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Summary. In this work, we study the inconsistency of EKF-based SLAM from
the perspective of observability. We analytically prove that when the Jacobians of
the system and measurement models are evaluated at the latest state estimates
during every time step, the linearized error-state system employed in the EKF has
observable subspace of dimension higher than that of the actual, nonlinear, SLAM
system. As a result, the covariance estimates of the EKF undergo reduction in
directions of the state space where no information is available, which is a primary
cause of the inconsistency. Furthermore, a new “First-Estimates Jacobian” (FEJ)
EKF is proposed to improve the estimator’s consistency during SLAM. The proposed
algorithm performs better in terms of consistency, because when the filter Jacobians
are calculated using the first-ever available estimates for each state variable, the
error-state system model has an observable subspace of the same dimension as the
underlying nonlinear SLAM system. The theoretical analysis is validated through
both simulations and experiments.

1 Introduction

For autonomous vehicles exploring unknown environments, the ability to per-
form simultaneous localization and mapping (SLAM) is essential. Among the
numerous algorithms developed thus far for the SLAM problem, the extended
Kalman filter (EKF) remains one of the most popular ones, and has been used
in several practical applications. In this work, we address the consistency issue
of the EKF-SLAM algorithm, which has recently received considerable atten-
tion [1, 2, 3, 4, 5, 6]. As defined in [7], a state estimator is consistent if the
estimation errors (i) are zero-mean, and (ii) have covariance matrix smaller
or equal to the one calculated by the filter. Consistency is one of the primary
criteria for evaluating the performance of any estimator; if an estimator is
inconsistent, then the accuracy of the produced state estimates is unknown,
which in turn makes the estimator unreliable.
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Since SLAM is a nonlinear estimation problem, no provably consistent es-
timator can be constructed for it. The consistency of every estimator has to
be evaluated experimentally. In particular for the standard EKF-SLAM algo-
rithm, there exists significant empirical evidence showing that the computed
state estimates tend to be inconsistent. The first work to draw attention to
this issue was that of Julier and Uhlmann [1]. Specifically, in [1] it was ob-
served that when a stationary robot measures the relative position of a new
landmark multiple times, the estimated variance of the robot’s orientation be-
comes smaller. Since the observation of a previously unseen feature does not
provide any information about the robot’s state, this reduction is “artificial,”
and leads to inconsistency. Bailey et al. [4] examined several symptoms of the
inconsistency of the standard EKF algorithm, and argued, based on simula-
tion results, that the uncertainty in the robot orientation is the main cause
of the inconsistency of EKF-SLAM. The work of [5, 6] further confirmed the
empirical findings in [4] and extended the analysis of [1] to the case of a robot
that observes a landmark from two positions. It is shown that, in this special
case, the violation of a certain condition that needs to be satisfied by the filter
Jacobians leads to inconsistency. Interestingly, this condition is a special case
of (15), which is derived in Section 2.2 for general motion and measurement
models.

The aforementioned works have described several symptoms of inconsis-
tency that appear in the standard EKF-SLAM. However, they have not con-
ducted a detailed analysis into the exact cause of inconsistency, for the general
case of a moving robot. In this paper, we investigate in depth one of the fun-
damental causes of inconsistency. In particular, we revisit this problem from
a new perspective, i.e., by analyzing the observability properties of the fil-
ter’s error-state system model. The main contributions of this work are the
following:

• Through an observability analysis, we prove that the standard EKF-SLAM
employs an error-state system model that has an unobservable subspace
of dimension 2, even though the underlying nonlinear system model has
3 unobservable degrees of freedom (corresponding to the position and ori-
entation of the global reference frame). This is a primary cause of filter
inconsistency.

• We propose a new algorithm, termed First Estimates Jacobian (FEJ)-
EKF, which improves the estimator’s consistency during SLAM. Specifi-
cally, we show analytically that when the EKF Jacobians are computed
using the first-ever available estimates for each of the state variables, the
error-state model has the same observability properties as the underlying
nonlinear model. As a result of these properties, the new FEJ-EKF out-
performs, in terms of accuracy and consistency, alternative approaches to
this problem [3].

In the next section, the observability analysis of SLAM is presented, and it
is employed to prove that the standard EKF-SLAM always has “incorrect” ob-
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servability properties. Section 3 describes the proposed FEJ-EKF algorithm,
and in Section 4 the performance of this new estimator is compared with that
of existing solutions [3] through Monte Carlo simulations and experiments.
Finally, Section 5 outlines the main conclusions of this work.

2 SLAM Observability Analysis

The observability properties of SLAM have been studied in only few cases in
the literature. In particular, [8, 9] investigated the observability of a simple
linear time-invariant (LTI) SLAM system, and showed that it is unobservable.
On the other hand, in [10] the observability of the nonlinear SLAM system
was studied, using the nonlinear observability rank condition developed by
Hermann and Krener [11]. This work proved that the nonlinear SLAM sys-
tem is unobservable, with 3 unobservable degrees of freedom corresponding to
the global position and orientation of the state vector. However, to the best
of our knowledge, an analysis of the observability properties of the EKF lin-
earized error-state system model does not exist to date. This is an important
omission, since this model is the one that is actually used in practice, and
thus its observability properties affect the performance of the estimator. In
particular, in this paper we show that these properties play a significant role
in determining the consistency of the filter.

In the following, after presenting the equations of the EKF-SLAM for-
mulation with generalized system and measurement models, we examine the
observability properties of the EKF’s linearized error-state system. This analy-
sis constitutes an important generalization of previous works, that either con-
sidered the special cases of a robot observing a landmark from one or two
poses [1, 5, 6], or imposed limitations on the types of robot-to-landmark mea-
surements admissible [12]. Based on this analysis, we draw conclusions about
the consistency of the filter. To preserve the clarity of the presentation, in this
section we consider the case where a single landmark is included in the state
vector. However, the conclusions drawn in this case can be readily extended
to the general case of multiple landmarks. We note that, due to space limita-
tions, some intermediate steps of the derivations have been omitted, and the
interested reader is referred to [13] for details.

2.1 Standard EKF-SLAM

In the standard formulation of SLAM, the state vector comprises the robot
pose and the landmark’s position in the global frame. Thus, at time-step k
the state vector is given by

xT
k =

[
pT

Rk
φRk

pT
L

]
=

[
xT

Rk
pT

L

]
(1)

where xT
Rk

= [pT
Rk

φRk
] denotes the robot pose (position and orientation),

and pL is the landmark position. EKF-SLAM recursively evolves in two steps:
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propagation and update, based on the discrete-time process and measurement
models, respectively.

EKF Propagation

In the propagation step, the robot’s odometry measurements are processed to
obtain an estimate of the pose change between two consecutive time steps, and
then employed in the EKF to propagate the robot state estimate. On the other
hand, since the landmark is static, its state estimate does not change with
the incorporation of a new odometry measurement. The EKF propagation
equations are given by:1

p̂Rk+1|k =p̂Rk|k + C(φ̂Rk|k)Rk p̂Rk+1 (2)

φ̂Rk+1|k =φ̂Rk|k + Rk φ̂Rk+1 (3)

p̂Lk+1|k =p̂Lk|k (4)

where C(·) denotes 2×2 rotation matrix, and Rk x̂Rk+1 = [Rk p̂T
Rk+1

Rk φ̂Rk+1 ]
T

is the odometry-based estimate of the robot’s motion between time-steps k
and k + 1. This estimate is corrupted by zero-mean, white Gaussian noise
wk = RkxRk+1 − Rk x̂Rk+1 , with covariance matrix Qk.

In addition to the state propagation equations, the linearized error-state
propagation equation is necessary for the EKF. This is given by:

x̃k+1|k =
[
ΦRk

03×2

02×3 I2

] [
x̃Rk|k
x̃Lk|k

]
+

[
GRk

02×2

]
wk , Φkx̃k|k + Gkwk (5)

where ΦRk
and GRk

are obtained from the state propagation equations (2)-
(3).

ΦRk
=

[
I2 JC(φ̂Rk|k)Rk p̂Rk+1

01×2 1

]
≡

[
I2 J

(
p̂Rk+1|k − p̂Rk|k

)
01×2 1

]
(6)

GRk
=

[
C(φ̂Rk|k) 02×1

01×2 1

]
(7)

where J ,
[
0 −1
1 0

]
. It is important to point out that the form of the propaga-

tion equations presented above is general, and holds for any robot kinematic
model (e.g., unicycle, bicycle, or Ackerman model) [12].

1 Throughout this paper the subscript `|j refers to the estimate of a quantity at
time-step `, after all measurements up to time-step j have been processed. x̂
is used to denote the estimate of a random variable x, while x̃ = x − x̂ is the
error in this estimate. 0m×n and 1m×n denote m× n matrices of zeros and ones,
respectively, while In is the n×n identity matrix. Finally, we use the concatenated
forms sφ and cφ to denote the sin φ and cos φ functions, respectively.
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EKF Update

The measurement used for updates in the EKF is a function of the relative
position of the landmark with respect to the robot:

zk = h(xk) + vk = h
(
RkpL

)
+ vk (8)

where RkpL = CT (φRk
)(pL−pRk

) is the position of the landmark with respect
to the robot at time-step k, and vk is zero-mean Gaussian measurement noise
with covariance Rk. In this work, we allow h to describe any measurement
model, such as a direct measurement of relative position, a pair of range
and bearing measurements, bearing-only or distance-only measurements, etc.
Generally, the measurement function h is nonlinear, and hence it is linearized
for use in the EKF. The linearized measurement-error equation is given by

z̃k '
[
HRk

HLk

] [
x̃Rk|k−1

x̃Lk|k−1

]
+ vk , Hkx̃k|k−1 + vk (9)

where HRk
and HLk

are the Jacobians of h with respect to the robot pose and
the landmark position, respectively, evaluated at the state estimate x̂k|k−1.
Using the chain rule of differentiation, these are computed as:

HRk
=(∇hk)CT (φ̂Rk|k−1)

[−I2 −J(p̂Lk|k−1 − p̂Rk|k−1)
]

(10)

HLk
=(∇hk)CT (φ̂Rk|k−1) (11)

where ∇hk denotes the Jacobian of h with respect to the robot-relative land-
mark position RkpL, evaluated at the state estimate x̂k|k−1.

2.2 EKF-SLAM Observability Analysis

It is well-known (cf. [10, 13]) that the underlying physical system in SLAM has
3 unobservable degrees of freedom, corresponding to the global coordinates of
the state vector (rotation and translation). Thus, when the EKF is used for
state estimation in SLAM, we would expect that the system model employed
by the EKF also shares this property. However, in this section we show that
this is not the case, since the unobservable subspace of the linearized error-
state model of the standard EKF is generally of dimension only 2.

Since the linearized error-state model for EKF-SLAM is time-varying, we
employ the local observability matrix [14] to perform the observability analy-
sis. Specifically, for the EKF-SLAM system considered in this work (cf. (5)
and (9)), the local observability matrix for the time interval between time-
steps k and k + m is defined as:

M ,




Hk

Hk+1Φk

...
Hk+mΦk+m−1 · · ·Φk


 =




HRk
HLk

HRk+1ΦRk
HLk+1

...
...

HRk+m
ΦRk+m−1 · · ·ΦRk

HLk+m


 (12)
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Ideal EKF-SLAM

Before considering the rank of the matrix M, which is constructed using the
estimated values of the state in the filter Jacobians, it is interesting to study
the observability properties of the “oracle”, or “ideal” EKF (i.e., the filter
whose Jacobians are evaluated using the true values of the state variables). In
the following, all matrices evaluated using the true state values are denoted
by the symbol “ ˘ ”.

We start by noting that (cf. (6)):

Φ̆Rk+1Φ̆Rk
=

[
I2 J

(
pRk+2 − pRk

)
01×2 1

]
(13)

Based on this property, it is easy to show by induction that:

Φ̆Rk+i−1Φ̆Rk+i−2 · · · Φ̆Rk
=

[
I2 J

(
pRk+i

− pRk

)
01×2 1

]
(14)

which holds for all i > 0. Using this result, and substituting for the mea-
surement Jacobians from (10) and (11), we can prove the following useful
identity:

H̆Rk+i
Φ̆Rk+i−1 · · · Φ̆Rk

= (∇h̆k+i)CT (φ̆Rk+i
)
[−I2 −J(pL − pRk

)
]

(15)

which holds for all i > 0. The matrix M̆ can now be written as

M̆ =Diag
(
(∇h̆k)CT (φ̆Rk

), · · · , (∇h̆k+m)CT (φ̆Rk+m
)
)

︸ ︷︷ ︸
D̆

×




−I2 −J(pL − pRk
) I2

−I2 −J(pL − pRk
) I2

...
...

−I2 −J(pL − pRk
) I2




︸ ︷︷ ︸
N̆

(16)

Lemma 2.1 The rank of the observability matrix of the ideal EKF, M̆, is 2.

Proof. The rank of the product of the matrices D̆ and N̆ is given by (cf.
Eq. (4.5.1) in [15]), rank(D̆N̆) = rank(N̆) − dim(N (D̆)

⋂R(N̆)). Since N̆
is comprised of m repetitions of the same 2 × 5 block row, it is clear that
rank(N̆) = 2, and the range of N̆, R(N̆) is spanned by the vectors u1 and u2,
defined as follows:

[
u1 u2

]
=

[
I2

03×2

]
(17)

We now observe that in general D̆ui 6= 0, for i = 1, 2. Moreover, note that any
vector x ∈ R(N̆) \ 0 can be written as x = α1u1 + α2u2 for some α1, α2 ∈ R,
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where α1 and α2 are not simultaneously equal to zero. Thus, we see that in
general D̆x = α1D̆u1 + α2D̆u2 6= 0, which implies that x does not belong
to the nullspace of (D̆). Therefore, dim(N (D̆)

⋂R(N̆)) = 0, and, finally,
rank(M̆) = rank(N̆)− dim(N (D̆)

⋂R(N̆)) = rank(N̆) = 2.

The result of the above lemma indicates that when the Jacobians of the
EKF are evaluated at true values of the states, the EKF system model has
3 unobservable degrees of freedom. This agrees with intuition, which dictates
that the global coordinates of the state vector in SLAM (rotation and trans-
lation) are unobservable. Moreover, in [13] it is shown that the unobservable
subspace of the system model employed by the ideal EKF (i.e., the nullspace
of M̆) is identical to the nullspace of the observability matrix of the under-
lying, nonlinear SLAM system. Unfortunately, as shown in the next section,
these desirable properties are not shared by the linearized EKF system model,
when the Jacobians are evaluated at the latest state estimates.

Standard EKF-SLAM

We now study the observability properties of the standard EKF-SLAM, in
which the Jacobians are evaluated at the estimated state. We start by deriving
an expression analogous to that of (14). We obtain [12]:

ΦRk+i−1ΦRk+i−2 · · ·ΦRk
=

[
I2 J

(
p̂Rk+i|k+i−1 − p̂Rk|k −

∑k+i−1
j=k+1 ∆pRj

)

01×2 1

]

where ∆pRi = p̂Ri|i − p̂Ri|i−1 is the correction in the robot position due to
the update at time-step i. Therefore,

HRk+i
ΦRk+i−1 · · ·ΦRk

=

(∇hk+i)CT (φ̂Rk+i|k+i−1)×
[
−I2 −J

(
p̂Lk+i|k+i−1 − p̂Rk|k +

∑k+i−1
j=k+1 ∆pRj

)]

Using this result, we can write matrix M as:

M = Diag
(
(∇hk)CT (φ̂Rk|k−1), · · · , (∇hk+m)CT (φ̂Rk+m|k+m−1)

)

︸ ︷︷ ︸
D

×




−I2 −J
(
p̂Lk|k−1 − p̂Rk|k−1

)
I2

−I2 −J
(
p̂Lk+1|k − p̂Rk|k

)
I2

−I2 −J
(
p̂Lk+2|k+1 − p̂Rk|k + ∆pRk+1

)
I2

...
...

...
−I2 −J

(
p̂Lk+i|k+i−1 − p̂Rk|k +

∑k+i−1
j=k+1 ∆pRj

)
I2




︸ ︷︷ ︸
N

Lemma 2.2 The rank of the observability matrix of the system model of the
standard EKF, M, is equal to 3.
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Proof. First, we note that the estimates of any given state variable at different
time instants are generally different. Hence, the following inequalities generally
hold ∀i 6= `: p̂Rk+i|k+i−1 6= p̂Rk+i|k+i

and p̂Lk+i|k+i−1 6= p̂Lk+`|k+`−1 Therefore,
the third column of N will be, in general, a vector with unequal elements,
and hence rank(N) = 3. Proceeding similarly to the proof of Lemma 2.1, we
first find one possible basis for the range space of N, R(N). By inspection,
we see that such a basis is given simply by the first 3 columns of N, which we
denote by ui (i = 1, 2, 3). Moreover, it can be verified that generally Dui 6=
0, ∀i = 1, 2, 3. Therefore, dim(N (D)

⋂R(N)) = 0, and finally rank(M) =
rank(N)− dim(N (D)

⋂R(N)) = rank(N) = 3.

We thus see that the linearized error-state model employed in the standard
EKF-SLAM has different observability properties than the ideal EKF-SLAM
and the underlying nonlinear system. In particular, by processing the mea-
surements collected in the interval [k, k + m], the EKF acquires information
in 3 dimensions of the state space (along the directions corresponding to the
observable subspace of the EKF). However, the measurements actually pro-
vide information in only 2 directions of the state space, and as a result, the
EKF gains “spurious information” along the unobservable directions of the
underlying nonlinear SLAM system, which leads to inconsistency.

To probe further, we note that the basis of the right nullspace of M is
given by:

N (M) = span








1
0
0
1
0




,




0
1
0
0
1








= span
{
nx , ny

}
(18)

Note that these two vectors correspond to a shifting of the x− y plane, which
implies that such a shifting is unobservable. On the other hand, we point out
that the direction corresponding to the global orientation is “missing” from the
unobservable subspace of the EKF system model. Therefore, we see that the
filter will gain “nonexistent” information about the robot’s global orientation.
This will lead to an unjustified reduction in the orientation uncertainty, which
will, in turn, further reduce the uncertainty in all the state variables. This
agrees in some respects with [4, 6], where it was argued that the orientation
uncertainty is the cause of the filter’s inconsistency in SLAM. However, we
point out that the root cause of the problem is the fact that the Jacobians
are evaluated at different linearization points at every time step. This changes
the dimension of the observable subspace, and thus fundamentally alters the
properties of the estimation process.

An additional interesting point is that the covariance matrix of the mea-
surements does not appear in the observability analysis of the filter. Therefore,
even if this covariance matrix is artificially inflated, the filter will retain the
same observability properties (i.e., the same observable and unobservable sub-
spaces). This shows that no amount of covariance inflation can result in correct
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observability properties. Similarly, even if the Iterated EKF is employed for
state estimation, the same, erroneous, observability properties will arise, since
the landmark position estimates will generally differ at different time steps.

3 First-Estimates Jacobian EKF SLAM

Careful observation of the matrix M in (21) reveals that it is possible to obtain
an EKF system model with an unobservable subspace of dimension 3, even if
the Jacobians are not evaluated at the true state values. For this purpose, the
following two changes are necessary.

1. In the computation of the state-propagation Jacobian matrix ΦRk
, we

employ the robot position estimate prior to updating, p̂Rk|k−1 , instead of
the updated one, p̂Rk|k , as in the standard EKF:

Φ′
Rk

=
[

I2 J
(
p̂Rk+1|k − p̂Rk|k−1

)
01×2 1

]
(19)

2. In the evaluation of the measurement Jacobian matrix HRk
, we always

utilize the landmark estimate from the first time the landmark was de-
tected. Thus, if a landmark was first seen at time-step `, we compute the
measurement Jacobian with respect to the robot pose as:

H′
Rk

=(∇hk)CT (φ̂Rk|k−1)
[−I2 −J(p̂L`|` − p̂Rk|k−1)

]
(20)

As a result of the above modifications, only the first estimates of all landmark
positions and all robot poses appear in the Jacobians of the filter. This has
an effect that the observability matrix M of this new filter, which we term
First-Estimates Jacobian (FEJ)-EKF, assumes the form:

M′ =Diag
(
(∇hk)CT (φ̂Rk|k−1), · · · , (∇hk+m)CT (φ̂Rk+m|k+m−1)

)

×




−I2 −J
(
p̂L`|` − p̂Rk|k−1

)
I2

−I2 −J
(
p̂L`|` − p̂Rk|k−1

)
I2

−I2 −J
(
p̂L`|` − p̂Rk|k−1

)
I2

...
...

...
−I2 −J

(
p̂L`|` − p̂Rk|k−1

)
I2




(21)

The fact that the rank of this matrix is 2 can be easily proven, by a procedure
completely analogous to that of Lemma 2.1. Thus, the FEJ-EKF is based on
an error-state system model whose unobservable subspace is of dimension 3.
We stress that the FEJ-EKF estimator is realizable in practice, since it does
not utilize any knowledge of the true state. Interestingly, even though this
new filter does not use the latest available state estimates (and thus utilizes
Jacobians that are less accurate than those of the standard EKF), it exhibits
better consistency properties than the standard EKF, as shown in the follow-
ing section.



10 Authors Suppressed Due to Excessive Length

4 Results

In order to validate the preceding theoretical analysis and to demonstrate the
capability of the FEJ-EKF filter to improve the consistency of EKF-SLAM,
a series of Monte Carlo simulation tests and an experiment on a real-world
data set were conducted. The metrics used to evaluate filter performance
are: (i) the RMS error, and (ii) the average normalized (state) estimation
error squared (NEES) [7]. Specifically, for the landmarks we compute the
average RMS and average NEES errors by averaging the squared errors and
the NEES, respectively, over all Monte Carlo runs, all landmarks and all time
steps. On the other hand, for the robot pose we compute these error metrics
by averaging over all Monte Carlo runs for each time step (cf. [13] for a more
detailed description).

The RMS of the estimation errors provide us with a concise metric of the
accuracy of a given estimator. On the other hand, the NEES is a powerful
metric for evaluating filter consistency. Specifically, it is known that the NEES
of an M -dimensional Gaussian random variable follows a χ2 distribution with
M degrees of freedom. Therefore, if a certain filter is consistent, we expect
that the average NEES for the robot pose will be close to 3 for all k, and that
the average landmark NEES will be close to 2. The larger the deviations of the
NEES from these values, the larger the inconsistency of the filter. By studying
both the RMS errors and NEES of all the filters, we obtain a comprehensive
picture of the estimators’ performance.

4.1 Simulation

In the simulation tests presented in this section, the robot moves at a constant
velocity of v = 0.25 m/sec, the standard deviation of the velocity measurement
noise is equal to σv = 0.1v, while the rotational velocity measurements are
corrupted by noise with standard deviation σω = 1o/sec. The robot records
measurements of the relative position of landmarks that lie within its sensing
range of 5 m, with standard deviation equal to 15% of the robot-to-landmark
distance along each axis. It should be pointed out that the sensor-noise levels
selected for the simulations are larger than what is typically encountered in
practice. This was done since larger noise levels lead to higher estimation
errors, which in turn cause the Jacobian estimates to be less accurate, and
make the effects of inconsistency more apparent.

In particular, a SLAM scenario with loop closure was considered where
100 Monte Carlo simulations were performed, and during each run, the robot
executes 10 loops on a circular trajectory, and observes 20 landmarks in total.
During the test, four filters process the same data, to ensure a fair compari-
son. The four filters compared are: (i) the ideal EKF, (ii) the standard EKF,
(iii) the FEJ-EKF, and (iv) the robocentric filter [2, 3], which aims at improv-
ing the consistency of SLAM by expressing the landmarks in a robot-relative
frame. The comparative results for all filters are presented in Fig. 1 and Ta-



A First-Estimates Jacobian EKF for Improving SLAM Consistency 11

Ideal EKF Std EKF FEJ-EKF [2]

Robot Position Err. RMS (m)

0.69 0.98 0.70 0.75

Robot Heading Err. RMS (rad)

0.079 0.11 0.082 0.082

Robot Pose NEES

3.05 12.79 3.68 6.70

Landmark Position Err. RMS (m)

0.95 2.08 0.98 1.16

Landmark Position NEES

2.1 12.93 2.35 6.65

Table 1. Robot Pose and Landmark Position Estimation Performance
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Fig. 1. Monte Carlo results for a SLAM scenario with multiple loop closures. (a)
Average NEES of the robot pose errors (b) RMS errors for the robot pose (position
and orientation). In these plots, the solid lines correspond to the ideal EKF, the
dashed lines to the FEJ-EKF, the solid lines with circles to the standard EKF, and
the dotted lines to the robocentric mapping algorithm of [2]. Note that the RMS
errors of the ideal EKF and the FEJ-EKF are almost identical, which makes the
corresponding lines difficult to distinguish.

ble 1. Specifically, Fig. 1(a) and Fig. 1(b) show the average NEES and RMS
errors for the robot pose, respectively. On the other hand, Table 1 presents
the average values of all relevant performance metrics for the landmarks and
robot.

Several interesting conclusions can be drawn from these results. First, it
becomes clear that the performance of the FEJ-EKF is very close to that of
the ideal EKF, and substantially better than the standard EKF, both in terms
of RMS errors and NEES. This occurs even though the Jacobians used in the
FEJ-EKF are less accurate than those used in the standard EKF, as explained
in the preceding section. This fact indicates that the errors introduced by the
use of inaccurate Jacobians have a less detrimental effect on consistency than
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the use of an error-state system model with observable subspace of dimension
larger than that of the actual, nonlinear, SLAM system.

A second observation is that the FEJ-EKF also performs much better than
robocentric mapping [2], both in terms of accuracy and in terms of consistency.
One possible justification for this is that in robocentric mapping, during each
propagation step all landmark position estimates need to be changed, since
they are expressed with respect to the moving robot frame. As a result, during
each propagation step (termed composition in [2]), all landmark estimates and
their covariance are affected by the linearization errors of the process model.
This problem does not exist in the world-centric formulation of SLAM, and
it could offer an explanation for the observed behavior. As a final remark,
we note that even though the FEJ-EKF NEES performance is significantly
better compared to that of the robocentric mapping, the difference in the RMS
errors of the two filters is less pronounced. This indicates that the effects of
inconsistency primary affect the covariance, rather than the state estimates.

4.2 Experiment

To experimentally validate the performance of the FEJ-EKF, the filter was
tested on the Sydney Car Park data set collected by Guivant and Nebot2.
The experimental platform is a 4-wheeled vehicle equipped with a GPS, a
laser sensor, and wheel encoders. The kinematic GPS system was used to pro-
vide ground truth for the robot position with 5 cm accuracy. Since the GPS
has different frequency (up to 2 Hz) from the other exteroceptive sensors,
we interpolated the GPS data to obtain the ground truth at each time step.
Wheel encoders were used to provide odometric measurements, and propa-
gation carried out using the Ackerman model. In this particular application,
artificial landmarks were used that consisted of 60 mm steel poles covered
with reflective tape. With this approach, it is easy to extract the features and
the measurement model also becomes very accurate. Since the true position
of the landmarks was also obtained with GPS, a true map was available for
comparison purposes.

In this test, because the ground truth for the robot orientation was still
unavailable, the ideal EKF could not be tested, and therefore the following
three filters were compared: (i) the standard EKF, (ii) the FEJ-EKF, and
(iii) the robocentric mapping filter [2]. The comparison results are shown in
Table 2 and Figs. 2 and 3. Specifically, Table 2 presents the average values
of all relevant performance metrics for the robot and the landmarks. On the
other hand, Fig. 2 shows the trajectory and landmark estimates produced by
the three filters, while Fig. 3 shows the NEES and RMS errors of the robot
position over time. We point out that the NEES in this case pertains only to
the robot position, and therefore the “optimal” value for it is 2.

These results demonstrate that the performance of the FEJ-EKF is better
than the standard EKF and the robocentric mapping filter, both in terms of
2 The data set is available: www-personal.acfr.usyd.edu.au/nebot/dataset
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Fig. 2. The robot trajectory and landmark estimates. In this plot, the solid lines
are ground truth obtained from GPS, while the boxes (¤) are the known beacon
positions. On the other hand, the dashed lines and crosses (+) are the estimated
trajectory and landmarks corresponding to the standard EKF, the dash-dotted lines
and stars (∗) correspond to the FEJ-EKF, and the dotted lines and x-crosses (×)
to the robocentric mapping [2].

consistency and in terms of accuracy. In particular, the average RMS and the
average NEES for the FEJ-EKF are better than the corresponding ones for
the two competing filters. These results, along with those of the simulations
presented in the previous section, lead us to the conjecture that the mismatch
in the dimension of the unobservable subspace between the linearized SLAM
system and the underlying nonlinear system is a fundamental cause of filter
inconsistency.

Std EKF FEJ-EKF [2]

Robot Position Err. RMS (m)

0.1002 0.0523 0.0838

Robot Position NEES

2.8900 2.5197 2.8265

Landmark Position Err. RMS (m)

0.3812 0.1858 0.2755

Landmark Position NEES

2.5196 2.0197 2.4800

Table 2. Robot and Landmark Position Estimation Performance
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Fig. 3. (a) NEES of the robot position errors (b) RMS errors for the robot position.
In these plots, the solid lines correspond to the standard EKF, the dash-dotted lines
to the FEJ-EKF, and the dotted lines to the robocentric mapping algorithm of [2].

5 Conclusions

In this paper, we have studied in depth the issue of filter inconsistency in
EKF-based SLAM. By comparing the observability properties of the nonlinear
SLAM system model with those of the linearized error-state model employed
in the EKF, we proved that the observable subspace of the standard EKF is
always of higher dimension than the observable subspace of the underlying
nonlinear system. As a result, the covariance estimates of the EKF undergo
reduction in directions of the state space where no information is available,
which is a primary cause of inconsistency. Based on the above analysis, a new
“First Estimates Jacobian” (FEJ) EKF is proposed to improve the estima-
tor’s consistency during SLAM. The proposed algorithm performs better with
respect to consistency, because when the filter Jacobians are calculated us-
ing the first available estimate for each state variable, the error-state system
model has an observable subspace of the same dimension as the underlying
nonlinear SLAM system. Through Monte Carlo simulations and experiments,
we have verified that the FEJ-EKF is more accurate and more consistent
than both the standard EKF and robocentric mapping [2], which has been
proposed for improving estimator consistency in SLAM.
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