-
tents of a tagged register using the session key corresponding
to the tag, creates a cryptographic hash that includes the
memory location, and stores both into the external memory
location.

The load secure instruction takes a target register and
memory location as arguments. It atomically decrypts the
contents of memory using the active session key, checks the
hash to make sure it matches, loads a register and changes
the tag on the register to the active identifier. If there is a
mismatch in the hash, the instruction will cause an excep-
tion.

The use of a hash in addition to encryption might appear
unnecessary at first sight, but the need for it is explained
in the next section. Also notice that the hash function im-
plies that these instructions require multiple memory words
unlike ordinary loads and stores.

The save secure and restore secure instructions are used
by the currently executing XOM program to move data be-
tween memory and registers that are tagged with another
non-null principal’s identfier. A register tagged with the
null identifier or its own identfier will cause an exception.

The save secure instruction takes the same arguments as
store secure. It first encrypts the register contents and cal-
culates a hash that includes the identity of the register. It
uses the key of the register owner for this operation. Next
it takes the result of the encrytion and hash and stores it in
memory encrypting the result and hash a second time and
calculating another hash that includes the memory location
named in the instruction.

The restore secure instruction is the inverse of the save secure

operation and it is used to restore the data stored in memory
back to the same register when it was saved. The instruc-
tion takes a target register, a memory location, and a session
identifier that is different from the active identifier. It first
decrypts the contents of memory using the key of the active
principal and verifies that the hash, which includes the mem-
ory location, matches. If it does, then it proceeds to decrypt
the previous result, this time using the key of the supplied
session identifier. It also verifies that the second hash, which
includes the register name in it matches. If there is a match,
the resulting data is written into the named register and the
register is tagged with the session identifier.

We describe the implementation of these functions in more
detail in the Section 4.

MH - Then what do normal load and store opera-
tions do? It seems like this sequence of instructions
would be the same as a normal store? I think I
see. Normal load and store instruction maintain the
XOM state of the running process. I think this is
a good idea, but is not clear. In fact you say the
opposite 2 paragraphs up. Having programs use se-
cure load and store won’t work for two reasons –
First programs don’t load values into the same reg-
ister that they used to store them, and second, the
memory overhead for a hashing each register is too
large. I really think you need to have different op-
erations for an outside principle storing your data,
and having you store your data.

DL - normal loads load stuff in and keep it as null
(they don’t decrypt). normal stores can’t operate
on owned data and secure stores operated on owned
data only. I think we messed up above. The concern
about hashing is noted, and explained below.

To allow XOM code to be interrupted and restarted we
need to remove any dependency between the operating sys-
tem’s resource management responsibilities and compart-
ment security. That is, on an interrupt, we must allow
the untrusted operating system to save the register state
of a XOM process, without actually being able to interpret
or leak the contents of the registers. The save secure and
restor secure instructions provide the necessary means to do
this.

To summarize, the XOM model ensures that a copyrighted
program will only run on a specific machine and requires
that the copyright owner to know the public key of the ma-
chine.

A XOM program can take traps and interrupts between
any two instructions. A supervisor program, such as an
untrusted operating system, can field these exceptions and
multiplex the abstract machine registers amongst multiple
programs without compromising the secrets of the XOM
program. However, such a supervisor program, if it is mali-
cious, can mount a replay attack on the XOM program (as
described below).

The full abstract machine model though functionally com-
plete, requires careful treatment of the security issues that
now arise. We next describe the guarantees and limitations
of our model against typical cryptographic attacks.

3. SECURITY GUARANTEES AND LIMI-
TATIONS

Any system may be the target of a wide range of secu-

rity attacks. While the ultimate attack is one that directly
causes the secrets to be revealed, it is more often the case
that several weaker attacks may be combined to achieve the
same goal. Often an adversary will try to manipulate the
target in such a way to leak information about the hidden
secret. In this way, adversaries can constrain their search
space and eventually mount an exhaustive search. Since we
expect our model to work in the presence of untrusted exter-
nal memory, we must assume that an adversary will tamper
with the values stored in memory. Here we discuss three
potential attacks that can arise in this context: spoofing,
splicing, and replay.

A spoofing attack is where an adversary generates data
and tries to pass it off as valid data. Such an attack against
XOM would involve replacing values in memory, including
instructions or data values, with spurious ciphertext 1. If
the XOM machine blindly accepted these spurious values
and operated on them, it may alter the behavior of the
XOM program in such a way that information about the
copy-protected code is revealed. The common cryptographic
solution to a spoofing attack is to employ a Message Authen-
tication Code (MAC) [13, 7, 8]. A MAC is a keyed, one-way
hash of the message. The hash is easily reproduced to check
for authenticity, but it is difficult to find another message
that hashes to the same value. Thus, the store secure in-
struction generates a MAC of the encrypted data and saves
it along with the data in external memory. When the value
is read back in, via the load secure instruction, the data is
checked with its accompanying MAC for authenticity. Ex-
ecution is halted if the MAC cannot be verified. Since the
adversary cannot easily generate a valid MAC, spoofing val-
ues in memory is difficult.

Splicing attacks involve taking valid fragments of cipher-
text (in our case portions of XOM code or data) and reorder-
ing or duplicating them at different locations. The intended
goal of this type of attack is to trick the machine into exe-
cuting the modified XOM program in the hope that it will
reveal some secret about the original XOM program.

To prevent this type of attack, the MAC used in the
abstract machine includes a position dependent attribute
within it. For the case of data and instruction, we include
the virtual address of the memory location. For the case of
register data, we include the register number. During both
instruction and data fetch from external memory, the MAC
of the fetched data is checked to ensure that the data has
not been tampered with. If the MAC does not match, the
machine will take an exception and the XOM application
will halt.

Our architecture does not provide strong guarantees against
a replay attack. This is an attack where the adversary
records previous valid values and re-inputs them to the XOM
machine. A possible remedy is to use a mutating session key
that changes after every store/load pair. Unfortunately, for
this to work in the general case, we would have to remember
the current key for every data value that leaves the virtual
machine. This is impractical and thus protection against a
general replay attack in XOM is difficult. Similarly, a XOM
program may be tricked into executing the same code twice.
Programs must make separate provisions, independent of
XOM mode, to prevent such attacks.

Aside from guarding against spoofing and splicing attacks,

1Cipher text is the term assigned to encrypted data. Like-
wise, plain text is any data that is unencrypted.

our architecture also provides some other guarantees. Be-
cause the private key is kept securely in hardware, we can
guarantee that XOM code intended for one machine may
not be executed on another machine with a different key.
Thus software is copy-resistant. We can also guarantee that
XOM code executing on the machine may not have its con-
tents observed or altered. In this way, it is tamper-resistant.
Finally, we accomplish this without trusting any other eni-
tity other than the XOM machine itself. In other words, we
do not rely on the security of the operating system or the
memory.

Our abstract machine of course has some limitations. Since
the abstract machine is trusted, a buggy, malicious, or a
compromised abstract machine can reveal the secrets of a
XOM program. Our implementation proposal in the next
section shows one way to mitigate, but not eliminate, the
danger from this vulnerability, by building the trust into
the CPU hardware.

Our model also leaks information at the external mem-
ory interface. An adversary can watch the memory traffic
and determine an address trace of the XOM program. The
coarseness of this address trace will vary with the amount of
caching used in an implementation of the abstract machine.
Our implementation proposal limits traces to be fairly coarse
by aligning external memory addresses to a secondary cache
line boundary (a 128 byte boundary is typical).

Two XOM programs may not share a common symmet-
ric key. Sharing a key would enable an adversary to splice
instructions from the two programs in unauthorized ways.

4. IMPLEMENTATION OF XOM
There is are many hardware and software tradeoffs in im-

plementing a processor capable of executing XOM code.
This section initially describes a modest amount of hard-
ware in conjunction with a XOM virtual machine monitor [?]
that can be used to run simple XOM code. By simple XOM
code, we mean code that cannot be interrupted and does
not store trusted data in external memory. Next, we aug-
ment this hardware to implement a machine that doesn’t
have these restrictions. A subsequent section describes the
performance implications of these implementation choices.

4.1 Running Simple XOM Code
We propose a special XOM virtual machine monitor (called

XVMM) running on a CPU augmented with a set of hard-
ware changes, to provide a suitable execution environment
for simple XOM code.

XVMM could be implemented in software or in microcode.
Software implementations must be authenticated by a secure
booting mechanism such as those described in the litera-
ture [2, ?, ?]. Either way, XVMM executes as a trusted, au-
thorized, and privileged program. It has unique capabilities
that require additional hardware support from a standard
processor.

Recall that in order to run simple XOM code it is sufficient
if XVMM supports the following functionality: Decryption
of the instruction stream, tagged data within the machine,
and the four instructions enter xom, exit xom, mv to null
and mv from null.

Decryption of Instructions
Decrypting the instruction stream is straightforward to achieve
if the CPU vectors I-cache misses to XVMM, which can then

decrypt the code and insert the decrypted instructions into
the cache. I-cache miss handling in software is not typically
available on modern processors, but it would be no more
difficult to provide than software TLB miss handlers. De-
pending on the speed of the processor, decryption of the
instructions can be done entirely in software by XVMM or
with special-purpose hardware.

MH - Note that this ICache miss trap is not strictly
needed. With a secure on-chip memory, you could
decode the instructions, place them in this memory
and then have the processor jump to it. Think about
machine translation engines. The same techniques
would work.

DH - This is true. We thought about this and re-
alized it causes other complications. How does the
XOM process address the scratch pad? We have
to memory map it. This could be kind of confus-
ing, what if it is self modifying code? The VM has
to keep track of what it has mapped into its se-
cure scratch pad. The scratch pad also needs base
and bounds registers now. The VM may need to do
some jump remapping and address remapping so if
it control jumps to an unencrypted part it basically
passes to the VM. Don’t know if we want to explain
all this?

Tagging Data
MH - I don’t think any data needs to be tagged in
this simple model. The basic idea is simple, and you
have it already – a shadow regfile for each XOM
context including the null context. When a XOM
process runs, all the registers have values only for
it, the other regisers store zero – Oh I see why you
have the tags – they are needed for the exceptions.
Huh, I guess I need to think about it some more.
Note if you don’t want exceptions, move to null just
store in the null context, etc.

DL - I think we’re saying the same thing. We don’t
need tags in icache if we blow it away on exception

Data in the I-cache can be effectively tagged with minimal
changes in the hardware. We know of two ways of doing
this. The simplest way is extend the cache lines to include
XOM identifiers. Another way is to add no hardware, but
to flush the I-cache on every (implicit and explicit) exit xom
instruction.

Unlike tagging the I-cache, adding several tag bits to each
CPU register can be more problematic because registers are
often multiported for speed. Instead, we use a combination
of simple hardware and the XVMM to support multiple tag
bits.

Having multiple tag bits is generally a benefit because the
session key table addressed by these bits can be larger. A
larger session key table allows more principals to share the
machine concurrently. It also means that the key table slots
do not have to be multiplexed as often amongst principals.
An expensive public key decryption of a session key is in-
volved each time a session key table slot is reused.

We extend CPU registers to have a valid bit. If the valid
bit is clear, a read access to a register causes a trap. Register
reads proceed as normal if the valid bit is set. A write to
a register always succeeds and sets the valid bit. The valid
bit can be tested as well as cleared by XVMM.

With this level of support from hardware, the virtual ma-

chine monitor can support tags of longer length as we de-
scribe below.

Additional Hardware Support
In addition these changes in hardware, we need to provide
a privilege bit in the process status word to denote whether
the process is in XOM mode or not. This bit is only writable
by XVMM.

The CPU needs to provide a small amount of on-chip pri-
vate memory that is only accessible to XVMM. It uses this
memory to store structures such as the XOM key table and
active XOM identifier. In addition, intermediate results for
the asymmetric and symmetric decryption could be placed
here as well.

The private half of the public key pair is also implemented
within the hardware.

The XOM Virtual Machine Monitor (XVMM)
XVMM implements the special XOM instructions and pro-
vides data tagging using the facilities of the hardware de-
scribed above.

It organizes a portion of the private memory as a set of
tagged registers. For each general purpose register in the
CPU, private memory has a corresponding shadow register
of the same size and an associated XOM identifier tag of a
suitable length. The basic idea is that the combination of
a CPU register with its single valid bit, the corresponding
shadow register and tag implemented in software is func-
tionally equivalent to having CPU registers with long tags.
In some CPU architectures, it may be feasible to implement
long tags in the CPU registers themselves, which would sim-
plify the virtual machine monitor.

A separate region of the private memory holds a session
key table containing decrypted session keys for the various
XOM identifiers. The XOM tags used in the shadow regis-
ters are indices into this key table. XVMM keeps track of
the index of the currently executing XOM session. Index 0
refers to the null tag, i.e., to the untrusted null principal.

XVMM implements the four special XOM mode instruc-
tions as follows.

enter xom : XVMM loads the session key of the XOM
code into the session key table if not already present. XVMM
maintains a 128 bit cryptographic hash of the encrypted ses-
sion key along with its decrypted form. The presence check
is performed using this hash value. Non-present keys en-
tail an asymmetric key decryption operation to generate the
session key. Shadow registers whose tag match that of the
XOM session are copied into their corresponding CPU reg-
ister, which are marked valid. All other CPU registers are
marked invalid.

XVMM registers a handler for cache miss faults so that
I-cache misses incurred during the execution of XOM code
will be correctly vectored to it. Similarly, it also revectors all
CPU exceptions and interrupts to itself so that it can do an
implicit exit xom instruction whenever there is an interrupt
or exception.

exit xom : XVMM unregisters the handler for cache miss
faults and restores handlers for all CPU interrupts and ex-
ceptions. It copies all shadow registers whose tag is null into
the corresponding CPU register. All other CPU registers are
marked invalid.

mv to null : XVMM checks that the CPU register has
the valid bit set. If not, it raises an exception. Otherwise, it

moves the contents of the CPU register into the correspond-
ing shadow register, tags the shadow register as null, and
marks the CPU register as invalid.

mv from null : XVMM checks to see if the CPU register
is valid. If it is, then it raises an exception. Otherwise
it moves the contents of the shadow register into the CPU
register and sets the valid bit.

On an I-cache miss, XVMM first locates the active XOM
session key in the session key table. It uses this key to
decrypt data from external memory and fill the I-cache.

4.2 Running XOM Code with Interrupts and
External Data

Next, we describe how to support full semantics where the
XOM code may be interrupted and is also allowed access to
external memory to store its data. Our strategy requires
some additional hardware support than what is described
earlier.

The basic idea is to add XOM tags to all levels of the
memory hierarchy that are on-chip and use these tags to
encrypt and decrypt data that goes off-chip. This extends
the boundary of the XOM machine to encompass the on-
chip caches. Given the architecture of modern CPUs, this
implies putting tags on each L1 and L2 cache line.

Given tags, data in the L1 and L2 can be kept unencrypted
without violating the compartment model of security. Data
that is flushed from L1 to L2 retains its tag, which constrains
the granularity of ownership to a L2 cache line, because each
L2 cache line can have only one tag. Write-backs from L2 to
memory are encrypted with the owner’s key and combined
with a MAC before going to memory. L2 cache fills will
cause memory to be decrypted using the active session ID
and the line to be tagged.

Recall that to support full XOM mode execution, XVMM
must implement secure stores and loads.

store secure: This instruction specifies a source register
and a destination memory location like a conventional store.
If the tag matches that of the active principal, then XVMM
moves the contents of the CPU register into the L1 cache
line. The tag on the L1 cache line is set to the register tag.
Subsequently the tag and data will be propagated to the L2
cache, and then sent to external memory after encryption
and hashing during a write-back operation. The key used
for encryption will be that of the principal that executed
the store secure instruction. The hash value will include the
virtual address of the destination memory location.

save secure: This instruction also specifies a source reg-
ister and a destination memory location like a conventional
store. It first ensure that the register tag does not match
that of the active principal, and that it is not null. Next, a
position dependent hash is calculated based on the register
and its contents. This is then encrypted using the session
key corresponding to the register tag. The result is stored in
the L1 cache with the tag of the active principal. As in the
case of store secure, a subsequent write-back will result in a
second encryption and hashing using the active principal’s
key.

Let r be the register number, c the contents in register r,
va the memory address location specified in the instruction.
Let keyr and keya be the keys corresponding to the register
tag and the active key respectively. Let Hash1 and Hash2
be two suitable hash functions.

Then, the store secure instruction will store into memory

location va the value [c, Hash1(va)]keya . The save secure
will store the value [[c, Hash2(r)]keyr], Hash1(va)]keya . Here
exponentition by a key denotes encryption under that key
and comma “,” denotes concatenation.

In practice, we expect save secure to be used most com-
monly by the operating system running as the null principal
to save registers belonging to a XOM program. In this case,
the second set of encryption and hashing is avoided.

load secure: This instruction specifies a memory loca-
tion, and destination register. The result of doing a load secure
instruction is to load the register with the contents of the
memory location and to tag with with the active session key.

The XVMM decrypts the contents of the memory location
using the session key of the active principal, verifies the hash
(Hash1), and stores the contents in the L2 and L1 cache.
The caches lines are tagged with the active principal’s tag.
These actions are just the inverses of the store secure steps.
The data is then written into the register and its shadow
and the tag is updated in the shadow.

Let r be the destination register number, va the memory
address location specified in the instruction, and m the con-
tents of the memory location. Let keyr be the key specified
in the instruction, and let keya be the active key. Then, the

contents of the cache line is [m]keya
−1

, where exponentiation
with the inverse of a key denotes decryption with that key.

Next, [m]keya
−1

is written into the register r.
restore secure: This operation takes a memory location,

a destination register, and an additional session key as its
arguments. XVMM first verifies that the session key is dif-
ferent from the active key. Then, it executes the same de-
cryption as outlined in the load secure case. Next, XVMM
decrypts the contents of the L1 cache, verifies the hash
(Hash2), and writes the data into the register and tags the
register with session identifier corresponding to the session

key specified in the instruction. In this case [[m]keya
−1

]keyr
−1

is written into the register r.

5. PERFORMANCE AND SPECIALIZED HARD-
WARE

We note that some XOM operations happen rarely while
others may occur more often. For example, the asymmetric
operations, as well as register saves and restores by the op-
erating system are relatively rare events. Howeverr, the en-
cryption, decryption, and MAC computation of cache lines
appears on the critical path for many operations. Support-
ing the full XOM model may become very expensive without
hardware acceleration of these operations.

Since write-backs and cache misses from the L2 cache
to memory may happen quite often, the overhead of per-
forming the encryption in software may make the design
extremely slow. As an example, the best software implemen-
tation of DES [9], a common symmetric block cipher, has a
throughput of approximately 9 Mbit/s on a 133 MHz Pen-
tium/MMX processorDan, is there a citation for this?.
This translates into approximately 1 byte every 14 cycles.
To decrypt a 128 byte L2 cache line this would require 1792
cycles which is two high an overhead to pay for every L2
cache miss or write back.

We can mitigate this cost by adding special hardware to
perform the symmetric cryptography. The maximum rate
at which this hardware must be able to decrypt and encrypt
data is dictated by the peak bandwidth of the L2 cache to

memory interface.
As an example, we consider the cost of typical processor

running a typical encryption algorithm. The next genera-
tion x86 CPU, Willamette, [?] will have a peak memory
bandwidth of 3.2 GB/s and a clock speed of 1.5 GHz. With
a 64 bit data bus, there is data coming on the bus every 3.75
cycles. This requires the cryptographic unit to capable of
encrypting or decrypting a 64 bit block every 3 cycles. We
select Triple DES [11, 15, 9] as an example of a symmetric
cipher. All symmetric ciphers are DES-like, consisting of
an algorithm which iterates the text through several rounds
performing linear and non-linear transformations on the text
at each round, so our analysis would apply equal well to any
symmetric cipher.

Triple DES, takes a 64 bit block and performs 48 rounds
of transformations on it. Each round consists of two XOR
operations, two permutations, and a table lookup. We be-
lieve that it is possible build a DES implementation that can
compute two rounds per cycle, but we conservatively assume
that only one round can be computed per cycle [?, ?]. Thus,
it takes 48 cycles to decrypt a 64 bit block. Because each
round is essentially identical to every other round, DES can
easily be pipelined. Thus, after the initial block, the DES
unit is capable of producing a block every cycle while the
memory busy is only capable for inserting a block every 3.75
cycles. As a result, we only need a DES unit with 16 pipeline
stages with each stage performing three rounds itteratively.
With this method, overhead of the encryption or decryption
is an additional latency of 48 cycles.

MH - David this is WAY too much hardware since
you need to create 48 copies of the hardware. You
would only really build 16 DES sections and still be
faster than the bus.

DL - agreed. I don’t know what I was thinking.
Several other ciphers also exist that may be used. Among

the most promising are the AES [16] candidates Rijndael [4]
and Serpent [3]. Rijndael is a block cipher that only has
10 rounds of calculation while Serpent has 32 rounds. Both
have rounds which are simple enough that they it should be
possible to implement them in a single cycle. In addition,
like Triple DES, they should be straightforward to pipeline.

We also note that all values must have a MAC and posi-
tion dependent hash added for integrity. As an example, we
will consider an HMAC [8] implementation using MD5 [7].
MD5 is a one way hash function which takes 64 rounds,
each performing a non-linear operations followed by four
bitwise additions and a barrel shift. MD5 produces a 128
bit hash which, for a 128 byte L2 cache line results in a
storage overhead of exactly one bit per effective byte. As
it happens, this is the same storage overhead of ECC so
we may use ECC RAM to store the MAC. A benchmark of
the OpenSSL [10] software implementation of HMAC with
MD5 has a throughput of 23 MB/s on a 350 MHz Pentium
II system. Thus, each byte takes approximately 15 cycles to
produce and a 128 byte cache line would require in the vicin-
ity of 243 cycles. This is a fairly large cost to pay for each
memory access. Again we may build a specialized hardware
implementation to decrease the cost somewhat. However,
the problem is that because the entire cache line is required
to compute the hash, there is no benefit to pipelining the
implementation. Thus if we again assume that each round
takes a cycle, the operation requires 64 cycles.

This is still a large overhead to pay. Fortunately, we can

exploit the fact that a MAC provides much more function-
ality then we require. A MAC is able to provide authenti-
cation for messages that are not encrypted, by using a hash
is difficult to reverse. Since the cache lines are encrypted,
we are free to use a reversible hash for redundancy. Since
the adversary does not know the session key, she can not
generate a valid hash of any message she creates. Thus we
may pick a much faster hash (such as CRC) and append
that to the cache line before encrypting with the session
key. Regardless of the hashing technique, the hash must be
of sufficient length so that the adversary cannot generate a
message with a valid accompanying hash by random trials.
A hash length of 128 bits as in MD5, is generally consid-
ered to be effective. A 128 bit CRC hash may be generated
in 1anyone know what this number really is?? cycle
but requires that the extra 128 bits also be encrypted or de-
crypted with the above symmetric key. Thus the overhead
for generated the hash is actually 9 cycles. The total over-
head including the 48 cycles of Triple DES is thus 57 cycles
per L2 cache operation.

As a final note, we observe that even though the hash cal-
culation requires the entire cache line, we may still support
critical word first in the memory system. We see that for
the Willamette example above, there is an additional 57 cy-
cles from the time the first 64 bit block is decrypted to the
time that the last block is decrypted. Thus we may view
the machine as speculatively executing for that 57 cycles.
All operations that allow information to leak out of the ma-
chine such as stores or loads cause the machine to stall. If
the hash verifies incorrectly the thread of execution is killed
and all state destroyed since it is unsafe to try to restart
when data has been tampered.

We use simulation to study the effect of various options
on the end-to-end performance of applications.

6. SIMULATION RESULTS
We used the SimOS simulation system [?] to evaluate

performance impact of the Full XOM model. We simulated
these as if the entire application was running in XOM mode
since we do not have concrete data on how the partially
XOM’ed applications that would be used for the Simple
XOM model would behave. Thus in these simulations ev-
ery load from memory and write back to memory incurs the
XOM overhead. BusUMA, the bus based memory model
provided by SimOS was modified to include an extra en-
cryption stage on all write-backs and a decryption stage for
data returning from a read to memory. Reads which hit
in the write buffer do not incur the decryption overhead.
The encryption and decryption overheads are the same for
symmetric ciphers and in our case, also include the time to
calculate and if necessary verify the hash. Note that write
backs are not in the critical path and thus do not directly
contribute to the latency of the runs. Rather, they add oc-
cupency to the bus and thus may indirectly add latency.

Since by varying whether the cipher and hash are imple-
mented in hardware or software, as well as varying which al-
gorithm is used affects the latency of the operations, several
different overheads were simulated. We used four different
workloads. The first is FFT a scientific code which performs
a Fast Fourier Transform. The second is make which sim-
ply builds the Irix 6.4 kernel. Third is informix a database
benchmark and the last is apache a web server benchmark.

Simulations are still running: Charts and Discus-

sion to follow. So far it seems the cost is small – less
than 5% increase in overall exec time and less than
1% increase in overall CPI for overheads less than
50% of memory cycle time, when boundary is placed
at L2 cache. L2 miss rates for this FFT are about 8%
(misses/refs). misses/inst are small though about
0.0001% – the commercial apps should have more

7. SUMMARY
To be written

Acknowledgments

8. REFERENCES
[1] Business Software Alliance, 2000.

http://www.bsa.org.

[2] The Trusted Computing Platform Allicance, 2000.
http://www.trustedpc.com.

[3] R. Anderson, E. Biham, and L. Knudsen. Serpent: A
proposal for the advanced encryption standard.
Technical report, National Institute of Standards and
Technology (NIST), March 2000. Available at
http://csrc.nist.gov/encryption/aes/round2/r2algs.htm.

[4] J. Daemen and V. Rijmen. AES proposal: Rijndael.
Technical report, National Institute of Standards and
Technology (NIST), March 2000. Available at
http://csrc.nist.gov/encryption/aes/round2/r2algs.htm.

[5] Wave Corporation Embassy Technology, 2000.
http://www.wave.com.

[6] T. Gilmont, J.-D. Legat, and J.-J. Quisquater.
Hardware security for software privacy support.
Electronics Letters, 35(24):2096–2097, November 1999.

[7] B. Kaliski Jr. and M. Robshaw. Message
authentication with MD5. CryptoBytes, 1995.

[8] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication.
http://www.ietf.org/rfc/rfc2104.txt, February
1997.

[9] National Bureau of Standards. NBS FIPS PUB 46,
”Data Encryption Standard”. National Bureau of
Standards, U.S. Department of Commerce, January
1977.

[10] OpenSSL, 2000. http://www.openssl.org/.

[11] ANSI X9.17 (Revised). American national standard
for financial institution key management (wholesale).
American Bankers Association, 1985.

[12] J. Saltzer and M. Schroeder. The protection of
information in computer systems. IEEE, 63(9),
September 1975.

[13] B. Schneier. Applied Cryptography. John Wiley &
Sons, 2nd edition, 1996.

[14] J. G. Spooner.
Intel brands willamette as pentium 4, 2000. Available at
http://www.zdnet.com/eweek/stories/general/0,11011,2595817,00.html.

[15] W. Tuchman. Hellman presents no shortcut solutions
to DES. IEEE Spectrum, 16(7):40–41, July 1979.

[16] B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke.
Hardware performance simulations of round 2
advanced encryption standard algorithms. Technical
report, National Security Agency, August 2000.
Available at
http://csrc.nist.gov/encryption/aes/round2/r2anlsys.htm.

