
Feeder: Supporting Last-Mile Transit with
Extreme-Scale Urban Infrastructure Data

Desheng Zhang†

zhang@cs.umn.edu
Juanjuan Zhao‡

jj.zhao@siat.ac.cn
Fan Zhang‡

zhangfan@siat.ac.cn

Ruobing Jiang�

likeice@sjtu.edu.cn
Tian He�†

tianhe@cs.umn.edu
†Department of Computer Science and Engineering, University of Minnesota, USA

‡Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
�Shanghai Jiao Tong University, China

Abstract
In this paper, we propose a transit service Feeder to tack-

le the last-mile problem, i.e., passengers’ destinations lay
beyond a walking distance from a public transit station.
Feeder utilizes ridesharing-based vehicles (e.g., minibus) to
deliver passengers from existing transit stations to selected
stops closer to their destinations. We infer real-time passen-
ger demand (e.g., exiting stations and times) for Feeder
design by utilizing extreme-scale urban infrastructures,
which consist of 10 million cellphones, 27 thousand vehi-
cles, and 17 thousand smartcard readers for 16 million
smartcards in a Chinese city Shenzhen. Regarding these nu-
merous devices as pervasive sensors, we mine both online
and offline data for a two-end Feeder service: a back-end
Feeder server to calculate service schedules; front-end cus-
tomized Feeder devices in vehicles for real-time schedule
downloading. The evaluation results show that compared to
the ground truth, Feeder reduces last-mile distances by 68%
and travel time by 52% on average.

Categories and Subject Descriptors
H.4 [Information System Application]: Miscellaneous

General Terms
Algorithms, Model, Experimentation, Application

Keywords
Last-Mile Transit, Urban Infrastructure

1 Introduction
Pubic transit contributes significantly to reduction of

travel delay and gas consumption [9], e.g., in 2013, public
transit reduced 865 million hours of travel delay and 450
million gallons of gas in U.S., achieving a saving of $142
billion congestion cost [4]. However, public transit (e.g.,
train or subway) typically stops only every mile on average
to maintain a high speed, which means that most of an ur-
ban area is beyond an easy walking distance from a transit
station, as shown by our large-scale empirical analysis in
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage.

IPSN ’15, April 14 - 16, 2015, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3475-4/15/04$15.00
http://dx.doi.org/10.1145/2737095.2737121

Section 2. This issue is known as “the last-mile problem”,
which is a key barrier to better public-transit utilization [3].

In this paper, we propose a real-time transit service,
called Feeder, which utilizes ridesharing-based vehicles
(e.g., minibuses) to deliver passengers from their exiting
transit stations to nearby dropoff locations called service
stops, thus reducing walking distances to their destinations.
Although Feeder is conceptually applicable to all public
transit, we focus on the design for subway and train net-
works where the last-mile problem is more serious. We
envision that Feeder is operated by a city transit authority
with following distinctive features: different from bike sys-
tems, Feeder uses only flexible vehicles without high costs
for fixed docking infrastructures or extra efforts to carry or
park bikes; different from taxicabs, a passenger in Feeder
pays a much lower flat fare and also travels more environ-
mental friendly due to a large number of co-riders; different
from regular bus services, Feeder is tailored for last-mile
trips with a ring route starting from a high-demand station,
featuring dynamic departure times and data-driven stops.

In Feeder, a passenger is mainly engaged in three phases:
(i) wait for a Feeder vehicle to depart; (ii) ride the vehicle to
a service stop; (iii) walk the “last-mile” to destinations. For
a passenger, the wait is typically more insufferable than the
ride due to short ride time in last-mile trips; the walk also
requires much more effort than the ride. Therefore, Feeder
has the two following objectives to enhance passenger expe-
rience on waiting and walking. (i) Minimizing Passenger
Wait Time: This objective would be easily achieved by opti-
mizing vehicle departure times, if passengers can provide
where and when they will exit upstream transit (e.g., an exit-
ing time in a subway station). However, in real world,
passengers normally do not know future exiting times in ad-
vance. (ii) Minimizing Passenger Walking Distance: This
objective would also be achieved naturally by optimizing
service stop locations, if passengers are willing to provide
fine-grained destinations (e.g., a home address). However,
passengers may be reluctant to provide such information
due to extra efforts or privacy concerns. As a result, we face
an essential design challenge to infer detailed passenger
last-mile transit demand (i.e., exiting stations and times as
well as fine-grained destinations) for Feeder optimizations

without active contributions from passengers.
To address this challenge, we employ extreme-scale

urban infrastructures to infer last-mile transit demand, trans-
parently to passengers. In particular, we utilize various
devices that generate passengers’ location data (e.g., cell-
phones and smartcard readers) in existing infrastructures in
order to infer real-time passenger exiting times and station
as well as destinations for Feeder. As a result, the key
novelty of our Feeder service is that it is a completely trans-
parent, automatic, and data-driven solution yet with neither
marginal costs for deploying an ad hoc demand-collecting
system nor extra efforts from the passenger side.

Conceptually, our core method provides a new possibili-
ty of using heterogenous data from existing urban
infrastructures to improve urban efficiency, as opposed to
previous monolithic and closed ad hoc systems. As a
real-world effort, we implement this method by integrating
streaming data from four infrastructures in Shenzhen (the
most crowded city in China): (i) a 10.4 million user cellular
network; (ii) a 14 thousand taxicab network; (iii) a 13 thou-
sand bus network; and (iv) an automatic fare collection
system for a public transit network (i.e., subway and bus)
with 16 million smartcards. We establish near real-time ac-
cess to the above data sources for online analyses. Further,
we store 400 million cellphone records, 32 billion GPS
records, and 6 billion smartcard records for offline analyses.
The key contributions of the paper are as follows:

• We utilize various infrastructures to infer passenger
last-mile demand in real time. To our knowledge, the
utilized data have by far the highest standard for urban
study in two aspects: (i) the most complete data includ-
ing cellular, taxicab, bus and subway data for the same
city, and (ii) the largest passenger coverage (i.e., 95%
of 11 million permanent residents in Shenzhen). The
sample data are given in [2].

• We conduct the first work to design a real-time
data-driven service Feeder for the last-mile problem by
a two-end solution. For the back end, we propose and
implement a cloud server (called the Feeder server). It
provides an online data fusion based on integrated
heterogenous data for two key components: (i) a de-
parture time computation to minimize wait times based
on straightforward yet efficient smartcard data process-
ing; and (ii) a service stop selection to minimize
last-mile walking distances based on cellphone and
taxi data. For the front end, we customize and deploy a
piece of hardware (called the Feeder device) as an on-
board device to download departure times and upload
status from/to the Feeder server in real time. Feeder s-
pans the entire life cycle of data-driven application
design, starting from hardware design, through data
collection, cleaning, offline analysis, online
processing, real-world utilization, to field evaluation.

• We implement Feeder in Shenzhen for a field study to
test its real-world performance. We rent 3 cars in-
stalled with our hardware in Tanglang station where 12
passengers were picked up every morning from the
station to their workplaces for 30 days.

• We test Feeder by a comprehensive evaluation with 4
TB Shenzhen data. The results show that Feeder re-
duces last-mile distances by 68% and travel times by
52% compared to the ground truth.

We organize the paper as follows. Section 2 gives our
motivation. Section 3 presents an overview. Section 4 de-
scribes the front-end devices. Sections 5, 6 and 7 depict the
back-end server. Sections 8 and 9 validate Feeder with a
real-world test and a large-scale evaluation. Section 10 dis-
cusses real-world issues, followed by the related work and
the conclusion in Sections 11 and 12.

2 Motivation for Last-Mile Transit
To justify our motivation, we explore both severity and

ubiquity of last-mile trips by answering two questions: how
long is a typical last-mile trip, and how frequently last-mile
trips occur among all trips, based on datasets we have
collected. The details of data are given in Section 5.

In Figure 1, we show last-mile trip lengths between a
subway station XingDong in Shenzhen and inferred passen-
ger destinations closer to XingDong than other stations. The
average length is given in Figure 2. The average distance
1.4 km is longer than the distance that passengers are
willing to walk [8], i.e., 400 to 800 m.

Station

Other
Station

Other
Station

Fig 1. Last-Mile in XD

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 20

1

2

3

 La
st M

ile
 Le

ng
th

(km
)

2 4 H o u r s o f a D a y

Fig 2. AVG. Length in XD
In Figure 3, we plot the proportion of lengths from all in-
ferred destinations to their closest stations, i.e., last-mile
trips. In a log-log scale, a point, e.g., (1.6 km, 0.3%), indi-
cates the last-mile trips with a length from 1.59 km to 1.6
km account for 0.3% of all last-mile trips we studied. The
first part of the distribution follows an uniform distribution
(i.e., the horizontal line), and the second part follows a
power-law distribution (i.e., the big tail). Interestingly, the
boundary is around 1.6 km. It reveals that the lengths of
last-mile trips are uniformly distributed within the one-mile
boundary, while outside this boundary, the longer the trip,
the less frequently it occurs. Thus, we confirm the severity
of the trips within the one-mile boundary.

1 0 2 1 0 3 1 0 41 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

Pr
op

ort
ion

L e n g t h o f L a s t M i l e T r i p s (m)

1 . 6 k m

Fig 3. Last-Mile Trips

1 0 2 1 0 3 1 0 40 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 P h o n e
 T r a n s i t

CD
F

L e n g t h o f L a s t M i l e T r i p s (m)

1 . 6 k m

Fig 4. All Trip Lengths
We study the frequency of last-mile trips among all trips.

Because last-mile trips are usually finished by walking, they
are more likely to be captured by cellphone data, instead of

transit data (including taxicab, bus, and subway). In
Figure 4, we study CDF of lengths of trips captured by cell-
phone and transit data. We found that 63% of trips captured
by cellphone data are shorter than 1.6 km, while only 12%
of trips captured by transit data are shorter than 1.6 km
(most of them are taxicab trips). Since cellphone trips can
be seen as proxies for all trips due to popularity of cell-
phones, we confirm the ubiquity of last-mile trips by
showing that they (i.e., the trips shorter than 1.6 km) have a
high frequency of 63% among all trips. We also verify that
passengers normally do not use existing transit for last-mile
trips since they only account for 12% of all transit trips.
3 Feeder Service Overview

We first present an operational scenario for a Feeder ser-
vice based on Figure 5. Without the Feeder service, a
passenger would (i) enter public transit at an entering sta-
tion, and (ii) exit public transit at an exiting station, and (iii)
walk to his/her final destination. Thus, the last-mile walking
distance is from the exiting station to the destination.

1 2

Entering Station DestinationExiting Station

Feeder

StopFeeder Terminal
Walking

with Feeder

Walking

without Feeder
…...

Fig 5. Feeder Operational Scenario
In this work, we envision that each of major transit stations
has a Feeder terminal where a Feeder service is operated in-
dividually. Therefore, with Feeder, a passenger would (i)
get on a Feeder vehicle at his/her exiting station (which is
also a terminal of a Feeder service); (ii) wait for this Feeder
vehicle to leave the terminal based on a departure time,
which is optimally calculated according to inferred passen-
ger exiting stations and times; (iii) get off this Feeder
vehicle at one of service stops, which are optimally selected
by Feeder according to inferred fine-grained destinations;
(iv) walk to the final destination. Thus, with Feeder, the
walking distance is reduced to the distance from the
Feeder-service stop to the destination.

Based on the above scenario, two key design challenges
for a Feeder service are (i) how to infer exiting stations and
exiting times for transit passengers in order to optimize ve-
hicle departure times, and (ii) how to infer fine-grained
destinations in order to optimize service stop locations.
These challenges are solved in the following framework,
which consists of three key components as in Figure 6.

Urban Infrastructures. They include cellular, taxicab,
bus and subway networks, playing an important role in our
Feeder design. We collaborate with several service
providers and government agencies to establish the
real-time access from infrastructure data sources to our
Feeder server. Thus, we enable a complete rendering about
dynamics in last-mile transit demand for passengers in dif-
ferent categories, e.g., cellphone, taxicab, bus and subway
users, which almost cover all residents in the urban area.

Back-end Feeder Server. A Feeder server is located at a
dispatching center to receive and process real-time data
from urban infrastructures. Its functions include (i) Data

Sensor Data

(Taxi)

Sensor Data

(Bus)

Sensor Data

(Smart Card)
Subway Network

Bus Network

Taxi Network

+

+

+
Cellphone

DatasetCell Network

App Network

Sensor Data
(Cellphone)

Sensor Data
(App)

+

Data FusionData Sources Data Analysis Data Utilization

Raw Data
Harmonised

Information

Application-Specific

Knowledge

Cross Referencing

Transparentizing

Temporal Analysis

Spatial Analysis

Quantitive Analysis

Transit Service

(e.g., Feeder)

Taxicab

Dispatching

Carbon Emission

Estimation

Traffic Prediction

Fig 6. Feeder System Framework

Management (introduced in §5): integrating heterogenous
data (i.e., cellphone, taxicab, bus, and smartcard data) for
real-time last-mile transit demand mining, i.e., passenger
exiting stations and times as well as destinations; (ii) Depar-
ture Time Calculation (introduced in §6): calculating
effective departure times online based on mined passenger
exiting stations and times to minimize passenger wait times;
(iii) Stop Location Selection (introduced in §7): selecting
efficient stops offline based on mined destinations to
minimize last-mile walking distances.

Front-end Feeder Device. A Feeder device is a cus-
tomized device installed on a Feeder vehicle. It senses and
uploads physical and logical status of each Feeder vehicle
(e.g., locations and numbers of onboard passengers), as well
as downloads departure times and stop locations to/from the
Feeder server. These functions are performed by the three
subsystems of a Feeder vehicle as introduced in §4.
4 Feeder Device Design

In our project [17], we develop a prototype for front-end
data transmission to support functions in Feeder. Figure 7
gives a Feeder device’s real-world deployment, including
three subsystems: (i) an external device system with a GPS
module, a CDMA 1X module, and an emergency button;
(ii) a sensing system with a camera, a MIC attached to a dis-
play, and a ± 2g triaxial acceleration sensor; (iii) a central
control system with a TPS54160 power module and a
STM32F103 CPU module. Based on these subsystems, we
discuss the capability of a Feeder device as follows.

CPU ARM

CORTEX M3

CDMA

1X

Button

Central Control Motherboard Prototyped in Case

GPS

Onboard Sensing

External Device

 GPS & Comm. Screen

ACC

Camera

Display

Fig 7. Feeder Device Design and Deployment
Through Feeder devices, a Feeder server shall be fully

aware of Feeder vehicles’ physical status, e.g., locations.
Thus, in this design, every Feeder vehicle periodically sens-
es and uploads its physical status to the Feeder server. The
logical status, i.e., numbers of onboard passengers, is also
important to the Feeder service, because it affects departure

times. In this work, we envision that drivers or fare collect-
ing devices will track the number of onboard passengers
and thus change logical status to inform the Feeder server.

A Feeder device shall have an efficient communication
module for uploading and downloading to/from the Feeder
server. In the most existing vehicular networks (e.g., Shen-
zhen taxicab networks), GPRS is typically used for the
communication between vehicles and a dispatching center.
But in our Feeder service, departure times and stops have to
be sent to Feeder vehicles on time, and vehicle status is also
needed to be uploaded to the Feeder server in a timely man-
ner. Thus, we employ a CDMA 1X module utilizing
separate channels, instead of GPRS, for better performance.

To summarize, the proposed Feeder device is capable of
sensing detailed vehicle status and efficiently communicat-
ing with the back-end Feeder server, therefore providing a
comprehensive front-end support for the Feeder service.

5 Feeder Server: Data Management
In this section, we first present data input in Section 5.1,

and then discuss our data cleaning in Section 5.2, and finally
describe our data fusion in Section 5.3.

5.1 Data Input
We have been collaborating with Shenzhen service

providers and government agencies for access to infrastruc-
tures. Conceptually, we use four kinds of devices as sensors
to sense real-world passenger demand in this version of
reference implementation.

• Cellphones as Sensors are used to detect cellphone
users’ locations at cell-tower levels based on call detail
records.

• Taxicabs as Sensors are used to detect taxicab passen-
gers’ locations based on taxicab status (i.e., GPS and
occupancy). The locations obtained by taxicab data
have a higher spatial accuracy than cellphone data and
thus provide a complimentary view, since the taxicab
dropoff locations are normally the locations where
passengers want to get off.

• Buses as Sensors are used to detect bus passengers’ lo-
cations by cross-referencing data of onboard smartcard
readers for fare payments.

• Smartcard Readers as Sensors are used to detect a
total of 16 million smartcards used by passengers to
pay bus and subway fares. These reader sensors cap-
ture 10 million rides and 6 million passengers per day
on average. In particular, there are two kinds of reader
sensors: (i) a total of 14,270 onboard mobile reader
sensors in 13 thousand buses capturing 168 thousand
bus passengers per hour, and (ii) a total of 2,570 fixed
reader sensors in 127 subway stations capturing 60
thousand subway passengers per hour.

We establish a secure and reliable transmission mechanism,
which feeds our server the above sensor data collected by
Shenzhen Transport Committee and service providers by a
wired connection without impacting the original data
sources. Since these data are already being collected to help

service providers operate their services, our large-scale
sensor data collection incurs little marginal cost.

To enable a comprehensive offline analysis, we have
stored a large amount of streaming data as in Figure 8.

Collected From 10/1/2013 Collection Period 01/01/12-Now

Number of Users 10,432,246 Number of Taxis 14,453

Data Size 680 GB Data Size 1.7 TB

Record Number 434,546,754 Record Number 22,439,795,235

SIM ID Date and Time Plate Number Date and Time

Cell Tower ID Activities Status GPS Coordinates

Collection Period 01/01/13-Now Collection Period 07/01/11-Now

Number of Vehicles 13,960 Number of Cards 16,000,000

Data Size 790 GB Data Size 600 GB

Record Number 9,855,657,663 Record Number 6,212,660,742

 Plate Number Date and Time Card ID Date and Time

Velocity GPS Coordinates Device ID Station Name

Format

Taxicab Data

 Bus Data

Format

Format

Cellphone Data

Format

Smartcard Reader Data

Fig 8. Streaming Datasets from Urban Infrastructures

Such a big amount of data requires significant efforts for the
efficient storage and management. Accordingly, we utilize a
34 TB Hadoop Distributed File System (HDFS) on a cluster
consisting of 11 nodes, each of which is equipped with 32
cores and 32 GB RAM. For daily management, we use
several MapReduce based tools, such as Pig and Hive.

5.2 Data Cleaning
Due to the extremely large size of our data, we found

three main kinds of errant data. (i) Data with Logical Er-
rors: e.g., GPS coordinates show that a vehicle is far away
from its previous locations. Such data with logical errors
are detected later when we analyze the data. To detect these
errors, we utilize a digital map of Shenzhen to verify if a G-
PS location is plausible or not. This is performed by
checking the previous location and the duration between the
timestamps of these two records. (ii) Duplicated Data: e.g.,
the smartcard datasets show two identical records for the
same smartcard. Such duplicated data are detected by com-
paring the timestamp of every record belonging to the same
data source, e.g., the same smartcard. (iii) Missing Data:
e.g., a taxicab’s GPS data were not uploaded within a given
time period. Such missing data are detected by monitoring
the temporal consistency of incoming data for every data
source, e.g., a taxicab. The above errors may result from
various real-world reasons, e.g., hardware malfunctions,
software issues, and data transmission.

To address these errors, for all incoming data, we first fil-
ter out the duplicated records and the records with missing
or errant attributes. Then, we correct the obvious numerical
errors by various known contexts, e.g., time of day and digi-
tal maps. We next store the data by dates and categories.
Finally we compare the temporal consistency of the data to
detect the missing records. Admittedly, the missing or fil-
tered out data (which accounted for 11% of the total data)
may impact the performance of our analyses, but given the
long time period, we believe our analyses are still insightful.

5.3 Data Fusion
Our endeavor of consolidating and cleaning these data

enables extremely large-scale resident sensing from differ-
ent perspectives, which is unprecedented in both quantity
and quality. In particular, we show the number of passen-
gers detected by three kinds of data in 5-min slots in
Figure 9, where we do not differentiate subway and bus pas-
sengers, since they are both detected by smartcard readers
as sensors.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

 D e t e c t e d b y T a x i c a b S e n s o r s (H o u r l y A V G : 2 1 K)
 D e t e c t e d b y R e a d e r S e n s o r s (H o u r l y A V G : 2 2 8 K)

 D e t e c t e d b y C e l l p h o n e S e n s o r s (H o u r l y A V G : 2 . 6 M)

o
f D

ete
cte

d R
esi

de
nts

2 4 H o u r s

Fig 9. Detected Residents by Data
Though comprehensive enough, the above data are in d-

ifferent granularity and formats, which call for a data fusion
procedure. Such a data fusion procedure aims to transparen-
tize the heterogeneity of the above data to infer passenger
demand through an integrated representation. As follows,
we first discuss the heterogeneity of the utilized sensor data
from the passenger coverage as well as spatial and temporal
resolutions in Table 1.

Table 1. Heterogenous Sensors Data
Sensor Resident Temporal Spatial
Name Coverage Resolution Resolution

Cellphone 95% Sparse 17,859 Towers
Taxicab 4% Continuous GPS Coordinates
Reader 55% Continuous 10,448 Stations

As in Table 1, (i) cellphone sensors cover 95% of 11
million permanent residents, but each cellphone sensor pro-
duces a record only when used for an activity, e.g., making a
call, and the corresponding location is only given as one of
17,859 cell towers in Shenzhen; (ii) taxicab sensors cover
daily taxicab passengers only accounting for 4% of all resi-
dents, but log the origins and the real destinations of
passengers in fine GPS coordinates during 24 hours of a
day; (iii) reader sensors cover daily bus and subway passen-
gers accounting for 55% of all residents, and log locations
for passengers as one of 10,448 transit stations, i.e., 127 for
subway and 10,321 for bus, when they use their smartcards.

Due to large scales of the heterogenous data, our fusion
procedure is optimized for simplicity and speed. Thus, we
utilize a unified tuple (i.e., a data record) as a generic
abstraction to transparentize the heterogenous sensor data.

r = (i,S,T),

where i is an ID for a cellphone, taxicab, or smartcard user;
S is a location in terms of stations, cell towers, or taxicab
GPS coordinates; T is an associated time based on a granu-
larity in minutes. Note that although many residents have
both cellphones and smartcards, and they may also take
taxicabs, we cannot merge these three different kinds of

passengers in the following Feeder server design, due to the
lack of unified IDs across different datasets.

6 Feeder Server: Departure Time Calculation
We first discuss why we need dynamic departure times

in Section 6.1, and show how we predict passenger-exiting
stations and times for dynamic departure times in Section
6.2, and present how we optimize departures in Section 6.3.

6.1 Motivation for Dynamic Departure Times
Our motivation for dynamic departure times is based on

the key difference in passenger arrival between regular tran-
sit and Feeder. In regular transit, passengers arrive at a
transit station from various origins; however, in Feeder, pas-
sengers arrive at a Feeder terminal mostly from one origin,
i.e., upstream public transit, e.g., subway. As a result, pas-
senger arrival for regular transit cannot be accurately
predicted due to its various passenger origins, and thus they
typically use fixed departure times [9]; but the passenger ar-
rival for Feeder can be predicted by observing current
passengers on public transit, which are known based on
real-time smartcard transactions. Thus, we are inspired to
predict Feeder passenger arrival by predicting exiting (in
terms of stations and times) of current passengers in public
transit. Such a passenger exiting prediction for public tran-
sit is used as a passenger arrival prediction for Feeder to
calculate dynamic departure times for short wait times.

6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 20
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

 F i x e d S c h e d u l e
 D y n a m i c S c h e d u l e

 S u b w a y

o
f P

ass
en

ger
s

T i m e o f D a y

Fig 10. Passenger Number
0 5 1 0 1 5 2 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
(5 , 8 7 %)

CD
F

S t a n d a r d D e v i a t i o n (m i n s)

(2 . 2 , 5 0 %)

Fig 11. Travel Time
To support our motivation, based on empirical datasets,

we locate an existing bus line similar to the last-mile transit
with a terminal in a subway station yet with fixed departure
times. In Figure 10, we show (i) the number of onboard pas-
sengers for its buses with fixed departures when leaving the
terminal, and (ii) the number of passengers exiting the sub-
way station. Without consideration of real-time fluctuation
on exiting subway passengers, the number of passengers in
buses with fixed departure times also fluctuates as in the
boxes. Such fluctuates may lead to potentially longer pas-
senger wait times. This is because a previous bus leaving
with only few passengers may leave many passengers to the
next bus, which may not have the space for all these passen-
gers to leave together in our mid-size Feeder vehicles.
Further, we simulate onboard passenger numbers about the
same bus line with dynamic departures based on the number
of exiting subway passengers. We observed that the number
of onboard passengers under dynamic departure times does
not fluctuate significantly. In short, it suggests that dynamic
departure times can reduce wait time with well-predicted
passenger demand in terms of exiting stations and times
from public transit.

6.2 Exiting Times and Stations
To obtain such a real-time number of exiting passengers

in a public transit station (which is also a terminal of Feed-
er), a trivial method is to use historical demand. But it
assumes that passenger demand is stable, which is often not
the case in fine-grained time periods. With real-time data, a
straightforward method is to collect the demand when pas-
sengers exit this station for a time period. However, after
such demand becomes available, it is too late to schedule
departures of vehicles because passengers have already
been waiting during the period. As follows, we show how to
predict passenger exiting times and stations.

6.2.1 Exiting Times
In this work, we notice that public transit systems have

relatively stable travel times between the same two stations
in different periods, especially as we found in subway net-
works. Figure 11 gives the CDF of standard deviations on
travel times based on our data. We found that 50% of travels
have a deviation smaller than 2.2 mins, and 87% of travels
have a deviation smaller than 5 mins. This nice feature al-
lows us to use the timing information from smartcard
transactions when passengers enter, instead of exit, the tran-
sit system. By predicting when passengers will exit a
certain exiting station ahead of time, we have sufficient time
to schedule departure times of Feeder vehicles. Our exiting
time prediction using entrance as a condition is more accu-
rate than the prediction based on pure historical information
as shown in the evaluation.

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 12 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

CD
F (

%)

 N u m b e r o f D i s t i n c t E x i t i n g S t a t i o n s

(4 , 9 2 %)

Fig 12. Distinct Stations

0 . 0 0 . 5 1 . 0 1 . 5 2 . 00

2 0

4 0

6 0

8 0

1 0 0

CD
F (

%)

C o n d i t i o n a l E n t r o p y

(0 . 7 , 1 0 0 %)

Fig 13. Conditional Entropy

6.2.2 Exiting Stations
We infer an exiting station of a passenger by inspecting

the transit pattern of this passenger in the recent history un-
der real-time contexts. This is because the majority of
passengers as regular commuters exit at the same stations
daily near workplaces or homes. For example, Figure 12
gives the CDF of distinct exiting stations for passengers in a
week, and we found that 67% of all passengers only exit at
two distinct stations or fewer, e.g., home and workplace. If
we use more contexts (time of day), the distinct exiting sta-
tions would be even fewer. More rigorously, we show the
CDF of the conditional entropy of passenger exiting stations
given entering stations and times in Figure 13 where the
conditional entropy is lower than 0.7, indicating there are
only 20.7 possible exiting stations among total 127 stations.
Such a result indicates that urban transit is highly patterned
by commutes, which allows us to provide accurate predic-
tion on exiting stations, given the real-time entering
contexts.

6.3 Departure Time Optimization
An optimization overview for a station S j is in Figure 14.

… Tc+τTc Td

A =f(B)=f(C)

Current
Slot

Tc+1 ...

Departure Period

*

Fig 14. Overview of Departure Optimization
Given the current time slot is Tc and the time slot number

of round-trip travel about S j is τ, we have a departure period
from the next slot Tc+1 to the slot Tc+τ. Among these slots,
we aim to select a departure slot T ∗d with the minimum ex-
pected passenger wait time. Thus, we calculate an expected
average passenger wait time (indicated as ATd) for every
possible departure slot Td where d ∈ [c+ 1,c+ τ]. A is a
function of several expected exiting-passenger numbers (in-
dicated as BTd for Td) in Td and other slots in the departure
period. Further, BTd is based on the aggregation on proba-
bility (indicated as C) of passengers exiting station S j
during Td . In the following, we use four steps to show how
to obtain C , B , A and finally T ∗d . Note that we compute in a
time slot unit, instead of the exact time, since it is difficult
to find many transactions with the same exact times even
with our large datasets. For concise notation, we match a
pair of entering and exiting tuples for the same passenger to
obtain an entry with the following format: (i,Si,T i,S j,Tj),
indicating that a passenger i entered station Si during slot T i

and exited station S j during slot Tj. Similarly, with ∗ as the
wildcard character, we present the entry set {·} about all
entries for the passenger i as {(i,∗,∗,∗,∗)}.

Step 1: For every current passenger i in the transit sys-
tem, we calculate the probability C (i,Si,T i,S j,Td) that i
who entered Si during T i will exit S j during Td as follows.

C (i,Si,T i,S j,Td) =
|{(i,Si,∗,S j,∗)}|
|{(i,Si,∗,∗,∗)}|

·
|{(∗,Si,T i,S j,Td)}|
|{(∗,Si,T i,S j,∗)}|

,

where the first factor is for exiting station prediction show-
ing that among all historical trips where i entered Si, how
many times i exited S j; the second factor is for exiting time
prediction showing that among all historical trips where any
passenger entered Si during T i and exited S j, how many
times s/he exited S j during Td . All these subsets can be
obtained by aggrergation operations on histroical data.

For example, suppose a passenger i = 1 entered station
Si=1 during slot T i=1. We aim to calculate the probability
that passenger 1 will exit S j=0 during Td=4, given the cur-
rent time slot is Tc=3. Based on historical transaction entries
of the passenger 1, suppose among 10 times that the passen-
ger 1 entered S1, s/he exited S0 9 times. As a result, we have
|{(1,S1,∗,∗,∗)}| = 10 and |{(1,S1,∗,S0,∗)}| = 9. Further,
based on historical transaction entries of all passengers,
suppose among 100 times that a passenger entered S1 dur-
ing T 1 and exited S0, there are 80 times that a passenger
exited during T4. Thus, we have |{(∗,S1,T 1,S0,∗)}| = 100
and |{(∗,S1,T 1,S0,T4)}|= 80. Finally, based on the formu-
la in Step 1, we have C (1,S1,T 1,S0,T4) =
|{(1,S1,∗,S0,∗)}|
|{(1,S1,∗,∗,∗)}| ·

|{(∗,S1,T 1,S0,T4)}|
|{(∗,S1,T 1,S0,∗)}|

= 9
10 ·

80
100 = 72

100 .

Step 2: We aggregate probabilities for all N passengers
in the system for the expected number BS j ·Td of passengers
who exit S j during Td , given entering slots and stations.

BS j ·Td =
N

∑
i=1

C (i,Si,T i,S j,Td).

In our example, suppose only one passenger i = 1 is in
the system now, i.e., N = 1, we have BS0·T4 =

∑
N=1
i=1 C (i,Si,T i,S0,T4) = C (1,S1,T 1,S0,T4) =

72
100 .

Step 3: With a length of t, we divide a potential depar-
ture period from the next slot Tc+1 to Tc+τ into equal slots.
If a vehicle departs from S j right after a given time interval
Td where d ∈ [c+1,c+ τ], we calculate the average passen-
ger wait time AS j ·Td for all passengers arriving during the
departure period as

[∑d
y=c+1 BS j ·Ty · (d− y) · t]+ [∑c+τ

z=d+1 BS j ·Tz · (τ− (z−d)) · t]
∑

c+τ

x=c+1 BS j ·Tx

,

where (i) the denominator ∑
c+τ

x=c+1 BS j ·Tx is the expected pas-
senger number during the departure period from Tc+1 to
Tc+τ. (ii) The first term in the numerator, i.e.,
∑

d
y=c+1 BS j ·Ty · (d− y) · t, is the total wait time for the pas-

sengers who arrive before the vehicle departs (i.e., arriving
from Tc+1 to Td) and leave with the current vehicle. The
passengers arrived at Ty have an expected number of BS j ·Ty

and an expected wait time (d− y) · t. (iii) The second term
in the numerator, i.e., ∑

c+τ

z=d+1 BS j ·Tz · (τ− (z− d)) · t, is the
minimum total wait time for the passengers who arrive after
the vehicle departs (i.e., arriving from Td+1 to Tc+τ) and
have to wait for the vehicle to come back yet with an un-
known future departure time. The passengers arrived at Tz
have an expected number of BS j ·Tz and the minimum
expected wait time (τ− (z−d)) · t.

In our example, c= 3, τ= 2, t = 10, d = 4, j = 0, BS0·T4 =
72
100 , and further suppose BS0·T5 =

18
100 , so average wait time

AS0·T4 for all passengers if the vehicle departs after T4 is

[∑4
y=4 BS0·Ty · (4− y) ·10]+ [∑5

z=5 BS0·Tz · (2− (z−5)) ·10]

∑
5
x=4 BS0·Tx

.

Thus, we have AS0·T4 =
72
100 ·(4−4)·10+ 18

100 ·(2−(5−5))·10
72

100+
18
100

= 4.

Step 4: We move Td through all possible departure slots
from Tc+1 to Tc+τ, and compare all resultant AS j ·Td , and fi-
nally select the departure time after the slot T ∗d associated
with the minimum AS j ·T ∗d among all AS j ·Td .

In our example, we continue to calculate the average wait
time AS0·T5 associated with the other possible departure slot,
i.e., T5, and then we compare AS0·T5 with AS0·T4 , and finally
select the smaller one to set the depart time for a minimum
expected average wait time.

As an intuitive example, only one vehicle is waiting at
S j, but in our evaluation we consider a multiple vehicle situ-
ation where we select the Top n slots with the minimum
average wait times for n vehicles as the departure slots. The

coordination of vehicles is implicitly considered in the de-
parture time calculation. Further, the slot length, the vehicle
capacity and the data history length also have impacts on
Feeder performance, which are evaluated in Section 9.
7 Feeder Server: Stop Location Selection

We first present our motivation in Section 7.1, and then
show how to infer passengers’ destination in Section 7.2, and
finally optimize stop selections in Section 7.3.
7.1 Using Cellphone and Taxicab Data

Different from regular transit, last-mile transit aims to re-
duce passengers’ walking distances to destinations [3]. As a
result, we need a destination-driven stop selection to reduce
walking distances. However, large-scale fine-grained desti-
nations are usually unknown. In this work, we are inspired
by the fact that the fine-grained destinations of cellphone
and taxicab users have already been captured by cellphone
and taxicab data, which have the potential to serve as
proxies for destinations of all urban passengers.

The destinations of cellphone users are used to infer all
destinations because almost every urban resident has a cell-
phone, e.g., in Shenzhen our cellphone records cover 95%
of the permanent residents. Further, a total of 17,859 cell
towers partitions the 1,991 km2 Shenzhen area into
fine-grained cells with the average coverage area of
1,991

17,859 km2 ≈ 333× 333m2, which are generally within a
walking distance, and thus are fine enough to serve as
destinations.

The destinations of taxicab users are also good proxies
for all destinations, providing a complimentary view. This
is because in urban areas, the residents live in high-rise a-
partments in high density, so numerous residents would
share the same fine-grained destinations, e.g., the front gate
of a residential community. Thus, it is very common that a
public transit passenger’s destination is shared with a neigh-
bor who uses taxicabs, and thus the destination of this
public transit passenger is captured by taxicab data.

To support our motivation, Figure 15 highlights the
Shenzhen downtown area with bus and subway stations, cell
towers, and taxicab destinations. We found that (i) cell tow-
ers are distributed in fine granularity and more evenly than
public transit stations, and (ii) taxicab destinations accumu-
lated from one hour cover all major road segments. Note
that these two modes of travel (captured by cellphones and
taxicabs) have their unique advantages, which cannot be
replaced by the other.

Fig 15. Inferred Destinations in Shenzhen Downtown

More rigorously, we show the CDF of coverage areas of all
17,859 cell towers in Figure 16 where 61% of cell towers
have a coverage area smaller than 0.2 km2. Further, we show
the CDF of numbers of daily taxicab destinations per 100 m2

among 216 Shenzhen urban regions in Figure 17 where 91%
of regions have at least one destination per 100 m2, which is
typically within a walking distance.

0 . 1 1 1 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

CD
F

C o v e r a g e A r e a o f C e l l T o w e r (k m 2)

(0 . 2 , 6 1 %)

Fig 16. Cell Tower Coverage

1 0 0 8 0 6 0 4 0 2 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

CD
F

T a x i c a b D e s t i n a t i o n s p e r 1 0 0 m 2

(1 , 9 1 %)

Fig 17. Taxicab Destination

7.2 Destinations for Public Transit Passengers
Based on the above discussion, we infer the transit pas-

sengers’ destination set D by combining a Cellphone users’
destination set Dc and a Taxicab users’ destination set Dt .

To obtain Dc, we employ historical cellphone data offline
for a given period (e.g., one month) to infer the two most
frequently visited locations, i.e., home and workplace, for
every cellphone user at cell-tower levels. This process is ex-
ecuted offline by finding two most frequently connected cell
towers during the work time (9AM-5PM) and the non-work
time (6PM-8AM) on weekdays, respectively, for every user.
Based on the previous study [11], this approach has a high
accuracy to infer important locations for cellphone users.

To obtain Dt , we employ offline taxicab data to accumu-
late all obtained destinations into Dt starting from the latest
data, until the size of Dt is equal to the size of Dc. The rea-
son behind this size-based accumulation is that due to lack
of identifiable passenger ID in taxicab tuples, we have to ac-
cumulate all destinations in Dt for a period of time (in terms
of days) to track more destinations for taxicab passengers,
thus potentially more destinations shared by public transit
passengers. We stop the accumulation if the size of Dt is e-
qual to the size of Dc to avoid that Dt numerically
dominates the stop selection.

7.3 Stop Location Optimization
We assign every destination in the destination set D to the

closest public transit station based on their locations. This is
because passengers usually exit public transit stations closest
to their destinations. Thus, we have a subset D j of D for a
transit station S j. As follows, we individually select stops for
every public station. We first introduce Schwarz-criterion-
based service stop selection, and then discuss context-aware
stop updating.

7.3.1 Schwarz Criterion Based Section
We utilize the classic K-mean clustering on all destina-

tions in D j, and select the centroids of clusters as the stops
for the station S j. But one key issue is to determine K, i.e.,
the number of stops. The more the stops, the more delay is
reduced for passengers to walk to destinations. But more
stops could lead to an overfitting problem, and also incur

more increased delay for onboard passengers due to fre-
quent vehicle stopping. Thus, to balance the stop number K,
we employ the Schwarz criterion [13] as follows.

M

∑
i=1

(li− c(li))2 +2λKlogM,

where M is the total number of destinations in D j; li is the
GPS location of a destination; c(li) is the nearest centroid to
li among K centroids; λ is the regularization factor. The first
term ∑

M
i=1(li − c(li))2 is called the distortion term, which

shows the sum of Euclidean distances of each destination to
its nearest centroid. Under our Feeder context, we regard
the distortion term as the average reduced delay for passen-
gers due to the increased stops to reduce the average
last-mile walking distance to their destinations. The second
term 2λKlogM is called the penalty term where K has to be
regularized by M with a term logM, because the penalty lev-
el of increasing K is decided by both K itself and M. This
penalty term is introduced in order to avoid overfitting. In
our Feeder context, we can also regard the penalty term as
the average increased delay for the vehicle stopping in the
increased stops.

In the above criterion, the lower the value, the better the
clustering performance. However, due to real-world consid-
erations, it is not practical to set too many stops for a small
service area to minimize the criterion. Thus, for a station S j
with a coverage area E j, we set the upper bound of K j for S j

to E j
100×100m2 , because an urban block is normally 100×100

m2. The K j for S j is selected among one to its upper bound
to minimize the Schwarz criterion, i.e., finding the “elbow”
of the curve of this criterion against K j.
7.3.2 Context-Aware Stop Updating

We explore context-based stop updating for shorter
last-mile distances. This is because we found that passenger
destinations are quite different under different contexts, e.g.,
weekdays and weekends, as shown in the evaluation. For all
destinations in D j about a station S j, we use the day of
week as a context to divide D j into two subsets, i.e., D1

j to
D2

j . Each of which contains the destinations from the data
for weekdays and weekends, respectively. We use each of
them to update stop locations of the corresponding day. For
a practical reason, we did not use other contexts (e.g., the
time of day) to more frequently update stops. This is
because consistently changing stops may discourage pas-
sengers to take Feeder, since they may not know where
vehicles would stop in advance. The performance of this
updating is tested in the evaluation.
8 Feeder Real-world Implementation

In this project, we have tried for a commercialized im-
plementation of Feeder. The designed Feeder devices have
been configured on 98 vehicles in Shenzhen, and our server
has full capacities to efficiently perform Feeder server func-
tions. However, through Shenzhen Transport Committee,
we have been informed that such commercialized transit
services require a government-issued permit. Alternatively,
we implemented Feeder by ourselves at a subway station
Tanglang in Shenzhen for a small-scale trial to show this

system would function well in the real world. To enable a
practical test with our 12 prearranged volunteers, we use 3
low capacity vehicles, i.e., taxicabs, as Feeder vehicles with
Feeder devices to drive them to their workplaces as in Fig-
ure 18. But in a real-world service with more potential
passengers, a Feeder vehicle shall have a high capacity,
which enables more environmental friendly services.

Station Exit
Overpass

Feeder Vehicles

Feeder
Device

Subway Station

Fig 18. Feeder Service in Tanglang Station
8.1 Implementation Overview

Based on taxicab and cellphone data, we first obtain the
inferred destinations that are closer to Tanglang than other
stations. Next, we use these destinations to obtain eight ser-
vice stops, and then find the shortest route to link these
stops to the Tanglang station, which is similar to the classic
traveling salesman problem. We developed a 3

2 approxima-
tion algorithm based on traversals on the minimum
spanning tree to obtain the route linking all stops, but due to
space limitation, we focus on data-driven components. The
stops and route are given in Figure 19. Further, after arriv-
ing at the final stop, the vehicles have to use the same path
to go back to the station due to terrain features.

Work

Tanglang

Station

School

School

Mall
Residence

Industrial

Park

1

23

4

5

6

7

8

Fig 19. Real World Scenario
We collected the data in a 30-day period about the 12

passengers who take the subway to work and exit at
Tanglang station every morning. After exiting the station,
they were picked up individually or together based on their
exiting times, and then were dropped off at their
workplaces. We calculate departure times based on their s-
martcard data in an online fashion for vehicles to leave. The
vehicles would go back to the station until all prearranged
passengers were picked up and then delivered. We video-
taped the service by three phones, with which arriving
moments, departure moments, last-mile distance and travel
time (equal to wait time plus ride time) were calculated.

8.2 Implementation Evaluation
We use two metrics, i.e., travel time and last-mile dis-

tance, to compare Feeder with regular bus services with
fixed departures. We also provide a walking time for refer-
ence. We first evaluate Feeder by the travel time, which is
divided into (i) the wait time from exiting the station to
leaving with vehicles; (ii) the ride time from leaving with
vehicles to arriving destinations. Figure 20 gives the aver-
age wait and ride time among 12 passengers during 30 days,
compared to using a regular bus with fixed departures.
Feeder significantly reduces the travel time, compared to a
38 min bus trip. The ride time is stable around 14 mins, but
the wait time is variable around 9 mins.

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 80
1 0
2 0
3 0
4 0

W a l k
 R i d e T i m e i n F e e d e r W a i t T i m e i n F e e d e r

B u s

Tim
e (

mi
ns)

3 0 D a y s o f E x p e r i m e n t s

Fig 20. Average Travel Time in 30 days

We evaluate the average travel time for 12 passengers in
Figure 21. We found the wait time for some passengers is
shorter than others. This is because the prediction about the
passengers with highly regular patterns is accurate, which
leads to effective departure times. But for the passengers
with irregular patterns (e.g., they go to work from different
stations), the prediction is not accurate, leading to ineffective
departure times, which may increase their wait time. Feeder
is always better than scheduled bus because of a combined
effect that the bus stop is farther than the Feeder stop to both
subway stations and final destinations of passengers as well
as Feeder has a better schedule.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 20
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

 W a i t T i m e i n F e e d e r
 R i d e T i m e i n F e e d e r

Tim
e (

mi
ns)

1 2 P a s s e n g e r s

Fig 21. Individual Time

1 2 3 4 5 6 7 80

1

2

3

4

 F e e d e r
 B u s
 W a l k

Di
sta

nc
e (

km
)

8 S t o p s

Fig 22. Last-Mile Distance

Finally, we evaluate Feeder by the last-mile distance. Due
to the limited passengers in our trial, we utilize the taxicab
and cellphone data to obtain all potential destinations along
this route in one day. Then, we show if the passengers with
these destinations were using Feeder to get off at the closest
stops, what the average last-mile distance would be in the
eight stops. We also provide a walking distance from the
Tanglong station to every stop for reference. In Figure 22,
the stops 2 and 4 are more effective since the distance for
passengers who got off at these two stops is less than 300 m.
For other stops, the average last-mile distance is about 500
m, still much shorter than regular buses.

9 Feeder Data Driven Evaluation
With datasets introduced in Figure 8, we perform a

large-scale data-driven evaluation about 127 stations on all
five of Shenzhen subway lines, though Feeder also applies
to major bus stations. For every station, we first obtain stops
based on destinations of cellphone and taxicab users; then,
we find the shortest route to link stops to the station; finally,
we use streaming smartcard data to decide the number of
exiting passengers during a given time slot to simulate a
real-world scenario (with unexpected passengers), and we
calculate departure times based on passenger arrival
prediction with online data.

We envision that only the half of exiting subway passen-
gers would take the Feeder service. The destinations of
these passengers are randomly set to the real-world destina-
tions of taxicab and cellphone users. We use two key
metrics: Percentage of the Reduced Last-Mile Distance
and Percentage of the Reduced Travel Time compared to
the ground truth under different logical contexts: (i) Time
of Day; (ii) Day of Week; (iii) District Population. In ad-
dition, we investigate several key parameters on the system
performance: (i) Departure Slot Length t as a time unit for
vehicles to leave stations (the default is 4 mins); (ii) Histor-
ical Dataset Length h to show the impact of historical
smartcard data amounts (the default is 6 months); (iii) Vehi-
cle Status in terms of the vehicle number n and the vehicle
capacity c to investigate the impact of Feeder vehicles (the
defaults are given later).

We compare Feeder with its three variations to show the
effectiveness of Feeder design components.
(i) Feeder+DBSCAN utilizing DBSCAN clustering in the
stop selection, which is used to show the advantage of Feeder
using the Schwarz-criterion-based stop selection;
(ii) Feeder+Fixed-Schedule utilizing the fixed departures
based on vehicle numbers and the travel time without any s-
martcard data, which is used to show the advantage of
Feeder using smartcard data for the departure computation;
(iii) Feeder+Offline utilizing only historical smartcard
datasets to obtain departure times, which is used to show
Feeder’s advantage from using real-time online data and
from its arrival prediction;
(iv) Feeder+Train utilizing real-time train arrivals as refer-
ences to set the departure time, which is used to show
Feeder’s advantage from using individual smartcards.

We evaluated Feeder extensively, but due to space limita-
tions, we report impacts of Feeder+DBSCAN on reduced
last-mile distances, and impacts of others on reduced travel
time. The ground truth of last-mile distances and travel time
is obtained by locations of destinations and stations, and an
average walking speed of 5 km/h and an average driving
speed of 35 km/h. All results are based on the average of a
three-month evaluation. For scalability, we maintain transit
patterns by probability distributions for every passenger ex-
iting at a station and update them every day. Thus, in the
real-time mode, the running time is negligible compared to
departure periods.

9.1 Impacts of Logical Contexts
We test the impacts of three logical contexts as follows.

9.1.1 Time of Day
We evaluate impacts of the time of day during the normal

public transit operating hours from 7AM to 11PM.
Figure 23 plots the reduced last-mile distance among the e-
valuated subway stations in Shenzhen during 16 hours.
Both of services significantly reduce the last-mile distance.
But in the rush hour, Feeder outperforms Feeder+DBSCAN
by 19%; whereas in the non-rush hour, Feeder has better
performance with a gain of 26% over Feeder+DBSCAN. It
shows Feeder’s advantage by utilizing Schwarz based stop
selection. Feeder has performance of a 68% last-mile
distance reduction at the default time 6PM.

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3
2 0
3 0
4 0
5 0
6 0
7 0
8 0

%
of

Re
du

ce
Dis

tan
ce

(%
)

O p e r a t i n g H o u r s

 F e e d e r + D B S C A N
 F e e d e r

Fig 23. Reduced Distance

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3
2 0
3 0
4 0
5 0
6 0
7 0
8 0

 F e e d e r + O f f l i n e
 F e e d e r%

of
Re

du
ce

Tim
e (

%)

O p e r a t i n g H o u r s

 F e e d e r + F i x e d - S c h e d u l e
 F e e d e r + F i x e d - R o u t e

Fig 24. Reduced Time

Figure 24 shows the average reduced travel time. In the
non-rush hour, all services reduce the travel time by 47% on
average; in the rush hour, their performance drops to 43%
on average. But Feeder outperforms Fixed-Schedule shown
by 11% more travel time reduction, because Feeder employs
dynamic departure times based on collected data. Further,
Feeder outperforms Feeder+Offline by 21% more travel
time reduction, thanks to the utilization of real-time dataset-
s. Feeder also outperforms Feeder+Train by 14%, thanks to
individual smartcard based prediction. Feeder+Train cannot
predict exact numbers of arriving passengers, thus leading
to a suboptimal schedule. Feeder has performance of a 52%
travel time reduction at the default time 6PM.

Note that we show the performance of the Feeder service
in terms of percentages, instead of the nominal values, be-
cause of the various travel time and last-mile distances at
different subway stations. In Figures 25 and 26, we show
the nominal values of the reduced travel time and the
last-mile distance for the subway station CheGongMiao
with the largest passenger arrival in Shenzhen. In Figure 25,
we found that the average reduced last-mile distance fluctu-
ates but Feeder performs better than Feeder+DBSCAN. In
Figure 26, we observed a similar tendency as previously
shown in Figure 24, i.e., Feeder outperforms others, and the
performance is better in the non-rush hour.

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 33 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

Re
du

ced
 Di

sta
nce

 (m
)

O p e r a t i n g H o u r s

 F e e d e r + D B S C A N
 F e e d e r

Fig 25. Distance at CGM

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 35
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

 F e e d e r + O f f l i n e
 F e e d e rRe

du
ce

Tim
e (

mi
ns)

O p e r a t i n g H o u r s

 F e e d e r + F i x e d - S c h e d u l e
 F e e d e r + F i x e d - R o u t e

Fig 26. Time at CGM

9.1.2 Day of Week
Feeder+Weekday as well as Feeder+Weekend are used to

test context-aware stop updating based on the performance
of Feeder on weekdays and weekends. Figures 27 and 28
plot their reduced distance and time, respectively. In both
of the figures, we found that Feeder+Weekday has higher
reduced distances than Feeder+Weekend during the morning
and evening rush hour. This is because the residents travel
in the morning and evening rush hour on the weekday, while
they travel in the regular daytime on the weekend.

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 30
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

 F e e d e r + R u r a l
 F e e d e r + U r b a n

%
of

Re
du

ce
Dis

tan
ce

(%
)

O p e r a t i n g H o u r s

 F e e d e r + W e e k d a y
 F e e d e r + W e e k e n d

Fig 27. Reduced Distance

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 30
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

 F e e d e r + R u r a l
 F e e d e r + U r b a n

 F e e d e r + W e e k d a y
 F e e d e r + W e e k e n d

%
of

Re
du

ce
Tim

e (
%)

O p e r a t i n g H o u r s

Fig 28. Reduced Time
9.1.3 District Population

Feeder+Urban gives the performance of Feeder in three
urban districts (i.e., FuTian, LuoHu, and NanShan) in Shen-
zhen with high population levels, while Feeder+Rural gives
the performance in three rural districts (i.e., Baoan,
LongHua, and LongGang) with low population levels. Fig-
ures 27 and 28 plot their reduced distances and times. We
found that Feeder+Rural has higher reduced distances than
Feeder+Urban during all day. This is because there are few-
er and sparser subway stations in the rural districts, leading
to long last-mile distances.
9.2 Impacts of System Parameters

We test the impacts of four system parameters as follows.
9.2.1 Time Slot Length t

In Figure 29, we evaluate impacts of the slot length t,
which decides the Feeder’s granularity on scheduling. Note
that t has no effect on Fixed-Schedule and co-design
schedules with train arrivals. With the increase of t, the per-
formance of Feeder and Feeder+Offline increases first and
then decreases. This is because the prediction on exiting
passengers in a smaller slot is not accurate. But when the s-
lot becomes too long, the passenger wait times are also
prolonged.

1 2 3 4 5 6 7 8 9 1 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

 F e e d e r + O f f l i n e
 F e e d e r

 F e e d e r + F i x e d - S c h e d u l e
 F e e d e r + F i x e d - R o u t e

%
of

Re
du

ce
Tim

e (
%)

S l o t L e n g t h t (m i n s)

Fig 29. Time vs. t

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

%
of

Re
du

ce
Tim

e (
%)

D a t a s e t H i s t o r y h (M o n t h s)

 F e e d e r + O f f l i n e
 F e e d e r

 F e e d e r + F i x e d - S c h e d u l e
 F e e d e r + F i x e d - R o u t e

Fig 30. Time vs. h
9.2.2 Historical Dataset Length h

We investigate how much historical information is neces-
sary for the predictions on passenger exiting stations in
Figure 30. As expected, the longer the time, the better the
performance. But a too long slot does not help much. Even
with 6-month historical datasets, Feeder reduces 52% of the
travel time for passengers.

9.2.3 Vehicle Status n & c
In Feeder, we set a different vehicle number n for each d-

ifferent station due to the various demand. For a station S j,
the default n j =

N(τ)
c where the default c is set to 20, which

is the normal capacity of a MiniBus; N(τ) is the number of
exiting passengers using Feeder (i.e., the half of all passen-
gers) during the round trip time slot τ for a vehicle of a
station S j. Figure 31 plots the reduced time on different
multiples of n. With more vehicles, the percentage of the re-
duced time for Feeder increases, since the intervals between
departures are reduced. The default multiple of n is 1.5.

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

%
of

Re
du

ce
Tim

e (
%)

T i m e s o f D e f a u l t V e h i c l e N u m b e r n

 F e e d e r + O f f l i n e
 F e e d e r

 F e e d e r + F i x e d - S c h e d u l e
 F e e d e r + F i x e d - R o u t e

Fig 31. Time vs. n

4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

%
of

Re
du

ce
Tim

e (
%)

V e h i c l e C a p a c i t y c

 F e e d e r + O f f l i n e
 F e e d e r

 F e e d e r + F i x e d - S c h e d u l e
 F e e d e r + F i x e d - R o u t e

Fig 32. Time vs. c
We investigate the impact of the vehicle capacity c on

Feeder in Figure 32. With the increase of c, the reduced
time for Feeder increases. This is because a vehicle with a
large capacity carries more passengers, and thus reduced the
wait time. It implies that Feeder functions more effectively
when vehicles can carry more passengers. The performance
of Feeder+Train is depended on capacity since it cannot
predict passenger numbers of each train, and a larger
vehicle can reduce uncertain of passenger arrivals.

10 Discussion
Passenger Involvement. Feeder is described as an auto-

matic and transparent service for passengers who do not
have to provide any additional information, e.g., arriving
time at public transit stations or real destinations such as
home and work addresses. But unfortunately the majority of
passengers is not willing to provide detailed travel demand
due to several reasons such as manual efforts and privacy.
Sampling a subset of passengers who are willing to provide
requests would introduce a bias against other passengers.

First-Mile Travel and Other Types of Travel. In this
work, we focus on the last-mile problem only, and do not
aim to address generic travels or the first-mile travel where
passengers travel from origins to transit stations. It has a
different setting where the time of a passenger starting the
travel from an origin cannot be accurately predicted without
active passenger involvement such as smartphone apps. A
dedicated first-mile service based smartphone apps may also
be used to address the last-mile problem if passengers would
like to participate by providing detailed travel demand.

Privacy Protections. We took three steps to protect pas-
senger privacy. (i) Anonymization: all data are anonymized
by providers and all identifiable IDs in data are replaced
with serial identifiers. (ii) Minimal Exposure: we only store
and process the data that are useful for our Feeder service,
and drop other information for the minimal exposure. (iii)
Aggregation: our Feeder service uses the aggregated results
and is not focused on individual residents.

Real-world Deployment Issues. We focus on technical
aspects of Feeder, and here we discuss some real-world is-
sues. The main deployment cost for Feeder is the service
vehicle, which we envision would be carpooling-based
passenger vehicles such as passenger vans or minibuses, in-
stead of regular taxis. Based on this carpooling feature,
Feeder would significantly reduce passenger fare comparing
to the taxicabs. In Feeder, the most of calculation is per-
formed at the server side because we have to use real-time
data consolidated in the server for prediction. If the
real-time smartcard data can be accessed by frontend on-
board devices, the calculation can also be dispatched to the
frontend.

Implementation in Different Cities. A transit service
typically has different performance in different cities due to
the geographic and demographic features, e.g., travel pat-
terns, urban density, and data accessibility. It is therefore
extremely important to evaluate the proposed Feeder in dif-
ferent cities to validate its generalizability. Currently, we
have access to partial taxicab and cellphone data in Shang-
hai, the second largest city in China, and are negotiating
with other service providers for a potential evaluation.

11 Related Work
In addition to walking, bikes, taxicabs, and personal ve-

hicles discussed in the introduction, taxicab ridersharing
and minibus services are two major efforts for the last-mile
problem. Some cities, e.g., New York City [15], Bei-
jing [12] and Shenzhen [18], introduce taxicab ridersharing
services for passengers to share taxicabs for ad hoc rides,
but both time and locations are preset and no infrastructure
support is provided. Some cities, e.g., Hong Kong [1], use
minibuses to deliver passengers closer to their destinations,
but they have fixed routes and schedules. The key difference
between Feeder and ridersharing is that Feeder learns pas-
senger demand automatically, while ridersharing assumes
demand is given in advance. Feeder is also different from
the above services in terms of low infrastructure costs, flexi-
ble network coverages, and real-time supports from the
Feeder server with online data from urban infrastructures.

Another type of related work to Feeder is urban
data-driven applications. The increasing availability of GPS
has encouraged a surge of research for urban data-driven ap-
plications. Many novel applications are proposed to assist
urban residents or city officials, e.g., finding parking spots
for drivers [14], inferring real-world maps based on GPS
data [6], predicting bus arrival times [7], enabling passen-
gers to query taxicab availability to make informed transit
choices [5], predicting passenger demand for taxicab driver-
s [10], modeling the urban transit [19], and navigating new
drivers based on GPS traces of experienced drivers [16]. Yet
existing research on these systems has not focused on the
last-mile problem, and typically utilizes only one type of
datasets. But Feeder utilizes streaming data from several ur-
ban infrastructures to tackle the last-mile problem without
the burden on the passenger side. Such a unique
combination has not been investigated before.

12 Conclusion
In this work, we analyze, design, implement, and evalu-

ate a service Feeder to tackle the last-mile problem with
extreme-scale urban sensing infrastructures, reducing 68%
of last-mile distances and 52% of travel time on average.
Our technical endeavors provide a few valuable insights,
which are hoped to be useful for commercially implement-
ing Feeder-like data-driven services in the near future.
Specifically, (i) we found unprecedented evidence of the
last-mile problem, and design guidelines based on
large-scale infrastructure datasets; (ii) we customized an on-
board device supporting the essential functionalities (e.g.,
communication and sensing) for real-time on-demand ser-
vices; (iii) we combined several yet independent datasets to
design a data-driven service and affirmed that complicated
functions (e.g., stop location and departure time
optimizations) should be designed based on real-world data.
13 Acknowledgements

The authors thank our shepherds and Dr. Ling Yin in
SIAT for the data support. This work was supported in part
by US NSF Grant CNS-0845994, CNS-1239226, NSFC
Grant U1401258, and China 973 Program 2015CB352400.
14 References
[1] MiniBus in Hong Kong. http://www.minibus.hk/ .
[2] Sample data. http://cloud.siat.ac.cn/Feeder.html.
[3] The Last Mile Problem. http://en.wikipedia.org/wiki/Lastmile(transport).
[4] AMERICAN PUBLIC TRANSPORTATION ASSOCIATION. In

http://www.apta.com/mediacenter/ptbenefits/Pages/default.aspx.
[5] BALAN, R. K., NGUYEN, K. X., AND JIANG, L. Real-time trip

information service for a large taxi fleet. MobiSys ’11.
[6] BIAGIONI, J., AND ERIKSSON, J. Map inference in the face of noise

and disparity. SIGSPATIAL ’12.
[7] BIAGIONI, J., GERLICH, T., MERRIFIELD, T., AND ERIKSSON, J.

Easytracker: Automatic transit tracking, mapping, and arrival time
prediction using smartphones. SenSys ’11.

[8] DITTMAR, H., AND OHLAND, G. The new transit town: Best prac-
tices in transitoriented development. Island Press.

[9] FERRIS, B., WATKINS, K., AND BORNING, A. Onebusaway: Re-
sults from providing real-time arrival information for public transit.
CHI ’10.

[10] GE, Y., XIONG, H., TUZHILIN, A., XIAO, K., AND GRUTESER, M.
An energy-efficient mobile recommender system. KDD ’10.

[11] ISAACMAN, S., BECKER, R., CÁCERES, R., MARTONOSI, M.,
ROWLAND, J., VARSHAVSKY, A., AND WILLINGER, W. Human
mobility modeling at metropolitan scales. MobiSys ’12.

[12] MA, S., ZHENG, Y., AND WOLFSON, O. T-share: A large-scale
dynamic taxi ridesharing service. In ICDE 2013.

[13] MOORE, A. K-means and hierarchical clustering. In http://www. au-
tonlab.org/tutorials/kmens11.pdf (2001).

[14] NANDUGUDI, A., KI, T., NUESSLE, C., AND CHALLEN, G. Pock-
etparker: Pocketsourcing parking lot availability. UBICOMP ’14.

[15] NEW YORK TIMES. Limited share-a-cab test to begin soon.
http://www.nytimes.com/2010/02/22/nyregion/22ataxis.html.

[16] YUAN, J., ZHENG, Y., XIE, X., AND SUN, G. Driving with knowl-
edge from the physical world. KDD ’11.

[17] ZHANG, D., LI, Y., ZHANG, F., LU, M., LIU, Y., AND HE, T.
coRide: Carpool Service with a Win-Win Fare Model for Taxicab Net-
works. In the 11th ACM Conference on Embedded Networked Sensor
Systems (SenSys’13).

[18] ZHANG, D., LI, Y., ZHANG, F., LU, M., LIU, Y., AND HE, T.
coride: Carpool service with a win-win fare model for large-scale taxi-
cab networks. SenSys ’13.

[19] ZHENG, Y., CHEN, Y., LI, Q., XIE, X., AND MA, W.-Y. Under-
standing transportation modes based on gps data for web applications.
ACM Trans. Web 4, 1 (Jan. 2010).

