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Abstract In this paper, we study estimator inconsistency in Vision-aided Inertial
Navigation Systems (VINS) from a standpoint of system observability. We postu-
late that a leading cause of inconsistency is the gain of spurious information along
unobservable directions, resulting in smaller uncertainties, larger estimation er-
rors, and possibly even divergence. We develop an Observability-Constrained VINS
(OC-VINS), which explicitly enforces the unobservable directions of the system,
hence preventing spurious information gain and reducing inconsistency. Our anal-
ysis, along with the proposed method for reducing inconsistency, are extensively
validated with simulation trials and real-world experiments.

1 Introduction

A Vision-aided Inertial Navigation System (VINS) fuses data from a camera and an
Inertial Measurement Unit (IMU) to track the six-degrees-of-freedom (d.o.f.) po-
sition and orientation (pose) of a sensing platform. This sensor pair is ideal since
it combines complementary sensing capabilities [5]. For example, an IMU can ac-
curately track dynamic motions over short time durations, while visual data can be
used to estimate the pose displacement (up to scale) between two time-separated
views. Within the robotics community, VINS has gained popularity as a method
to address GPS-denied navigation for several reasons. First, contrary to approaches
which utilize wheel odometry, VINS uses inertial sensing that can track general
3D motions of a vehicle. Hence, it is applicable to a variety of platforms such as
aerial vehicles, legged robots, and even humans, which are not constrained to move
along planar trajectories. Second, unlike laser-scanner-based methods that rely on
the existence of structural planes [10] or height invariance in semi-structured en-
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vironments [30], using vision as an exteroceptive sensor enables VINS methods to
work in unstructured areas such as collapsed buildings or outdoors. Furthermore,
both cameras and IMUs are light-weight and have low power-consumption require-
ments, which has lead to recent advances in onboard estimation for Micro Aerial
Vehicles (MAVs) (e.g., [36, 37]).

Numerous VINS approaches have been presented in the literature, including
methods based on the Extended Kalman Filter (EKF) [3, 17, 26], the Unscented
Kalman Filter (UKF) [7], and Batch-least Squares (BLS) [32]. Non-parametric es-
timators, such as the Particle Filter (PF), have also been applied to visual odometry
(e.g., [6, 33]). However, these have focused on the simplified problem of estimating
the 2D robot pose since the number of particles required is exponential in the size
of the state vector. Existing work has addressed a variety of issues in VINS, such as
reducing its computational cost [26, 37], dealing with delayed measurements [36],
increasing the accuracy of feature initialization and estimation [15], and improving
the robustness to estimator initialization errors [21].

A fundamental issue that has not yet been fully addressed in the literature is
how estimator inconsistency affects VINS. As defined in [1], a state estimator is
consistent if the estimation errors are zero-mean and have covariance smaller than
or equal to the one calculated by the filter. We analyze the structure of the true and
estimated systems, and postulate that a main source of inconsistency is spurious
information gained along unobservable directions of the system. Furthermore, we
propose a simple, yet powerful, estimator modification that explicitly prohibits this
incorrect information gain. We validate our method with Monte-Carlo simulations
to show that it has increased consistency and lower errors compared to standard
VINS. In addition, we demonstrate the performance of our approach experimentally
to show its viability for improving VINS consistency.

The rest of this paper is organized as follows: We begin with an overview of
the related work (Sect. 2). In Sect. 3, we describe the system and measurement
models, followed by our analysis of VINS inconsistency in Sect. 4. The proposed
estimator modification is presented in Sect. 4.1, and subsequently validated both in
simulations and experimentally (Sects. 5 and 6). Finally, we provide our concluding
remarks and outline our future research directions in Sect. 7.

2 Related Work

Until recently, little attention was paid within the robotics community to the effects
that observability properties can have on nonlinear estimator consistency. The work
by Huang et al. [11, 12, 13] was the first to identify this connection for several 2D lo-
calization problems (i.e., simultaneous localization and mapping, cooperative local-
ization). The authors showed that, for these problems, a mismatch exists between the
number of unobservable directions of the true nonlinear system and the linearized
system used for estimation purposes. In particular, the estimated (linearized) system
has one-fewer unobservable direction than the true system, allowing the estimator
to surreptitiously gain spurious information along the direction corresponding to
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global orientation. This increases the estimation errors while reducing the estimator
uncertainty, and leads to inconsistency.

Several authors have studied the observability properties of VINS under a variety
of scenarios. For the task of IMU-camera extrinsic calibration, Mirzaei and Roume-
liotis [24], as well as Kelly and Sukhatme [16], have analyzed the system observabil-
ity using Lie derivatives [8] to determine when the IMU-camera transformation is
observable. Jones and Soatto [15] studied VINS observability by examining the in-
distinguishable trajectories of the system [14] under different sensor configurations
(i.e., inertial only, vision only, vision and inertial). Finally, Martinelli [22] utilized
the concept of continuous symmetries to show that the IMU biases, 3D velocity, and
absolute roll and pitch angles, are observable for VINS.

VINS inconsistency was recently addressed by Li and Mourikis [18]. Specifi-
cally, they studied the link between the VINS observability properties and estima-
tor inconsistency for the bias-free case, and leveraged the First-Estimates Jacobian
(FEJ) methodology of [11] to mitigate inconsistency in Visual-Inertial Odometry
(VIO). In contrast to their work, our approach has the advantage that any lineariza-
tion method can be employed (e.g., computing Jacobians analytically, numerically,
or using sample points) by the estimator. Additionally, we show that our approach
is flexible enough to be applied in a variety of VINS problems such as VIO or Si-
multaneous Localization and Mapping (SLAM).

Specifically, we leverage the key result of the existing VINS observability anal-
ysis, i.e., that the VINS model has four unobservable degrees of freedom, corre-
sponding to three-d.o.f. global translations and one-d.o.f. global rotation about the
gravity vector. Due to linearization errors, the number of unobservable directions
is reduced in a standard EKF-based VINS approach, allowing the estimator to gain
spurious information and leading to inconsistency. What we present is a significant,
nontrivial extension of our previous work on mitigating inconsistency in 2D robot
localization problems [12]. This is due in part to the higher-dimensional state of the
3D VINS system as compared to 2D localization (15 elements vs. 3), as well as
more complex motion and measurement models. Furthermore, the proposed solu-
tion for reducing estimator inconsistency is general, and can be directly applied in a
variety of linearized estimation frameworks such as the EKF and UKF.

3 VINS Estimator Description

We begin with an overview of the propagation and measurement models which gov-
ern the VINS system. We adopt the EKF as our framework for fusing the camera
and IMU measurements to estimate the state of the system including the pose, ve-
locity, and IMU biases, as well as the 3D positions of visual landmarks observed by
the camera. We operate in a previously unknown environment and utilize two types
of visual features in our VINS framework. The first are opportunistic features (OFs)
that can be accurately and efficiently tracked across short image sequences (e.g.,
using KLT [20]), but are not visually distinctive. OFs are efficiently used to estimate
the motion of the camera, but they are not included in the state vector. The second
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are Distinguishable Features (DFs), which are typically much fewer in number, and
can be reliably redetected when revisiting an area (e.g., SIFT keys [19]). The 3D
coordinates of the DFs are estimated to construct a map of the area.

3.1 System State and Propagation Model

The EKF estimates the IMU pose and linear velocity together with the time-varying
IMU biases and a map of visual features. The filter state is the (16+3N)×1 vector:

x =
[

I q̄T
G bT

g
GvT

I bT
a

GpT
I | GfT

1 · · ·GfT
N
]T

=
[
xT

s | xT
m
]T
, (1)

where xs(t) is the 16×1 sensor platform state, and xm(t) is the 3N×1 state of the
map. The first component of the sensor platform state is I q̄G(t) which is the unit
quaternion representing the orientation of the global frame {G} in the IMU frame,
{I}, at time t. The frame {I} is attached to the IMU, while {G} is a local-vertical
reference frame whose origin coincides with the initial IMU position. The sensor
platform state also includes the position and velocity of {I} in {G}, denoted by
the 3×1 vectors GpI(t) and GvI(t), respectively. The remaining components are the
biases, bg(t) and ba(t), affecting the gyroscope and accelerometer measurements,
which are modeled as random-walk processes driven by the zero-mean, white Gaus-
sian noise nwg(t) and nwa(t), respectively.

The map, xm, comprises N DFs, Gfi, i = 1, . . . ,N, and grows as new DFs are ob-
served [9]. However, we do not store OFs in the map. Instead, all OFs are processed
and marginalized on-the-fly using the MSC-KF approach [25] (see Sect. 3.2). With
the state of the system now defined, we turn our attention to the continuous-time
kinematic model which governs the time evolution of the system state.

3.1.1 Continuous-time model

The system model describing the time evolution of the state is (see [4, 34]):

I ˙̄qG(t) =
1
2

Ω(ω(t))I q̄G(t) , GṗI(t) = GvI(t) , Gv̇I(t) = GaI(t) (2)

ḃg(t) = nwg(t) , ḃa(t) = nwa(t) , G ḟi(t) = 03×1 , i = 1, . . . ,N. (3)

In these expressions, ω(t) = [ω1(t) ω2(t) ω3(t)]T is the rotational velocity of the
IMU, expressed in {I}, GaI(t) is the body acceleration expressed in {G}, and

Ω(ω) =

[
−bω×c ω

−ωT 0

]
, bω×c,

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 .
The gyroscope and accelerometer measurements, ωm and am, are modeled as
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ωm(t) = ω(t)+bg(t)+ng(t) (4)
am(t) = C(I q̄G(t))(Ga(t)− Gg)+ba(t)+na(t), (5)

where ng and na are zero-mean, white Gaussian noise processes, and Gg is the gravi-
tational acceleration. The matrix C(q̄) is the rotation matrix corresponding to q̄. The
DFs belong to the static scene, thus, their time derivatives are zero [see (3)].

Linearizing at the current estimates and applying the expectation operator on
both sides of (2)-(3), we obtain the state estimate propagation model

I ˙̄̂qG(t) =
1
2

Ω(ω̂(t))I ˆ̄qG(t) , G ˙̂pI(t) = Gv̂I(t) , G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t)+ Gg (6)

˙̂bg(t) = 03×1 , ˙̂ba(t) = 03×1 , G ˙̂fi (t) = 03×1 , i = 1, . . . ,N, (7)

where â(t)=am(t)−b̂a(t), and ω̂(t)=ωm(t)−b̂g(t). The (15+3N)×1 error-state
vector is defined as

x̃ =
[

Iδθ
T
G b̃T

g
GṽT

I b̃T
a

Gp̃T
I | G f̃T

1 · · ·G f̃T
N

]T
=
[
x̃T

s | x̃T
m
]T
, (8)

where x̃s(t) is the 15×1 error state corresponding to the sensing platform, and x̃m(t)
is the 3N×1 error state of the map. For the IMU position, velocity, biases, and the
map, an additive error model is utilized (i.e., x̃ = x− x̂ is the error in the estimate
x̂ of a quantity x). However, for the quaternion we employ a multiplicative error
model [34]. Specifically, the error between the quaternion q̄ and its estimate ˆ̄q is the
3×1 angle-error vector, δθ , implicitly defined by the error quaternion

δ q̄ = q̄⊗ ˆ̄q−1 '
[ 1

2 δθ
T 1
]T
, (9)

where δ q̄ describes the small rotation that causes the true and estimated attitude to
coincide. This allows us to represent the attitude uncertainty by the 3×3 covariance
matrix E[δθδθ

T ], which is a minimal representation.
The linearized continuous-time error-state equation is

˙̃x =

[
Fs,c 015×3N

03N×15 03N

]
x̃+
[

Gs,c
03N×12

]
n = Fc x̃+Gc n , (10)

where 03N denotes the 3N×3N matrix of zeros, n=
[
nT

g nT
wg nT

a nT
wa
]T is the system

noise, Fs,c is the continuous-time error-state transition matrix corresponding to the
sensor platform state, and Gs,c is the continuous time input noise matrix, i.e.,

Fs,c=


−bω̂×c −I3 03 03 03

03 03 03 03 03
−CT (I ˆ̄qG)bâ×c 03 03 −CT (I ˆ̄qG) 03

03 03 03 03 03
03 03 I3 03 03

 , Gs,c =


−I3 03 03 03
03 I3 03 03
03 03 −CT (I ˆ̄qG) 03
03 03 03 I3
03 03 03 03

 (11)

where 03 is the 3×3 matrix of zeros. The system noise is modelled as a zero-mean
white Gaussian process with autocorrelation E[n(t)nT (τ)] = Qcδ (t− τ) which de-
pends on the IMU noise characteristics and is computed off-line [34].
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3.1.2 Discrete-time implementation

The IMU signals ωm and am are sampled at a constant rate 1/δ t, where δ t , tk+1− tk.
Every time a new IMU measurement is received, the state estimate is propagated us-
ing 4th-order Runge-Kutta numerical integration of (6)–(7). In order to derive the
covariance propagation equation, we evaluate the discrete-time state transition ma-
trix, Φk, and the discrete-time system noise covariance matrix, Qd,k, as

Φk = Φ(tk+1, tk) = exp
(∫ tk+1

tk
Fc(τ)dτ

)
, Qd,k =

∫ tk+1

tk
Φ(tk+1,τ)GcQcGT

c Φ
T (tk+1,τ)dτ.

The propagated covariance is then computed as Pk+1|k = ΦkPk|kΦ
T
k +Qd,k.

3.2 Measurement Update Model

As the camera-IMU platform moves, the camera observes both opportunistic and
distinguishable visual features. These measurements are exploited to concurrently
estimate the motion of the sensing platform and the map of DFs. We distinguish
three types of filter updates: (i) DF updates of features already in the map, (ii) ini-
tialization of DFs not yet in the map, and (iii) OF updates. We first describe the
feature measurement model, and subsequently detail how it is employed in each
case.

To simplify the discussion, we consider the observation of a single point fi. The
camera measures, zi, which is the perspective projection of the 3D point, Ifi, ex-
pressed in the current IMU frame {I}, onto the image plane1, i.e.,

zi =
1
z

[
x
y

]
+ηi, where

[
x y z

]T
= Ifi = C(IqG)

(
Gfi− GpI

)
. (12)

The measurement noise, ηi, is modeled as zero mean, white Gaussian with covari-
ance Ri. The linearized error model is z̃i = zi− ẑi ' Hix̃+ηi, where ẑ is the ex-
pected measurement computed by evaluating (12) at the current state estimate, and
the measurement Jacobian, Hi, is

Hi = Hcam
[
HθG 03×9 HpI | 03 · · ·Hfi · · · 03

]
(13)

Hcam =
1
z2

[
z 0 −x
0 z −y

]
, HθG = bC(I q̄G)

(
Gfi− GpI

)
×c , HpI =−C(I q̄G) , Hfi = C(I q̄G)

Here, Hcam, is the Jacobian of the perspective projection with respect to Ifi, while
HθG , HpI , and Hfi , are the Jacobians of Ifi with respect to IqG, GpI , and Gfi, respec-
tively.

1 Without loss of generality, we express the image measurement in normalized pixel coordinates,
and consider the camera frame to be coincident with the IMU. In practice, we perform both intrinsic
and extrinsic camera/IMU calibration off-line [2, 24].
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This measurement model is utilized in each of the three update methods. For DFs
that are already in the map, we directly apply the measurement model (12)-(13) to
update the filter. We compute the Kalman gain, K=Pk+1|kHi

T
(
HiPk+1|kHi

T +Ri
)−1,

and the measurement residual ri = zi− ẑi. Employing these quantities, we compute
the EKF state and covariance update as

x̂k+1|k+1 = x̂k+1|k +Kri , Pk+1|k+1=Pk+1|k−Pk+1|kHi
T (HiPk+1|kHi

T +Ri)
−1HiPk+1|k (14)

For previously unobserved DFs, we compute an initial estimate, along with covari-
ance and cross-correlations by solving a bundle-adjustment over a short time win-
dow [35]. Finally, for OFs, we employ the MSC-KF approach [25] to impose a pose
update constraining all the views from which the feature was seen. To accomplish
this, we utilize stochastic cloning [29] over a window of m camera poses.

4 Observability-Constrained VINS

Using the VINS system model presented above, we hereafter describe how the
system observability properties influence estimator consistency. When using a lin-
earized estimator, such as the EKF, errors in linearization while evaluating the sys-
tem and measurement Jacobians change the directions in which information is ac-
quired by the estimator. If this information lies along unobservable directions, it
leads to larger errors, smaller uncertainties, and inconsistency. We first analyze this
issue, and subsequently, present an Observability-Constrained VINS (OC-VINS)
that explicitly adheres to the observability properties of VINS.

The Observability Gramian [23] is defined as a function of the linearized mea-
surement model, H, and the discrete-time state transition matrix, Φ , which are in
turn functions of the linearization point, x, i.e.,

M(x) =


H1

H2Φ2,1
...

HkΦk,1

 (15)

where Φk,1 = Φk−1 · · ·Φ1 is the state transition matrix from time step 1 to k, with
Φ1 = I15+3×N . To simplify the discussion, we consider a single landmark in the state
vector, and write the first block row as

H1 = Hcam,1C(I q̄G,1)
[
bGf−GpI,1×cC(I q̄G,1)

T 03 03 03 −I3 I3
]
,

where I q̄G,1, denotes the rotation of {G} with respect to frame {I} at time step 1,
and for the purposes of the observability analysis, all the quantities appearing in the
previous expression are the true ones. As shown in [9], the k-th block row, for k > 1,
is of the form:

HkΦk,1 = Hcam,kC
(I q̄G,k

)[
bGf−GpI,1−GvI,1δtk−1 +

1
2

Ggδ 2
tk−1
×cC

(
I q̄G,1

)T Dk −Iδtk−1 Ek −I3 I3

]
,
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where δtk−1 = (k−1)δ t, and Dk and Ek are both time-varying matrices. It is straight-
forward to verify that the right nullspace of M(x) spans four directions, i.e.,

M(x)N1 = 0 , N1 =


03 C(I q̄G,1)

Gg
03 03×1
03 −bGvI,1×cGg
03 03×1
I3 −bGpI,1×cGg
I3 −bGf×cGg

=
[
Nt,1 | Nr,1

]
(16)

where Nt,1 corresponds to global translations and Nr,1 corresponds to global rota-
tions about the gravity vector.

Ideally, any estimator we employ should correspond to a system with an unob-
servable subspace that matches these directions, both in number and structure. How-
ever, when linearizing about the estimated state x̂, M(x̂) gains rank due to errors in
the state estimates across time [9]. To address this problem and ensure that (16) is
satisfied for every block row of M when the state estimates are used for computing
H`, and Φ`,1, `= 1, . . . ,k, we must ensure that H`Φ`,1N1 = 0, `= 1, . . . ,k.

One way to enforce this is by requiring that at each time step

N`+1 = Φ`N` , H`N` = 0, `= 1, . . . ,k (17)

where N`, ` ≥ 1 is computed analytically (see (18) and [9]). This can be accom-
plished by appropriately modifying Φ` and H` following the process described in
the next section.

4.1 OC-VINS: Algorithm Description

Hereafter, we present our OC-VINS algorithm which enforces the observability con-
straints dictated by the VINS system structure. Rather than changing the lineariza-
tion points explicitly (e.g., as in [11]), we maintain the nullspace, Nk, at each time
step, and use it to enforce the unobservable directions. The 15×4 nullspace block,
NR

k , corresponding to the robot state is analytically defined as [9]:

NR
1 =


03 C

(
I ˆ̄qG,1|1

)
Gg

03 03×1
03 −bGv̂I,1|1×cGg
03 03×1
I3 −bGp̂I,1|1×cGg

 , NR
k =


03 C

(
I ˆ̄qG,k|k−1

)
Gg

03 03×1
03 −bGv̂I,k|k−1×cGg
03 03×1
I3 −bGp̂I,k|k−1×cGg

=
[
NR

t,k | NR
r,k
]
. (18)

The 3× 4 nullspace block, N f
` , corresponding to the feature state, is a function of

the feature estimate at time t` when it was initialized, i.e.,

N f
k =

[
I3 −bG f̂`|`×cGg

]
(19)
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4.1.1 Modification of the state transition matrix Φ

During the propagation step, we must ensure that NR
k+1 = ΦR

k NR
k , where ΦR

k is the
first 15× 15 sub-block of Φk corresponding to the robot state. We note that the
constraint on NR

t,k is automatically satisfied by the structure of ΦR
k [see (20) and [9]],

so we focus on NR
r,k. We rewrite this equation element-wise as

NR
r,k+1 = Φ

R
k NR

r,k →


C
(

I ˆ̄qG,k+1|k
)

Gg
03×1

−bGv̂I,k+1|k×cGg
03×1

−bGp̂I,k+1|k×cGg

=


Φ11 Φ12 03 03 03
03 I3 03 03 03

Φ31 Φ32 I3 Φ34 03
03 03 03 I3 03

Φ51 Φ52 δ tI3 Φ54 I3




C
(

I ˆ̄qG,k|k−1
)

Gg
03×1

−bGv̂I,k|k−1×cGg
03×1

−bGp̂I,k|k−1×cGg

 .
(20)

From the first block row we have that

C
(

I ˆ̄qG,k+1|k
)

Gg = Φ11C
(

I ˆ̄qG,k|k−1
)

Gg ⇒ Φ11 = C
(

I,k+1|k ˆ̄qI,k|k−1

)
. (21)

The requirements for the third and fifth block rows are

Φ31C
(

I ˆ̄qG,k|k−1
)

Gg = bGv̂I,k|k−1×cGg−bGv̂I,k+1|k×cGg (22)

Φ51C
(

I ˆ̄qG,k|k−1
)

Gg = δ tbGv̂I,k|k−1×cGg+ bGp̂I,k|k−1×cGg−bGp̂I,k+1|k×cGg (23)

both of which are in the form Au = w, where u and w are nullspace elements that
are fixed, and we seek to find a perturbed A∗, for A = Φ31 and A = Φ51 that fulfills
the constraint. To compute the minimum perturbation, A∗, of A, we formulate the
following minimization problem

min
A∗
||A∗−A||2F , s.t. A∗u = w (24)

where || · ||F denotes the Frobenius matrix norm. After employing the method of
Lagrange multipliers, and solving the corresponding KKT optimality conditions, the
optimal A∗ that fulfills (24) is A∗ = A− (Au−w)(uT u)−1uT .

We compute the modified Φ11 from (21), and Φ31 and Φ51 from (24) and con-
struct the constrained discrete-time state transition matrix. We then proceed with
covariance propagation (see Sect. 3.1).

4.1.2 Modification of H

During each update step, we seek to satisfy HkNk = 0. Based on (13), we can write
this relationship per feature as
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Hcam
[
HθG 03×9 HpI | Hf

]


03 C
(

I ˆ̄qG,k|k−1
)

Gg
03 03×1
03 −bGv̂I,k|k−1×cGg
03 03×1
I3 −bGp̂I,k|k−1×cGg
I3 −bG f̂`|`×cGg

= 0. (25)

The first block column of (25) requires that Hf = −HpI . Hence, we rewrite the
second block column of (25) as

Hcam
[
HθG HpI

][ C
(

I ˆ̄qG,k|k−1
)

Gg(
bG f̂`|`×c−bGp̂I,k|k−1×c

)
Gg

]
= 0. (26)

This is a constraint of the form Au = 0, where u is a fixed quantity determined by
elements in the nullspace, and A comprises elements of the measurement Jacobian.
We compute the optimal A∗ that satisfies this relationship using the solution to (24).
After computing the optimal A∗, we recover the Jacobian as

HcamHθG = A′1:2,1:3 , HcamHpI = A′1:2,4:6 , HcamHf =−A′1:2,4:6 (27)

where the subscripts (i:j, m:n) denote the submatrix spanning rows i to j, and
columns m to n. After computing the modified measurement Jacobian, we proceed
with the filter update as described in Sect. 3.2.

5 Simulations

We conducted Monte-Carlo simulations to evaluate the impact of the proposed
Observability-Constrained VINS (OC-VINS) method on estimator consistency. We
compared its performance to the standard VINS (Std-VINS), as well as the ideal
VINS that linearizes about the true state2. Specifically, we computed the Root Mean
Squared Error (RMSE) and Normalized Estimation Error Squared (NEES) over 100
trials in which the camera-IMU platform traversed a circular trajectory of radius 5 m
at an average velocity of 60 cm/s.3 The camera observed visual features distributed
on the interior wall of a circumscribing cylinder with radius 6 m and height 2 m (see
Fig. 1a). The effect of inconsistency during a single run is depicted in Fig. 1b. The
error and corresponding 3σ bounds of uncertainty are plotted for the rotation about
the gravity vector. It is clear that the Std-VINS gains spurious information, hence
reducing its 3σ bounds of uncertainty, while the Ideal-VINS and the OC-VINS do
not. The Std-VINS becomes inconsistent on this run as the orientation errors fall
outside of the uncertainty bounds, while both the Ideal-VINS and the OC-VINS
remain consistent. Figure 2 displays the RMSE and NEES, in which we observe
that the OC-VINS obtains orientation accuracy and consistency levels similar to the

2 Since the ideal VINS has access to the true state, it is not realizable in practice, but we include it
here as a baseline comparison.
3 The camera had 45 deg field of view, with σpx = 1px, while the IMU was modeled with MEMS
quality sensors.
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(a) (b)

Fig. 1: (a) Camera-IMU trajectory and 3D features. (b) Error and 3σ bounds for the
rotation about the gravity vector, plotted for a single run.

ideal, while significantly outperforming Std-VINS. Similarly, the OC-VINS obtains
better positioning accuracy compared to Std-VINS.

(a) (b)

(c) (d)

Fig. 2: The RMSE and NEES errors for position and orientation plotted for all three
filters, averaged per time step over 100 Monte Carlo trials.
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6 Experimental Results

6.1 Implementation Remarks

The image processing is separated into two components: one for extracting and
tracking short-term OFs, and one for extracting DFs to use in SLAM.

OFs are extracted from images using the Shi-Tomasi corner detector [31]. Af-
ter acquiring image k, it is inserted into a sliding window buffer of m images,
{k−m+1,k−m+2, . . . ,k}. We then extract features from the first image in the
window and track them pairwise through the window using the KLT tracking al-
gorithm [20]. To remove outliers from the resulting tracks, we use a two-point al-
gorithm to find the essential matrix between successive frames. Given the filter’s
estimated rotation between image i and j, i ˆ̄q j, we estimate the essential matrix from
only two feature correspondences. This approach is more robust than the traditional
five-point algorithm [27] because it provides two solutions for the essential matrix
rather than up to ten, and as it requires only two data points, it reaches a consensus
with fewer hypotheses when used in a RANSAC framework.

The DFs are extracted using SIFT descriptors [19]. To identify global features
observed from several different images, we first utilize a vocabulary tree (VT) struc-
ture for image matching [28]. Specifically, for an image taken at time k, the VT is
used to select which image(s) taken at times 1,2, . . . ,k− 1 correspond to the same
physical scene. Among those images that the VT reports as matching, the SIFT
descriptors from each are compared to those from image k to create tentative fea-
ture correspondences. The epipolar constraint is then enforced using RANSAC and
Nister’s five-point algorithm [27] to eliminate outliers. It is important to note that
the images used to construct the VT (off-line) are not taken along our experimental
trajectory, but rather are randomly selected from a set of representative images.

At every time step, the robot poses corresponding to the last m images are kept
in the state vector, as described in [29]. Upon the ending of the processing of a
new image, all the OFs that first appeared at the oldest augmented robot pose, are
processed following the MSC-KF approach, as discussed earlier. The frequency at
which new DFs are initialized into the map is a scalable option which can be tuned
according to the available computational resources, while DF updates occur at any
reobservation of initialized features.

6.2 Experimental Evaluation

The experimental evaluation was performed with an Ascending Technologies Peli-
can quadrotor equipped with a PointGrey Chameleon camera, a Navchip IMU and a
VersaLogic Core 2 Duo single board computer. For the purposes of this experiment,
the onboard computing platform was used only for measurement logging and the
quadrotor platform was simply carried along the trajectory. Note that the compu-
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(a) (b)

(c)

Fig. 3: The estimated 3D trajectory over the three traversals of the two floors of the
building, along with the estimated positions of the mapped landmarks. (a) projection
on the x and y axis, (b) projection on the y and z axis, (c) 3D view of the overall
trajectory and estimated features

(a) (b)

Fig. 4: Comparison of the estimated 3σ error bounds for attitude and position be-
tween Std-VINS and OC-VINS.



14 Joel A. Hesch, Dimitrios G. Kottas, Sean L. Bowman, and Stergios I. Roumeliotis

tational and sensing equipment does not exceed the weight or power limits of the
quadrotor and it is still capable of flight. The platform traveled a total distance of
172.5 meters over two floors at the Walter Library at University of Minnesota. IMU
signals were sampled at a frequency of 100 Hz while camera images were acquired
at 7.5 Hz. The trajectory traversed in our experiment consisted of three passes over
a loop that spanned two floors, so three loop-closure events occurred. The quadro-
tor was returned to its starting location at the end of the trajectory, to provide a
quantitative characterization of the achieved accuracy.

Opportunistic features were tracked using a window of m = 10 images. Every m
camera frames, up to 30 features from all available DFs are initialized and the state
vector is augmented with their 3D coordinates. The process of initializing DFs [9] is
continued until the occurrence of the first loop closure; from that point, no new DFs
are considered and the filter relies upon the re-observation of previously initialized
DFs and the processing of OFs.

For both the Std-VINS and the OC-VINS, the final position error was approxi-
mately 34 cm, which is less than 0.2% of the total distance traveled (see Fig. 3).
However, the estimated covariances from the Std-VINS are smaller than those from
the OC-VINS (see Fig. 4). Furthermore, uncertainty estimates from the Std-VINS
decreased in directions that are unobservable (i.e., rotations about the gravity vec-
tor); this violates the observability properties of the system and demonstrates that
spurious information is injected to the filter.

Figure 4(a) highlights the difference in estimated yaw uncertainty between the
OC-VINS and the Std-VINS. In contrast to the OC-VINS, the Std-VINS covariance
rapidly decreases, violating the observability properties of the system. Similarly,
large differences can be seen in the covariance estimates for the x and y position
estimates [see Fig. 4(b)]. The Std-VINS estimates a much smaller uncertainty than
the OC-VINS, supporting the claim that Std-VINS tends to be inconsistent.

7 Conclusion and Future Work

In this paper, we analyzed the inconsistency of VINS from the standpoint of ob-
servability. Specifically, we showed that a standard VINS filtering approach leads
to spurious information gain since it does not adhere to the unobservable directions
of the true system. Furthermore, we introduced an observability-constrained VINS
approach to mitigate estimator inconsistency by enforcing the unobservable direc-
tions explicitly. We presented both simulation and experimental results to support
our claims and validate the proposed estimator.

In our future work, we are interested in analyzing additional sources of estimator
inconsistency in VINS such as the existence of multiple local minima.
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