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In contrast to most other ant species, desert ants (Cataglyphis
fortis) do not use pheromones to mark their path. When re-
turning from a foraging trip to their nest they navigate both
by path integration and by visual landmarks. An egocentric
navigation system based on path integration alone su�ers
from two major pitfalls: 1. It must run uninterrupted as
long as the animal moves and 2. It is inherently susceptible
to cumulative navigation errors. Hence, if the animal visited
an area repeatedly, it is advantageous to take an occasional
positional �x by acquiring landmark-based geocentered (alo-
centric) information. Indeed desert ants and honeybees use
such information in addition to path integration. On a fa-
miliar route, when ants can steer by visual landmarks, they
adopt a �xed and often circuitous path consisting of several
separate segments that point in di�erent directions. Such
multi-segment journeys are composed partly of stored local
movement vectors, which are associated with landmarks and
are recalled at the appropriate place.
During the experiments reported in [4] and [1], ants col-
lected right before entering their nest after a foraging trip
are deprived of their global vector1. When these ants were
placed at points along their familiar route, they were able
to use previously seen visual features in order to return to
their nest. It is believed [1], that two dimensional visual
snapshots of landmarks along the homing path are stored in
the memory of the ants and upon recognition they trigger a
local vector that describes the transition to the next land-
mark on the way to the nest. These local vectors are also
calculated based on odometry. They are links that point
towards the direction of the next landmark along the path
and are proportional to the distance between consecutive lo-
cations. Due to their limited length compared to the global
vector the local transitions are more precisely learned and
reproduced during foraging trips.
The vision-based (local) navigation in ants works in parallel
with global navigation. In order to ensure that an alter-
native navigation mechanism is available, desert ants use
landmark-based navigation as the main method along fa-
miliar paths. They resort to global navigation only if the
former fails, that is if in a dynamic environment landmarks
are missing or are being occluded by new ones. If one of

1This is the vector that is calculated through path integra-
tion. It originates at the ant's position and points towards
the nest.

the anticipated landmarks does not appear at the expected
location, the ant steers towards the next one along its path.
The position of the new target location is determined by the
combination of two consecutive local vectors. In cases where
most of the expected landmarks along the path cannot be
found, the landmark-based navigation becomes untrustwor-
thy and the ant switches to global navigation. That is, it
continues on a straight line that connects its current posi-
tion to the nest ( Figure 1).
On the other hand, if the global vector calculation is inter-
rupted, e.g., due to sudden relocation of the ant, a search
strategy is introduced in order to discover some of the stored
landmarks and recover from the loss of the global position-
ing information. After the �rst known landmark is found,
the ant continues along its familiar trip to its nest. The
combination of the two navigation mechanism, namely local
(visual landmark-based) and global (odometry-based) navi-
gation results in increased reliability even along paths thou-
sands of times larger relative to the length of an ant.
During path integration two types of information are con-
tinuously being measured by the ant: angles steered and
distances covered. Skylight information provides absolute
orientation information. To estimate distances traveled,
desert ants use self-induced retinal image ow [3]. The ori-
entation information along with the distances covered are
combined to synthesize the local or global transitional vec-
tors. The exact mechanism that ants use for learning land-
marks is yet to be discovered. It is believed that retino-
topically �xed snapshots of the visual cues are stored in the
memory of an ant and then compared and matched to the
current retinal image. A match indicates a learned landmark
location and allows the ant to steer towards the next feature
along its path. The contribution of the visual information
to the navigation task is that landmarks can be learned and
distinguished and therefore used in a chain formation link-
ing the nest to a foraging area.
Instead of trying to replicate the sensing mechanisms of an
ant, we intend to model their functionality within the nav-
igation task. In order to calculate the angles steered by a
robot in an outdoors scenario, a magnetic compass can pro-
vide absolute orientation with respect to the magnetic
�eld of the earth instead of the polarization vectors of the
light of the sun. In a similar fashion, a robot equipped
with exteroceptive sensors such as a laser scanner can de-
tect straight line segments inside a building and thus con-
sider their orientation (at least within a small area) as an
absolute orientation measurement. Wheel encoder signals
can be used for continuously calculating distances trav-

eled. The resulting vector can either be the global vector
pointing towards the initial location or a local vector deter-
mining the direction and distance of the previously visited
known location. The remaining navigational functionality
is the detection and recognition of landmarks. In principle
it should not make any di�erence if the landmarks detected
and memorized are visual or not. Any type of sensor that
can detect a gradient of any identity of the area could be



L

L

L

L

1

2

3

4
(locally) global vectors

Figure 1: Integration of consecutive local maps to a

global representation.

used to mark an area as di�erent from at least its immediate
surroundings [2]
In the proposed navigation mechanism, a robot has to con-
struct, update, and augment a topological map of the trav-
eled regions of the environment containing the local tran-
sition vectors between detected landmarks. More precisely,
this map would be a collection of many consecutive 1-to-
1 relative maps, each of them containing two neighboring
landmarks along the robot's path. The information related
to each of these 1-to-1 maps is the type of the two features
contained and their relative position (�x;�y) and orien-

tation �� vector ~�x = [�x;�y;��]T . The types of the
landmarks are determined by the exteroceptive sensors that

the robot is using and the vector ~�x is calculated primarily
by integrating the motion information provided by the pro-
prioceptive sensors (Figure 2). No previous knowledge of the
spatial layout of the environment is required. As depicted
in Figure 1, a compiled global map of the environment can
be derived by \stitching" together all these relative maps
using the common landmarks as the connecting points and
requiring that each has the same orientation when it is being
incorporated in each of the maps that contain it.
As the robot moves in unexplored areas, the topological de-
scription is augmented to include new links (1-to-1 maps)
to newly discovered landmarks (Figure 1). As the total dis-
tance from the initial position of the robot increases, the
precision of the global vector calculated by summing the lo-
cal vectors decreases. For example, in the case of a simple
global map that contains 3 consecutive positions A, B, C, the
overall uncertainty related to the direct transition between A

and C: ~AC = ~AB+ ~AC would be: P ~AC
= P ~AB

+P ~BC
where

P ~AC
; P ~AB

; P ~BC
are the covariance matrices of each of these

vectors that describe the corresponding uncertainty ellip-
soids associated with each of these transitions. Covariance
matrices are positive de�nite and thus the covariance of the
total transition, i.e., the size of the overall uncertainty ellip-
soid, is monotonically increasing with the number of nodes
added to the path. Therefore the quality of the global vec-
tor decreases as the robot moves towards the outskirts of
the explored area. The dimensions of the overall ellipsoid
determine the size of the area that the robot will have to
search in order to �nd C, having started from A.
Ants also su�er from error accumulation during the calcu-

lation of their homing (global) vector when landmark infor-
mation is not available and they have to servo on their global
vector. The result is that at the end of their trip they have to
employ search patterns in order to determine the exact loca-
tion of the nest. If landmarks are found along the path, ants
depend predominantly on local transitions between those
landmarks in order to �nd their way towards the nest. They
resort to locally-global vector (the vector from landmark
A to C if landmark B cannot be found) navigation if some
or all of the anticipated landmarks are missing (see Figure
3). We apply the same methodology to the case of a mobile
robot constructing and navigating in an ant-inspired map
of its environment. As in the previous example the robot is
commanded to move from A to C. Initially it has to navigate
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Figure 2: The local vector that connects landmark

Ln to Ln+1 is calculated as LnLn+1 = ~s1+~s1+~s3 where

~s2 is calculated by the odometry and ~s1 and ~s3 are

determined by the exteroceptive sensors.

L

L

L

L

1

2

3

4

searching

lost?

goto next landmark

Figure 3: The dual navigation strategy using local

and locally global representations.

using the local representation (transition A ! B and then
B ! C) and if it cannot �nd landmark B it steers towards

the direction of C. Let us assume that ~AB = ~BC and thus
the probability that the robot will successfully make each of
these transitions is equal: Pr(A! B) = Pr(B ! C) = p1
while the direct transition from A to C has probability of
success Pr(A ! C) = p2 < p1 due to the increased uncer-
tainty. Then the overall probability for successfully mov-
ing from A to C using the ant-inspired navigation algo-
rithm is: Pr(A ! C) = Pr(A ! B)Pr(B ! C) + (1 �
Pr(A ! B))Pr(A ! C) > Pr(A ! B)Pr(B ! C) where
Pr(A! B)Pr(B ! C) is the probability of success if only
local navigation is involved, and Pr(A ! C) = Pr(A !
C)+Pr(A! B)(Pr(A! B)�Pr(A! C)) > Pr(A! C)
where Pr(A! C) is the probability of success if only global
navigation is involved. Results similar to the ones given by
the previous two equations can be derived for trajectories
that combine more than one via point between an initial
and a �nal location that the robot has to navigate. Since
the dual navigation algorithm increases the probability of a
successful multisegment transition, the overall reliability of
the navigation algorithm is increased. We are in the process
of implementing and evaluating this algorithm on a mobile
robot.
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