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Abstract—In this paper, we study estimator inconsistency in
vision-aided inertial navigation systems (VINS) from the stand-
point of system’s observability. We postulate that a leading cause
of inconsistency is the gain of spurious information along unob-
servable directions, which results in smaller uncertainties, larger
estimation errors, and divergence. We develop an observability
constrained VINS (OC-VINS), which explicitly enforces the un-
observable directions of the system, hence preventing spurious
information gain and reducing inconsistency. This framework is
applicable to several variants of the VINS problem such as vi-
sual simultaneous localization and mapping (V-SLAM), as well as
visual-inertial odometry using the multi-state constraint Kalman
filter (MSC-KF). Our analysis, along with the proposed method
to reduce inconsistency, are extensively validated with simulation
trials and real-world experimentation.

Index Terms—Consistency, nonlinear estimation, observability

structural planes [2] or height invariance in semistructured en-
vironments [3], using vision as an exteroceptive sensor enables
VINS methods to work in unstructured areas such as collapsed
buildings or outdoors. Furthermore, both cameras and IMUs are
light-weight and have low power-consumption requirements,
which has lead to recent advances in onboard estimation for
payload-constrained platforms such as micro aerial vehicles
(e.g., [41B[7]).

Numerous VINS approaches have been presented in the lit-
erature, including methods based on the extended Kalman plter
(EKF) [8]P[11], the unscented Kalman Plter [12], and batch
least squares (BLS) [13]. Nonparametric estimators, such as
the particle Plter, have also been applied to visual odometry
(e.g., [14], [15]). However, these have focused on the simplibed

analysis, vision-aided inertial navigation. problem of estimating the pose of a vehicle whose motion is
constrained to 2-D, since the number of particles required is
exponential in the size of the state vector. Existing work has
addressed a variety of issues in VINS, such as reducing its com-

VISION-AIDED inertial navigation system (VINS) fusesputational cost [4], [9], dealing with delayed observations [7],

data from a camera and an inertial measurement uiitproving fault detection by processing the visual and inertial
(IMU) to track the six-degrees-of-freedom (d.o.f.) position ancheasurements in a loosely coupled manner [5], increasing the
orientation (pose) of a sensing platform. This sensor pair agcuracy of feature initialization and estimation [16], and im-
ideal since it combines complementary sensing capabilities [pfoving the robustness to estimator initialization errors [17].
Specibcally, an IMU can accurately track dynamic motions over A fundamental issue that has only received limited attention
short time durations, while visual data can be used to estimatethe literature is how estimator inconsistency affects VINS.
the pose displacement (up to scale) between consecutive viedsdebned in [18], a state estimator is consistent if the estima-
Within the robotics community, VINS has gained popularity ason errors are zero-mean and have covariance equal to the one
a method to address GPS-denied navigation for several reasaafculated by the Plter. Estimator inconsistency can have a dev-
First, contrary to approaches which utilize wheel odometrgstating effect, particularly in navigation applications, since both
VINS uses inertial sensing that can track general 3-D motiotige current pose estimate and its uncertainty must be accurate in
of a vehicle. Hence, it is applicable to a variety of platformerder to address tasks that depend on the localization solution,
such as aerial vehicles, legged robots, and even humans, whigbh as path planning. For nonlinear systems, several potential
are not constrained to move along planar trajectories. Secosdurces of inconsistency exist (e.g., motion-model mismatch in
unlike laser-scanner-based methods that rely on the existenceaedet tracking), and great care must be taken when designing

an estimator to improve consistency.
In this paper, we report on VINS inconsistericWe focus
Manuscript received March 6, 2013; revised June 8, 2013; accepted AugiPeciPcally on estimator inconsistency due to spurious informa-

1,2013. Date of publication September 20, 2013; date of current version Felign gain which arises from approximations incurred when ap-

ary 3, 2014. This paper was recommended for publication by Associate Edifar: ; ; ; ; ;
E. Marchand and Editor D. Fox upon evaluation of the reviewersO comme#t‘é{mg linear estimation tools to nonlinear prOblemS (I'e" when

This work was supported by the Digital Technology Center at the UniversiySINg linearized estimators such as the EKF). In summary, the
of Minnesota and the Air Force Ofbce of Scientibc Research under Grant@in contributions of this work are as follows.

FA9550-10-1-0567. The work of J. A. Hesch was supported by the UMN Doc-

toral Dissertation Fellowship.

The authors are with the Department of Computer Science and Engi-*A poster describing the main results of this study appeared in [19]. Moreover,
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-maila short version of this paper detailing the OC-VINS framework applied to V-
joel@cs.umn.edu; dkottas@cs.umn.edu; bowman@cs.umn.edu; stergios@cAM appeared in [20], while the application to the MSC-KF appeared in [21].
umn.edu). In comparison with [20] and [21], in this paper, we provide an extended theoretic

Color versions of one or more of the bgures in this paper are available onlargalysis of the problem, including an observability analysis of the linearized
at http://ieeexplore.ieee.org. VINS system model, and present extensive simulation and experimental results

Digital Object Identiber 10.1109/TR0O.2013.2277549 that validate our approach.

I. INTRODUCTION

1552-3098 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publicatiastandards/publications/rights/index.html for more information.



HESCHet al. CONSISTENCY ANALYSIS AND IMPROVEMENT OF VISION-AIDED INERTIAL NAVIGATION 159

1) We analyze the structure of the true and estimated systedoses and Soatto [16] studied VINS observability by examining
and show that for the true system four unobservable dhe indistinguishable trajectories of the system [30] under differ-
rections exist (i.e., three-d.o.f. global translation and onent sensor conbgurations (i.e., inertial only, vision only, vision
d.o.f. rotation about the gravity vector), while the systerand inertial), while Martinelli [31] utilized the concept of con-
employed for estimation purposes has only three unotihRuous symmetries to show that the IMU biases, 3-D velocity,
servable directions (three-d.o.f. global translation). Morend absolute roll and pitch angles are observable for VINS. Li
over, we postulate that a main source of inconsisteneyd Mourikis [26] recently presented an observability analysis
in VINS is spurious information gained when orientatioof a bias-free linearized VINS model and leveraged the prst-
information is incorrectly projected along the directiorestimates Jacobian methodology of [23] to reduce the impact
corresponding to rotations about the gravity vector. of inconsistency in visual-inertial odometry. In contrast, our ob-

2) We propose a simple, yet powerful, estimator modibcatiaervability analysis examines the linearized system comprising
that explicitly prohibits this incorrect information gain.the full VINS state (i.e., including IMU biases). Furthermore,
Our approach is general enough to be applied in multipteur approach to reduce the inconsistency is more general since
VINS domains (e.g., V-SLAM and the MSC-KF [22]) any linearization method can be employed by the estimator (e.g.,
when linearized estimators, such as the EKF, are used.computing Jacobians analytically, numerically, or using sample

3) We provide extensive evidence to demonstrate the incgmints).
sistency in standard VINS approaches as well as validateln this paper, we study the observability properties of the
our method with Monte-Carlo simulations to show thadeal linearized VINS model (i.e., the one whose Jacobians are
it improves consistency and reduces estimation errors egluated at the true states) and prove that it has four unobserv-
compared with standard VINS. In addition, we demorable d.o.f., corresponding to three-d.o.f. global translations and
strate the performance of our approach experimentaliye-d.o.f. global rotation about the gravity vector. Moreover,
using a miniature IMU and a small-size camera. we show that when the estimated states are used to evaluate

The rest of this paper is organized as follows: We begin withe Jacobians, as is the case for the EKF, the number of unob-

an overview of the related work in Section Il. In Section Ill, weservable directions is reduced by one. In particular, the global
describe the system and measurement models, followed by oatation about the gravity vector becomes (erroneously) observ-
analysis of VINS inconsistency in Section IV. The proposed estible, which allows the estimator to gain spurious information
mator modibcation is presented in Section V and, subsequenglyd leads to inconsistency. These results conbrm the Pndings
validated both in simulations and experimentally in Sections \df [16] and [31] using a different approach (i.e., the observabil-
and VII. Finally, we provide our concluding remarks and outlingy matrix), while additionally specifying the exact mathemati-
our future research directions in Section VIII. cal structure of the unobservable directions necessary to assess
the EKFOs inconsistercyinally, in order to improve incon-
sistency, we introduce a modibcation of the VINS EKF where
its estimated Jacobians are updated to ensure that the number

Until recently, little attention was paid to the effect that the olsf unobservable directions is the same as when using the true

servability properties of a system can have on the consistencylatobians. In this manner, the global rotation about the gravity
a linearized estimator that is employed to solve a nonlinear estéctor remains unobservable (as it should), and the consistency
mation problem. The work by Huamgal.[23]D[25] was the brst of the VINS EKF is signibcantly improved.

to identify this connection for several 2-D localization problems

[i.e., simultaneous localization and mapping (SLAM), and co- Ill. VINS ESTIMATOR DESCRIPTION

operative localization (CL)]. The authors showed that, for theseWe begin with an overview of the propagation and measure-

problems, a mismatch exists between the number of unObserW'nt models which govern the VINS. In particular, we employ

able directions of the true nonlinear system and the Iinearizg EKE to fuse the camera and IMU measurements to estimate

SYSte”_‘ used for estimation purposes. In particular, the e_stima{ﬁg state of the system including the pose, velocity, and IMU bi-
(linearized) system has one fewer unobservable direction t s, as well as the 3-D positions of visual landmarks observed

thg true system, which allows the es_timqtor 0 surreptitipu the camera. We operate in a previously unknown environment
gain spurious |_nformat|on alpng the direction CofresF’O”d'”g $hd utilize two types of visual features in our VINS framework.
glop al orientation (yaw): This Increases the est|mat|on CITO%hne prst are opportunistic features (OFs) that can be accurately
wh_ﬂe errqneously reducing the estimator uncertainty, and le d efbciently tracked across shortimage sequences (e.g., using
o wcor@ﬁtency. vsi isted that link the VINS ob b'IKLT [32]) but are not visually distinctive enough to be efpbciently

_ No simiiar analysis existed that fink the observa I'ecognized when revisiting an area. OFs can be efbciently used
Ity properties to th? estimator inconsistency until recent estimate the motion of the camera over short time horizons
[19]D[21], [26], despite the fact that several authors have Styfly, i the MSC-KF), but they are not included in the state

ied the observability properties qf V,INS fpr Varlous SCenarogy 1oy The second are distinguishable features (DFs), which
For the task of IMU-camera extrinsic calibration, Mirzaei and

Roumeliotis [27], as well as, Kelly and Sukhatme [28], have , o _ ,
The analysis in [31] addresses the special case with one known feature at

analyz?d the system observability using Lie d_er'v_at'ves [29] Iﬁ)e origin, which, in contrast with our approach, cannot be used to determine
determine when the IMU-camera transformation is observabiie nullspace directions when multiple features are considered.

Il. RELATED WORK
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1) Continuous-Time ModelThe system model that de-
scribes the time evolution of the state is (see [35] and [36])

s (1) = §Q(w(t))l fo (1) 2)

Bg (t) = nwg (1) 3)

€vi(t) = Ca(t) (4)

ba(t) = nya(t) (5)

Cpi(t) =°vi(y) (6)

Fig. 1. Sensor platform comprising an IMU and a cam@faig , © p, {is Gf'-i (t) =034, i=1,...,N. (7)

the quaternion of orientation and position vector pair describing the pose of
the sensing fram@l $with respect to the global fran®G {: Theith featureOs In these expressions.;(t) _ [CO1 (t) Wy (t) W3 (t)]T is the ro-

3-D coordinates are denoted &€; and'f;, with respect toG<and qI tational veIocity of the IMU expressed Hﬁ <> G4 is the IMU

respectively. )
acceleration expressed & <; and
] 1
| o w 1 0 W3 W
are typically signibcantly fewer in number, and can be reliably(w) - W’ 0’ @ = lﬂ:‘ 0 W El
redetected when revisiting an area (e.g., scale-invariant feature Wy 0
transform (SIFT) keys [33]). The 3-D coordinates of the DFghe gyroscope and accelerometer measurementsandanm ,
are estimated to construct a map of the area. are modeled as
wm (t) = w(t) + by (t) + ng(t) (8)
A. System State and Propagation Model am(t) = C('qs (1)) Ca(t) Cg) + ba(t) + na(t), (9)

The EKF estimates the 3-D IMU pose and linear veloci
together with the time-varying IMU biases and a map of visu
features (see Fig. 1). In particular, the Plter state is(ftge+
3N) 1 vector.

hereny andn, are zero-mean, white Gaussian noise pro-
%esses, an&g is the gravitational acceleration. The matrix
(q) is the rotation matrix correspondingdgoThe DFs belong
to the static scene; thus, their time derivatives are zero [see (7)].
Linearizing at the current estimates and applying the expec-

1 . : .
. tation operator on both sides of (2)D(7), we obtain the state
. T G, T T G,T GeT <= GgT
x G by Tvi b Tpi & TH =< Py estimate propagation model
]
R 1 .
=% & @) "6 (1) = 52(@(1)' 4s (V) (10)
wherexq(t) is the 16 1 sensor-platform state, ang (t) is by (1) =05 1 (11)
the N 1 state of the feature map. The Prst component of the S5 (t)=CT ("G (1) a(t) +Cg (12)
sensor-platform state lgs (t) which is the unit quaternion that R
represents the orientation of tigobal frameqG<{in the IMU ba(t) =05 ;4 (13)
frame ql $at timet. The frameql<is attached to the IMU, G (1) = %4, (1) (14)
while §G<is a local-vertical reference frame whose origin co- Pirity="w
incides with the initial IMU position. The sensor-platform state Cf() =03 1, i=1,...,N (15)

also includes the position and velocity §Fin §G<; which R .

are denoted by the 3 1 vectors®p, (t) and®v, (t), respec- wherea(t) = am(t) ba(t), andw(t) = wm(t) bg(t).
tively. The remaining components are the biades(t) and The(15+3N) 1 error-state vector is dePned as

b, (t), which affect the gyroscope and accelerometer measure- [ ]
ments, which are modeled as random-walk processes drivére RLS e °pl & ofH <« G

by the zero-mean, white Gaussian noisg, (t) and nya (t), _ % & ﬂ]l;l

) 16
respectively. (16)
The map statexs, comprises the 3-D coordinatesfDFs, wherex.(lt) is the 15 1 error state corresponding to the sens-
Sfi,i=1,...,N, and grows as new DFs are observed [34ing platform, andke(t) isthe N 1 error state of the map. For

In contrast, we do not store OFs in the map. Instead, all Offge IMU position, velocity, biases, and the map, an additive error
are processed and marginalized on-the-y using the MSC-Kiodel is utilized (i.e.X= x X is the error in the estimate
approach [22] (see Section 11I-B). With the state of the systeaf a quantityx). However, for the quaternion we employ a mul-
now debPned, we turn our attention to the continuous-time modiglicative error model [36]. Specibcally, the error between the
which governs the state of the system. quaterniong and its estimatg is the 3 1 angle-error vector,
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460, implicitly debned by the error quaternion and Pnally, we perform the covariance propagation as

Sg=q ¢ qgaeT 1 + 17) Piiia = B kPra P + Qu. (25)
wheredq describes the small rotation that causes the true avié note that in the aforementioned expression, and throughout
estimated attitudes to coincide. This allows us to represent the paperP;q andx;g denote the estimates of the error-state
attitude uncertainty by the 3 3 covariance matri¥[6086" ], covariance and state, respectively, at time-stapmputed using

which is a minimal representation. measurements up to time-stgp
The linearized continuous-time error-state equation is
I:IFS 0 an 1 I:IGS - B. Measurement Update Model
M 9
X3 0 0 x4 0 n As the camera-IMU platform moves, the camera observes
SN 15 SN SN 12 both opportunistic and distinguishable visual features. These
=Fx4Gn (18) measurements are utilized to concurrently estimate the motion

. . of the sensing platform and the map of DFs. We perform three
where;y denqtes theN 3N matrix of £Er0S. Herey is the gipes of blter updates: 1) DF updates of features already in the
vector comprising the IMU measurement noise terms, as wi S .
as the process noise driving the IMU biases. i.e map, 2) initialization of DFs not yet in the map, and 3) OF
P O 9 E‘l T updates. We brst describe the feature measurement model, and
n= ngT anvg nl nl, (19) subsequently, detail how it is employed in each case.

. . . ) - ~ To simplify the discussion, we consider the observation of
while Fs is the continuous-time error-state transition matriy single DF pointf;. The camera measures, which is the
corresponding to the sensor-platform state, &Rd is the nerspective projection of the 3-D poihf;, expressed in the

continl%Js—time input noise matrix, i.e., [  currentIMU frameql ; onto the image plangi.e.,
w I; 03 03 03 L]
1 X
03 03 03 03 03 Zj = 7 y + M (26)
Fs= (') a 0; 03 CT('dg) 03 [120) LI
0: 0 0: 0 0 1
3 LIS 3 3 where I_):L"glfi ZCH__‘Q'GE[Qi °pi . (27)
03 03 Iy 03 03
1 1 z
13 03 03 03 . . .
The measurement noisg;, is modeled as zero mean, white
s I 03 03 Gaussian with covariand;. The linearized error model is
_ ‘ uir )
Gs=[ 03 C'(dg) O3 (21) Zi—z 7 Hix 4+, (28)
3 03 03 I3 . )
wherez is the expected measurement computed by evaluating
0; 0 03 03 (26)D(27) at the current state estimate, and the measurement
wherel; is the 3 3 identity matrix. The system noise is mod-JacobiarH; is
eled as a zero-mean white Gaussian process with autocorrelation
Hi=H;H; O H $; <H; <0 29
En(t)n" (1)) = Q:3(t 1), whereQ, depends on the IMU ' o[Hy 03 oy Sy <<0s] - (29)
noise characteristics and is computed off-line [36]. with
2) Discrete-Time Implementatiornthe IMU signalsv, and 1 IZZ' 0 x L]
aq are sampled at a constant ra#t, wheredt =t ;  tk. H. = — (30)
Every time a new IMU measurement is received, the state esti- 0 z y
mate is propagated using numerical integration of (10)D(15). In H — C L'__clj E[E‘f_ . (31)
order to derive the covariance propagation equation, we compute q ';'G ] : P
the discrete-time state transition matdx, ., «, from time-step H,= C ' (32)
tx to txy 1, as the solution to the following matrix differential I_T_If [
equation: Hy, = e (33)
D1 =F®y,iik (22) evaluated at the current state estimate. Hekg, is the Jaco-
o N ’ ' bian of the cameraOs perspective projection with respéft, to
initial condition  ®y k = Is (23)  while Hy, H,,, andHj, are the Jacobians &f; with respect to
which can be calculated analytically as we show in [34], ofdc. ©pr, and®f;.
numerically using RungebKutta. We also compute the discrete-
time system noise covariance mat@ as Swithout loss of generality, we express the image measurement in normalized
qﬂ pixel coordinates, and consider the camera frame to be coincident with the

_ P GO.GT P/ dt 24 IMU. In practice, we perform both intrinsic [37] and extrinsic [27] IMU-camera
Qx te k11 GQe k+1.T (24) calibration off-line.
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This measurement model is utilized in each of the three ufunction ofx . If M (x ) was full column rank, then the lin-
date methods. For DFs that are already in the map, we direatlyrized VINS model would be observable. However, as we will
apply the measurement model (26)D(29) to update the Pltershow in the following analysisM (x ) is rank debcient, and
particular, we compute the measurement residyallong with  hence, the VINS model is unobservable. More importantly, the
its covariances;, and the Kalman gaiK;, i.e., number of unobservable directions (right nullspace dimension)
differs, depending on the selection of the linearization point.

ri =Zi Zi (34)
Si = HiP, 14 H] +R; (35) A. Observability Analysis of the Ideal Linearized VINS Model
Ki = Py, 4HT S, ! (36) In the ideal linearized VINS model, the system and measure-
_ ment Jacobians are evaluated at the true state Xi.es x).
and update the EKF state and covariance as Based on this dePnition, the brst block-rowldf(x) can be

(37) written as follows [see (29)]:

X+ 1&+1 = Xkt+14 + Kir [
Hy = Hc.«C (g

Piiai1 =Prua KiSiK[. (38)

O] e
. . . < G G . . . N
Each time a new (previously unobserved) DF is measured, we =~ — £ "p C e 05 05 05 Is I

initialize itinto the state vector. Since a single visual observation (40)
does not provide enough information to resolve all three-d.o_f I~ . .
= I . X . . . Where'x (g denotes the rotation with respect to frame
of a DFOs position, we utilize multiple observations to initi T de GO P
ize each feature. In order to compute the initial landmark pos K
tion estimate, uncertainty, and cross-correlation with the curren
state, we solve a bundle-adjustment problem over a short ti
window [38], which is described in detail in Appendix A. )
In contrast, OFs are not estimated as part of the state. Instead, P =FPy (41)
we employ the MSC-KF to impose an efpcient (linear com- initi -
. . . al condition ®, ; =1 42
plexity) update, which constrains all of the camera poses from b (42)
which the feature was observed. For a detailed descriptionwsfiereF is debned in (18).

To compute the remaining block rows of the observability
Btrix, we require®y ;, which satisbes the following matrix
QFerential equation [40]:

the MSC-KF algorithm, see [11] and [22]. By examining the block elements of (41), we can obtain an
analytical solution for the ones necessary for our observability
IV. VINS OBSERVABILITY ANALYSIS analysis. In particular, the2, 1) element of®y ; is the product

. . . . . of the second block rowof F [i.e., F(>) =03 4; see (18)]
In this section, we examine the observability properties of the - (2,1)
d the Prst block column @by ; [see (41)]. HenceP, | =

linearized VINS model in the general case when a single pofift
feature is observed by a sensor platform performing arbitraFy>* <@’ = 0;, and recalling the initial conditio ”;") =
motion. Specibcally, we Prst study and analytically determiil [see (42)], we obtain

the four unobservable directions of titeal linearized VINS a2V _ o (43)
model (i.e., the system whose Jacobians are evaluated at the true ko T H8

states). Subsequently, we show that the linearized VINS modelllowing a similar approach, we can easily determine all block
used by the EKF, whose Jacobians are evaluated using the elements ofby ; that are eithe®; or I3, respectively (see [34]
rent state estimates, has only three unobservable directions (f@.details). SpecibcallyPy ; has the following structure:

the ones corresponding to global translation), while the one cor- (1,1) (1,2) L1
responding to global rotation about the gravity vector becomes P Py 03 03 03 05 )
(erroneously) observable. The key bndings of this analysis are 3 13 0 03 0; 03 [
then employed in Section V to improve the consistency of the 3.1) (3,2) (3,4) —

EKF-based VINS. T o e N e = 77
The observability matriM is debPned as [39] ' 3 05 05 I 0; 03 [
e WelY say e 1, 0y [

2®2,1 0 0 0. 0; 05 L
M(x)—% E (39) R
: wheredt, =dt(k 1), is the time difference between time-
steps 1 andk.
Hy Py 1 P

where ®; = P 1... P2 is the state transition matrix 4we hereafter focus on the case of a single point featurej ie.1, for the

from time-step 1 tk, and Hy, is the measurement Jacobiarpurpose of simplifying the presentation. Extending this analysis to the case of
. . multiple features is straightforward.

[see (29)]’ for the featu.re observation at time StGp_NOte >The superscript notatiorB(!) andE(*") refer to theith block row and

that, since all the Jacobians are evaluated at a part'CUIar SW@K column of matrixE, respectively, whileE(J) references the block

x =[x, << x,7]", the observability matrix is also aelement(i,j).
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For the purposes of the observability analysis, we only requioé the remaining block elements My [see (51)] is employed
a selected number of the remaining block elements, while tteform a basis of the nullspace M analytically.
expressions for all of them are provided in [34]. We begin by At this point, we state the main result of our analysis:

computingq>(1’1), Proceeding from (41) Theorem 1: The right nullspaceN; of the observability
matrix M(x ) [see (39)] of the linearized VINS model
&) =FlI@lY
k1 1, O M(x )N; =0 (56)
D1 1 is spanned by the following four directions:
- Lol ¢ By
3,1) [
=] "w I; 03 03 03 O3] R — 03 1
3 [ GVI1 Gg
5.1) N, = [Ntg & Nei]. (57)
1= 0; 1
0-
3 Gp,, g
= T w @l((ly'ln (45) I Gf G g

D= I5. Thus, the solution for  Proof: The fact thatN; is indeed the right nullspace of
M(x ) can be veribed by multiplying each of its block rows

[see (51)] withN¢ ; andN, ; in (57). Specibcally

with the initial condition®\’;
®.;") is computed as

(W] 1
@I((I"ll) = @fi” exp lrw  drt I% L]
t
[ ) 1
= exp l'w dt =C('*q,). (46)
t Mk Nt,l = I‘1 [I‘g I‘g 6tk13 F4 13 13 ]
We follow an analogous approach to compute the other elements
pertinent to the observability study (see Appendix B), i.e.,
L4 | I
31 = C l;k'q.r dt (47) 3
‘ ty :Fl( I3 +Ig):02 3 (58)

5 1 ) .
@’ = Cpy, + v, 8t 5080t Cpi C(%qi,) (48) while

oy . = MN;; =T[T; Tj 6tk13 r, I, I

P = C(q,) "a C("*qi,)drdsde (49) q e Pe
th 4 t

4 Ijt.u;]

e = C(q, ) drds. (50)
t 4
Using these expressions, we can obtainktieblock row, My,
of M, for any k > 1, as follows [see (39), (40), (44), and
(46)D(50)]:
My = Hy Py 1 °e .
=Ty, Ty oL Ty T, I;] (5) =Ti(°f ®pi, v B+ %gdt Cg

where Gy, &t, - © Gg G
r'=H C':i'— = 52 S k+ﬂpll ¥

LTk e (52) =I4 q;g Cg -ot =0, ;.
ry= 6f © Gy, Bt + ~Cg bt L'_qu (53) ’

2 Pl h Ot T g 80 ¢ SinceMN¢; = 0 andM N, =0, k 1, it follows that

G G T (1,2) (5,2) MN; = 0. HenceN; belongs to the right nullspace M. The
Ty = "f P C (M0e)®y; P (54) fact that the right nullspace contaiasly the four directions of
r, = FNSIRy (55) N, follows from the structure of'; andI',, which are full rank
k1 . . . and time varying (see (54), (55), and [41]). O

We note that for generic motions (i.es, =03 1,a =03 1) Remark 1: The 18 3 block columnN; ; corresponds to

37, 8, @, and thusT'; and T, are time varying global translations, i.e., translating both the sensing platform
matrices, whose columns are linearly independent. The structaral the landmark by the same amount.
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Remark 2: The 18 1 columnIN, ; corresponds to global
rotations of the sensing platform and the landmark about the
gravity vector.

B. Observability Analysis of the EKF Linearized VINS Model

Ideally, any VINS estimator should employ a linearized sys-
tem with an unobservable subspace that matches the true unob-
servable directions (57), both in number and structure. However,
when linearizing about the estimated statethe observability
matrix, M (x), gains rank due to errors in the state estimates
across time [34].

In particular, the last two block elements By comprise
identity matrices (i.e., are not a function of the linearization
point), and thus, the nullspace directions corresponding to trans-
lation are preserved, i.e.,

M (%) Ny, = 0. (59)

In contrast, in generaM (x) Nt = 0, sinceNi} as well as
F,land thusM (%) depend on the linearization point [see (51),
(53), and (57)]. Thatis, as different state estimates (i.e., the prior
and posterior) are utilized when evaluating the system and mea-
surement Jacobians, the directions in which the estimator gains
information are altered. This causes the vector correspondin%o
global rotationsN!, not to be in the nullspace &I (%), and
as a result the rank of the observability matrix corresponding toThe initial nullspace is anal&ilcally dePned as [see (57)]
the EKF linearized VINS model increases by one. This effect :0; C .

Nullspace Determination

can also be easily veribed by numerically evaluating the observ- ] foia 78 [ ]
ability matrix during any experiment. The approach to address 01 03 1 |
this issue is described in the following section. m 69,14 Cgl—
Nl= — (62)
—0; 03 4 —
V. OC-VINS: ALGORITHM DESCRIPTION — .. I -
In order to address the EKF VINS inconsistency problem, ﬁ Pris &
we must ensure that (56) is satisped for every block row of I °f 4 Cg
%X) VIZh:T)t?e state estimates are used for compuiaband At subsequent time steps, the nullspace is augmented to include
b 18 additional block-rows corresponding to each new DF in the blter
B0, k>0 (60) state, |.ei,__UI | =
0; C 'doka1 8
One way to enforce this is by requiring that at each time step, o 0. .
& | andHJsatisfy the following constraints: ] 31 —]
| 0 Svika 1 2
ml = ﬁl,k@ (613) z 0; | ;
— — 1
=0 k>0 (61b) )= [ Shia 1 Cg Ezllg & 1G]
: . . —h Cfiva . %8 [
wherelNiJk > 0 is computed analytically (see Section V-A). | |
This can be accomplished by appropriately modify@rl,k ] -
(see Section V-B) an#(see Section V-C). | o o
In particular, rather than changing the linearization points ex- L N kae g
plicitly (e.g., as in [23]), we maintain the nullspad®€;! at each (63)
time step, and use it to enforce the unobservable directions. Twisere the block-row Nl = [T, Gfiyk,‘ . Cgli=
has the benept of allowing us to linearize with the most accurdte. . N, corresponds to thieh feature in the map, and is a func-
state estimates, hence, reducing the linearization error, wHiten of the feature estimafef; , 4 , atthe time-stefx it

still explicitly adhering to the system observability properties.was initialized.
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B. Modibcation of the State Transition Matidx +11>k as
During the covariance propagation step, we must ensure that
Nl = &, %] or equivalently fﬁk =C(q ). (70)
Nk = &Nk (64) The requirements for the third- and Pfth-block rows are
Nk = i 1%l (65) ﬁll),lc%e,k* 1%]%: CVika 1 SVikia  Cg
We note that the constraint involvi§ck and )., is au- (71)

tomatically satisped due to the structureﬁh,k [see (44)
and (63)], so we focus offN;-k. Specibcally, we rewrite (65)
element-wise as follows:
1
g both of which are in the formAu = w, whereu andw are
nullspace vector elements that are bxed. In order to ensure that
(71) and (72) are satisbed, we seek to bnd a pertudbedor

v G 1 1

ik & A= ;1),1 and A = ﬂ;‘;l)‘l that fulblls the constraint. To
compute the minimum perturbatios\ , of A, we formulate
the following minimization problem:

1) L . R
@H,lc%&k* 1%‘g: 5tV ka1 +%Pika 1 Cg

°Prriia °8 (72)

U
x~
=
3o

1[I
(9] ®
>
°x 2

s 9

1) 2) - d O minimize A A7

¢ 0 0 0
— L1 1,1 3 3 3 ok« 1 8 .
— subjectto A u=w (73)
—0s I 03 03 03 03 4
- 32) 3.4) G- G where < r denotes the Frobenius matrix norm. After em-
ﬁ +1.1 i1 I3 +11 03 Vika 1 g ploying the method of Lagrange multipliers, and solving the
03 03 05 I 053 03 1 ;:o”rarﬁs?;)g)d_ing KKT optimality conditions, the optimal that

1 2 " G G ulblls is
gglu,l gglu,l otl; £€k_i 1 I Plka 1 &

= u w)(u u) 'u’.
(66) A=A (A )(u' u) (74)

)
and collect the constraints resulting from each block row of theoz1ce we hav? computed the mOdlpgg;lH,l from (70), and
aforementioned vector. Specibcally, from the brst block row, wﬁ%ﬁl andigl)’l from (73) and (74), we update the corre-

have sponding elements @bd | , and proceed with the covariance

p1) ti tion 111-A).
':s'g _ £§| )c %G'k* 1':G'g_ (67) Propagation (see Section )

C L'__éG,k—O—l.k +

Aswe saw in Section IV-A[see (46)], the 33 matrixﬁg[?‘k C. Modibcation of the Measurement Jacobldn

4 During each update step, we seek to satlfl!= 0 [see

is a rotation matrix. Le +1>k be the rotation matrix obtaine )
; In turn, this means that

by integrating the gyroscopes, which is described by the quatg?—lb)]'

niond. That is BN =0 (75)
. 1)
(@) = it (68) L = 0 (76)
We seek a perturbeg as a solution, to the optimization problemmust both hold.
1 Expressing (75) for a single point, we have [see (29) and (63)]
.. . ) ~ 9
m|n|qm|ze J(q) = 50 02 |%| 1
subjectto  C L'__qu,kJrl.ﬁ I%lg =C(q)C L'__éG,k.k 1Qg
~T
qq=1 (69) Iiicgﬂ;lo” i & ] 0o (77

As we show in Appendix C, we can compute the solution to
(69) in closed-form, and determine the observability constrained

I;

6Note that due to the structure of the matridegs, | k [see (44)IN, x, and which is satisbed automatically, Sin@: Ig[see (32) and
Ny k41 [see (63)], we only need to consider the brst bve block elements of (6

while the equalities for the remaining ones, i.e., the elements corresponding’ )] Hencg, the nullspace direction corresponding to transla-
the features, are automatically satisbed. tion is not violated.
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Expanding the second constraint (76), we have i,i=1,..., Mg, we compute the pose estimate at each time-
I% -y Jd stepj, comprising the orientation err@®;; and the position
~C lokw 1 T8 errorpij [see (16)]. We compute the NEES for each estimator
] 0; | ] at each time-step, averaged over all Monte-Carlo simulations

[E ey °g — o
k& 1 —

I 0, ) 1) & T =N A

: 03 1 : GNEESJ. = Mi 60” Péeij 60” (85)

_— | | S .

—] °piva 1 °g —] =

°fa  Cg N (86)
(78) j Ms - ij= pij &1

SincelI;l= ;) (78) s equivalent to satisfying the following

wherePsg,; andPy,; are the 3 3 covariance matrices cor-
- =] rJ - responding to orientation and position, respectively, which are
%{j O C 'Goka 1 °8 computed by the blter at thj¢h time step of thath simulation.

o il . =0 (79) The RMSE at each time step is computed as

relationship:

Sty °pia 1 Cg

with HJ = 3] and H] = B! Note that (79) is a BraisE; = = b 567; :50“- (87)
constraint of the formAu = 0, whereu is a function of the Ms i=1
nullspace elements, and hence, is bxed, whileeomprises
block elements of the measurement Jacobian. M= — 1

We compute the optimaA that satisbpes (79) by formulat- PRMSE; = M PijPij - (88)
ing an optimization problem similar to (73) fev = 0, whose =1
optimal solution [see (74)A is computed as These metrics are used in both simulations (see Figs. 2 and 3).

_ T 1..T
A=A Au(uu) u. (80) A. Simulation 1: Application of the Proposed Framework to

After determining the optimalA , we recover the JacobianV-SLAM

elements as In this section, we present the results of applying our pro-
posed OC-VINS to V-SLAM, which we term OC-V-SLAM.

1:2,1:8
II%II = A1) (81) We compared its performance with the standard V-SLAM (Std-
@ — A(1:2,4:6) (82) V-SLAM), as well as the ideal V-SLAM that linearizes about the
P true state’. Specibcally, we computed the RMSE and NEES over
= 1] (83) 20 trials in which the camera-IMU platform traversed a circular

o _ trajectory of radius 5 m at an average velocity of 60 cm/s. The
where the superscripts (i:j, m:n) denote the submatrix spanniggmer4 observed visual features distributed on the interior wall
rows i to jand columns m to n. Hence, the modibPed observatiga circumscribing cylinder with radius 6 m and height 2 m [see

matrix is Fig. 2(c)]. The effect of inconsistency during a single run is de-
i %lj 0 el . (] (84) picted in Fig. 2(f), where the error and correspondiod8unds
ToTed 209 cp cf - of uncertainty are plotted for the rotation about the gravity vec-

Having computed the modibed measurement Jacobian, e AS evident, the Std-V-SLAM gains spurious information,

proceed with the Plter update as described in Section I11-B. %i”ce’ reducing its8bounds of uncertainty, while the Ideal-V-
following this process, we ensure that the EKF does not gam+AM andthe OC-V-SLAM do not. The Std-V-SLAM becomes

information along the unobservable directions of the System_inconsistent on this run as the orientation errors fall outside of
the uncertainty bounds, while both the Ideal-V-SLAM and the
OC-V-SLAM remain consistent. Fig. 2 also displays the RMSE
and NEES plots, in which we observe that the OC-V-SLAM
We conducted Monte-Carlo simulations to evaluate the inaitains orientation accuracy and consistency levels similar
pactof the proposed OC-VINS method on estimator consistentty.the Ideal-V-SLAM, while signibPcantly outperforming the
We applied the proposed methodology to two VINS systemStd-V-SLAM [see Fig. 2(a) and (b)]. Similarly, the OC-V-SLAM
1) V-SLAM (see Section VI-A) and 2) the MSC-KF, whichobtains better positioning accuracy compared with the
performs visual-inertial localization without constructing a magtd-V-SLAM [see Fig. 2(d) and (e)].
(see Section VI-B).
We employed two error metrics in order to evaluate the consis-
tency and the accuracy of the considered estimators, namely. th7§ince the ideal V-SLAM has access to the true state, it is not realizable in
. . . ’ épractice, but we include it here as a baseline comparison.
normalized estimation error squared (NEES) and the. roOt MEaBrhe camera had 45veld of view, withay, = 1px, while the IMU was
squared error (RMSE) [18]. For each Monte-Carlo simulatiomodeled after MEMS quality sensors.

VI. SIMULATIONS
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Fig. 2. Simulation 1: The RMSE and NEES errors for orientation (a)P(b) and position (d)D(e) plotted for all three blters, averaged per time step over 20

Monte-Carlo trials. (c) Camera-IMU trajectory and 3-D features. (f) Error anb@unds for the rotation about the gravity vector, plotted for the brst 100 s of a
representative run.
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Fig.3. Simulation 2: The average RMSE and NEES over 30 Monte-Carlo simulation trials for orientation (a)B(b) and position (c)B(d). Note thaSthekGC-M
attains performance almost indistinguishable to the Ideal-MSC-KF.

B. Simulation 2: Application of the Proposed Framework  to the sensor-platform state, and we form the feature nullspace
to MSC-KF block row for each feature only when itis processed in an update.
; We conducted Monte-Carlo simulations to evaluate the con-

We applied our OC-VINS methodology to the MSC-KF [11], . . .
[22], which we term the OC-MSC-KF. In the MSC-KF frame SiStency of the proposed method applied to the MSC-KF. Speqf—
work, all the measurements to a given OF are incorporat éllly,bwe corl?.?fred th? st.anga'\rﬂdsl\él:s‘g;Kg?';\(jl-sl\/cl:sgl-:KF),r:/y 'tr?
during a single update step of the Plter, after which each OFi§ observability constraine -KF (OC-MSC-KF), whic
marginalized. Hence, in the OC-MSC-KF, we do not maintaift obtained by applying the methodology desgnbed n S_ectlo_n v
the block-rows of the nullspace corresponding to the featurdd well as the IdeaI—MSC—KF, whose Jacobians are linearized
e, Ni,i=1 N see (63)]. Instead, we propagate foral the true states, which we use as a benchmark. We evaluated

ward in time only the portion of the nullspace correspondingfe RMSE and NEES over 30 tnal; (see F'gi 3) in which Fhe
amera-IMU platform traversed a circular trajectory of radius
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Sections VII-B and C), the sensing platform was mounted on
an Ascending Technologies Pelican quadrotor equipped with
a Versalogic Core 2 Duo single board computer. For the out-
door dataset, the sensing platform was head-mounted on a bi-
cycle helmet (see Section VII-D) and interfaced to a handheld
Sony Vaio. We hereafter provide an overview of the system
implementation, along with a discussion of the experimental
setup and results.

A. Implementation Remarks

The image processing is separated into two components: One
to extract and track OFs over short time windows, and one to
extract and match DFs to use in V-SLAM.

The OFs are computed from images using the Shib
Tomasi corner detector [42]. After acquiring imade it
is inserted into a sliding-window buffer ofn images,

%k m+1k m+2,...,kS Wethen extract features from
the brst image in the window and track them pairwise through
the window using the KLT tracking algorithm [32]. To remove
outliers from the resulting tracks, we use a two-point algorithm
to bnd the essential matrix between successive frames [47].
Specibcally, given the blterOs estimated rotation (from the gyro-
scopesO measurements) between inagej, ‘dj , We estimate

the essential matrix from only two feature correspondences.
This approach is more robust than the bve-point algorithm [43]
because it provides two solutions for the essential matrix rather
than up to ten. Moreover, it requires only two data points, and
thus, it reaches a consensus with fewer hypotheses when used
in a RANSAC framework [44].

The DFs are extracted using SIFT descriptors [33]. To identify
global features observed from several different images, we brst
utilize a vocabulary tree (VT) structure forimage matching [45].
Specibcally, foranimage taken at tikhghe VT is used to select

Fig.4. (a) Experimental testbed comprises a light-weight InterSense NavCMYhICh image(s) taken attimes 1,.2. .k 1 correspond to the

IMU and a PointGrey Chameleon Camera. IMU signals are sampled at a fﬁgme physical scene. Among those images that the VT reports

quency of 100 Hz, while camera images are acquired at 7.5 Hz. The dimensiaiss potential matches, the SIFT descriptors from each of them

of the sensing package are approximately 6 cm tall, by 5 cm wide, by 8 cm de ; ; ;

(b) AscTech Pelican quadrotor on which the camera-IMU package was moungei)c? compared with those ffom |malg£n Cr.eat.e tentative feature .

during the indoor experiments (see Sections VII-B and C). correspondences. Thg epipolar constraint is then enforced using
RANSAC and NisterOs pve-point algorithm [43] to eliminate
outliers. Itis important to note that the images used to construct

the VT are not taken along our experimental trajectory, but
5 m at an average speed of 60 cm/s and observed 50 randoper are randomly selected from a set of representative images

distributed features per image. As evident, the OC-MSC-KRa¢ were previously collected in similar environments. This is

outperforms the Std-MSC-KF and attains performance almqstnepcial, since it allows us to build the VT once, ofine, and
indistinguishable from the Ideal-MSC-KF in terms of RMSEg ;se it during experimentation.

and NEES.
B. Experiment 1: Indoor Validation of OC-V-SLAM

VII. EXPERIMENTAL RESULTS In the brst experimental trial, we compared the performance
The proposed OC-VINS framework has been validated eaf OC-V-SLAM with that of Std-V-SLAM on an indoor trajec-

perimentally and compared with standard VINS approachésry. The sensing platform traveled a total distance of 172.5 m,
Specibcally, we evaluated the performance of OC-V-SLAMovering three loops over two Boors in Walter Library, Univer-
(see Section VII-B) and OC-MSC-KF (see Sections VII-C ansity of Minnesota. The quadrotor was returned to its starting
VII-D) on both indoor and outdoor datasets. In our experimetocation at the end of the trajectory, to provide a quantitative
tal setup, we utilized a light-weight sensing platform comprisetharacterization of the achieved accuracy.
of an InterSense NavChip IMU and a PointGrey ChameleonOpportunistic features were tracked using a windownof
camera (see Fig. 4). During the indoor experimental tests (skimages. Everyn camera frames, up to 30 features from all
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Fig. 5. Experiment 1: Estimated 3-D trajectory over the three traversals of the two Roors of the building, along with the estimated positions .ofethe DFs
Projection on thex- andy-axes, (b) projection on the- andz-axes, and (c) 3-D view of the overall trajectory and the estimated features.

provided by the system. Similarly, large differences can be seen
in the estimated covariance for theaxis position estimates
[see Fig. 6(b)]. The Std-V-SLAM estimates a much smaller un-
certainty than the OC-V-SLAM, supporting the claim that the
Std-V-SLAM tends to be inconsistent.

C. Experiment 2: Indoor Validation of the OC-MSC-KF

We validated the proposed OC-MSC-KF on real-world data.
The brst test comprised a trajectory 50 m in length that cov-
ered three loops in an indoor area, after which the testbed was
returned to its initial position. At the end of the trajectory, the
Std-MSC-KF had a position error of 18.73 cm, while the b-
nal error for the OC-MSC-KF was 16.39 cm (approximately
0.38% and 0.33% of the distance traveled, respectively). In or-
der to assess the impact of inconsistency on the orientation
Fig. 6. Experiment 1: Comparison of the estimasederror bounds for atti- F‘_‘Stlmates of both methods, W? used as ground FrUth the rota-
tude and position between Std-V-SLAM and OC-V-SLAM. tion between the brst and last images computed independently
using BLS and feature point matches. The Std-MSC-KF had
Pnal orientation errof0.15 0.23  5.13] degrees for roll,
pitch, and yaw (rpy), while the rpy errors for the OC-MSC-
available DFs are initialized and the state vector is augment€sl were [0.19 0.20  1.32] degrees, respectively. Note
with their 3-D coordinates. The process of initializing DFs [34fhat although the roll and pitch estimates for the two Plters are
is continued until the occurrence of the brst loop closure; froaf comparable accuracy, the error in the yaw estimate of the
that point on, no new DFs are considered and the Plter rel@€-MSC-KF is almost four times smaller than that of the
upon the reobservation of previously initialized DFs and th&td-MSC-KF.
processing of OFs. In addition to achieving higher accuracy, for yaw in particular,
For both the Std-V-SLAM and the OC-V-SLAM, the Pnal pothe OC-MSC-KF is more conservative since it strictly adheres
sition error was approximately 34 cm, which is less tha#02 to the unobservable directions of the system. This is evident in
the total distance traveled (see Fig. 5). However, the estimateath the position and orientation uncertainties. We ploythgis
covariances from the Std-V-SLAM are smaller than those froposition and yaw angle uncertainties in Fig. 7, as representative
the OC-V-SLAM (see Fig. 6). Furthermore, uncertainty estresults. Most notably, the yaw uncertainty of the OC-MSC-KF
mates from the Std-V-SLAM decreased in directions that anecreases and reaches approximately 1(B8), while for the
unobservable (i.e., rotations about the gravity vector); this \&td-MSC-KF, it reduces to 0.8430). This indicates that the
olates the observability properties of the system and dem@®@td-MSC-KF gains spurious (nonexistent) heading information,
strates that spurious information is injected to the Plter. imhich leads to inconsistency. Finally, in Fig. 8, we show the 3-D
particular, Fig. 6(a) highlights the difference in estimated yawajectory along with an overheagty view. It is evident that
uncertainty between the OC-V-SLAM and the Std-V-SLAMthe Std-MSC-KF yaw error impacts the position accuracy, as
In contrast to the OC-V-SLAM, the Std-V-SLAM covariancehe Std-MSC-KF trajectory exhibits a rotation with respect to
rapidly decreases, although no absolute heading informatiortie OC-MSC-KF.
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o Std-MSC-KF ground (which is the sidewalk), which coincides with the true
Orientation Uncertainty - 3o (deg) trajectory. In contrast, the Std-MSC-KF estimates drift over the
dark triangles in the image, which are wading pools Plled with
o water. This shifting of the trajectory represents a slight rotation
gt b around the vertical axis, indicating a violation of the rotation
e gl nullspace directioiN, .
2 Fig. 10 depicts the uncertainty in yaw (corresponding to rota-
, tions about the gravity vector) and along thexis (perpendic-
L ular to the direction of motion). It is clear that the Std-MSC-KF
@) reduces its uncertainty in its heading direction, indicating that
= ) the blter gains spurious information, while for the OC-MSC-
02 Eonion U canaliy:= 5100 KF, the uncertainty in yaw continuously increases, as it should
in the absence of absolute heading information.

yaw (deg)

Time (s)

015 . %

VIIl. CONCLUSION AND FUTURE WORK

il . . . . . . In this paper, we studied one of the root causes of incon-
0 10 L ?ime (S;U &0 €0 70 sistency for linearized estimators applied to VINS. We were
(b) motivated by the fact that in navigation applications, it is of
paramount importance to have not only a precise pose estimate
Fig. 7. Experiment 2: (a) Position and (b) orientation uncertainties ( at each time instant but an accurate assessment of the corre-
bounds) for the yaw angle and tlyeaxis, which demonstrate that the Std‘sponding pose estimate uncertainty as well.
MSC-KF gains spurious information about its orientation. Since both the accuracy and attributed uncertainty of an es-
Ty _ Ot 7 Vo timate are affected by the directions in which information can
- be injected into the system, we began by analytically studying
the observability properties of VINS. We corroborated earlier
Pndings that the true VINS model has four unobservable direc-
tions (corresponding to three d.o.f. global translations and one
d.o.f. rotation about the gravity vector) and, for the brst time,
derived expressions for describing them analytically. Moreover,
i P we showed that for standard Pltering approaches, such as the
m) x(m) EKF, linearization errors can alter the systemOs observability
@) (b) properties, both in the structure and number of the unobservable
Fig.8. Experiment 2: (a) 3-D trajectory and (b) corresponding overheagi ( dlreptlons, anq cause the' e;tlmator to acquire spurious infor-
view. mation about its state. This, in effect, erroneously reduces the
estimator uncertainty, making it overconbdent, and causes drift
D. Experiment 3: Outdoor Validation of the OC-MSC-KF along the unobservable_directions of the system. )
Based on our analysis, we proposed an estimator modibca-
In our Pnal experimental trial, we tested the OC-MSC-KFon that reduces inconsistency by ensuring the VINS observ-
on a large outdoor dataset (approximately 1.5 km in lengthpijity properties are upheld within the framework of existing
Fig. 9(a) depicts the OC-MSC-KF (red) and the Std-MSC-Kfnearized estimators. Specipcally, we proposed simple rules to
(blue) trajectory estimates, along with position markers fropyogify the Jacobians of the system and measurement functions,
a low-grade onboard GPS receiver (green). In order to ass@ggch explicitly enforce that no information would be gained
the accuracy of both Plters, the estimates are overlaid on fBng the unobservable directions. This strategy required main-
overhead image taken from Google-Earth. taining the nullspace of the system®s observability matrix, which
Fig. 9(b) depicts a zoomed-in plot of the starting locatiofye provide in closed form as a function of the state estimates.
(center) for both Plters, along with the Pnal position estimates.| order to validate the accuracy and consistency of the pro-
In order to evaluate the accuracy of the proposed method, B’t%ed OC-VINS framework, we evaluated the performance of
sensing platform was returned to its starting location at the e§dy method on simulated and real-world data. Specibcally, in
of the trajectory. The OC-MSC-KF obtains a Pnal position err@imulation, we studied the NEES and RMSE for three ap-
of 4.38 m (approximately 028 of the distance travelled), while proaches: 1) the standard VINS method that linearizes at the
the Std-MSC-KF obtains a bnal position error of 10.97 m. Thigrent state estimate, 2) the ideal VINS method that linearizes
represents an improvement in performance of approximatgly the true state, and 3) the OC-VINS which ensures the ob-
60%. N servability properties of the system are respected. We observed
The bltersO performance is also illustrated visually in Fig. 9¢ght the standard VINS approach tends to become inconsistent,
which shows a zoomed-in plot of the turn-around point. The OGnq in particular, it reduces its uncertainty about global yaw
MSC-KF estimates remain on the light-brown portion of thg e rotation about the gravity vector) over time. In contrast,
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OC-MS5C-KF

Final Position
e
4

Std-MSC-KF
Final Position

Starting
Position

(b) (c)

Fig. 9. Experiment 3: (a) Outdoor experimental trajectory covering 1.5 km across the University of Minnesota campus. The red (blue) line de@bates the O
MSC-KF (Std-MSC-KF) estimated trajectory. The green circles denote a low-quality GPS-based estimate of the position across the trajectoryn (bpZoo

of the beginning/end of the run. Both plters start with the same initial pose estimate; however, the error for the Std-MSC-KF at the end of the/mm vetile.9

for the OC-MSC-KF, the bnal error is 4.38 m (an improvement of almo&t)66urthermore, the Pnal error for the OC-MSC-KF is approximatel§008 the

distance traveled. (c) Zoomed-in view of the turn-around point. The Std-MSC-KF trajectory is shifted compared with the OC-MSC-KF, which reheapagton t
(light-brown region).

. Orientation Uncertainty - 3o (deg) the proposed approach has improved the consistency perfor-

mance compared with standard VINS methods. In particular, it

g achieves smaller pose-estimate error and maintains more con-

A S pu———= servative uncertainty bounds primarily due to the fact that it

T | JEEEReeE . . . . . respects the observability properties of the system and does not
a 50 100 150 200 250 300 350 400

acquire information along the direction of rotation about gravity.
In our future work, we are interested in investigating addi-
tional sources of the estimator inconsistency. In particular, we
plan to focus on the case when the true pdf of the state has mul-
tiple modes, while we attempt to approximate it as unimodal.

Time (s)
(a)

Position Uncertainty - 36 (m)
30

» —— Std-MSC-KF
E ~ " QC-MSC-KF APPENDIXA
w 10 . S ) )
As the camera-IMU platform moves into new environments,
1 'l 1 L 1 1 J . . . .
% 50 00 10 20 200 30 3o 40 hew features must be added into the map. This entails inter-

TIme (s)

secting the bearing measurements from multiple camera ob-
(b)

servations to obtain an initial estimate of each new featureOs

. . N . . . 3-D location, as well as computing the initial covariance and
Fig. 10. Experiment 3: (a) Orientation uncertainty about the vertical axis ( lati h | K . h
Since rotations about gravity are unobservable, the Std-MSC-KF should f0SS-correlation between the new landmark estimate and the

gain any information in this direction. However, as evident from this plot, thetate. \We solve this as a minimization problem over a parameter
Std-MSC-KF uncertainty reduces, indicating inconsistency. For the OC-MSGactor x — [ T

T T T T
i Aty v X fT 1", wherexs = [x << x
KF, the uncertainty does not decrease, indicating that the OC-MSC-KF respect?h an & ] f S [h Shl h — Isymd] K
the unobservable system directions. (b) Position uncertainty along-kes 'S tN€ VECtor oim camera poses from which the new landmark,

(perpendicular to the direction of motion) for the Std-MSC-KF and OC-MSCE, was observed. Specibcally, we minimize the following cost
KF, respectively. The OC-MSC-KF maintains more conservative estimates f[nction:
[
1 B o

position, indicating that the Std-MSC-KF may be inconsistent.

. C X X
both the ideal VINS method, and the proposed OC-VINS, re- (x) 2ﬂ(x X) 0 0 (x %)
spect the observability properties of the system and do not gain

information about global yaw. We corroborated this analysis

+ zi hi(x))" R !(z hix)) (89
through our experimental trials, in which we demonstrated that ; (=1 1)) Ry (e ()¢ (89)
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whereP,/ is the information matrix (prior) of the state estimates During each iteration, t%parameter Vectlzlor is updated as

across all poses obtained from the bdihe fact that we have Y, Y, D

no initial information about the feature location is denoted by X =x + _ Z. (96)

the block (2,2) element of the prior information being equal to r, Y, E

zero. Them measurements;, i = 1...m, are the perspective after the minimization process converges, we compute the pos-

projection observations of the poitit[see (27)], which are terior covariance of the new state (including the initialized
corrupted by zero-mean white Gaussian noise with covarianggyre) as

Ri = 0%12. 1 1
We obtain an initial guess for the landmark location using any P — T T 97)
intersection method, and then, we iteratively minimize (89). At ) Y,
each iteration, we need to solve the following linear system of . .
! _I W v wing 1l 4 where each element is debned in (93)D(94).
equations:
1] [T11 1 1 L1
P/ +H!R 'Hs HIR 'Hf x HR' APPENDIX B
H]I R 'H, H]I R 'Hf £ HI R ! z In this Appendix, we explicitly derive the block elements of
1 I O o N ® employed in (47)D(50) in Section IV.
A U
Ut C x= E z (99 1 structure ofPy

~ - ) ] As we show in [34],® ; has a specibc structure compris-
wherexs andf are the unknown correction terms for whichn g piock identity and zero matrices [see (44)], along with the
we are solving, and. is the vector of stacked measuremer‘ﬁonowing subblocks that we show in analytic form.
residuals, i.e.,
7—7 h(x) 2. Analytic Expression cby,';”
[1]

]
e zln';] h(x)7 << hp(x)"]'

(91) We begin by computin@sf) from its debnition [see (18),
(20), (41), and (42)] as follows:
R =diag(R4,...,Rn), and Hf = h(x) and Hg = . (1,2)
xs h (x) are the Jacobians of the stacked measurement vec- Py
tor, h (x), with respect to the feature position and camera poses,
respectively [see (29)].

= F(l")tI)f(:”lg)

ko @) I

Applying the ShermapDMqrrisonDqudbury matrix identi.ty, <i>(1’2) g U g (98)
we solve the system by inverting the matrix on the left-hand side k.1 k1 3
of (90) as To—solve (98), we multiply it from the left, by
1 3 —J exp( ¢ 'r@  dr)toget
A B Y, Y, ] 1
T = T (92) 1. ~ - (1,2)
B'" C Y, T, exp . Twoodt Py
1
where ) L1 )
] +e o odt o @
v, -4 Bc'B o k.1
T —1
= Pss PssHs = exp - w dt =
1 1 EIT 1 Ll T 1 L5t
<M M 'Hf HiM 'Hf Hi M '{HPgs q O 1 O
(93) T exp o dt <I><k11’12)
1 | b
Y,= A BC'B" BC' L] L1
1. ~
L] = exp w o dt =
= PsH!M 'Hf HIM 1Hf|:1 (94) t)
InT N 1 TI:1 1 1 d I:'T Iy (1,2)I:| T Ik
Y,=C'BT A BC'B" BC'+C 7 © Can)®i” = C(Far,). (99)
|
= H{M 'H¢ (95)  From (99) and its initial conditio® ;> = 0,
_ T Ly
AN = Pl R oY= Ca) (gt (100
t
SWe employ stochastic cloning ovem time steps to ensure that the cross- _ - C(Ik a, )CT (IT ar, )dT (101)

correlations between the camera poses are properly accounted for [46]. t
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= o (- 4 102 Using this expression and employing the initial condition
- (" )dt. (102) ®,?) = 05, we obtain
3,2 Ijt-’( I;I
3. Analytic Expression oi’fff’ll) <I>,((,’1 ) = C"(sqs) "a C" (**q),)dtds. (108)

ty t

In order to compute the elemedi,”;") analytically, we will . : ,
P eﬁt‘m yhealy Now that we have an expression fﬁﬁ‘?‘”, we proceed with

require an expression fd;vl(f‘11>; hence, we begin by computingthe derivation of*:2) ie
koo E

&+ as follows:

- (5,2) : 5, 3,
. (3.1) (3,1) s (1) @, = F<5")‘I’|(<,12) = ‘I’fff)
(ﬁkyl - (I)k‘l Ijt_!{ T /1 | g T /1
= CT(%ge) "a @ = C (0e) "a L (""ai,)dtds (109)
_ T/l I 4 T/ (1,1) 5
= C'(%ge)*a C'(*04c)®y; with initial condition ®;”’ = 05. Thus
= C'("ge)a CT(*ge)C("an) (5,2) =l T/ I = Tl
R & = C' (¢ sa C (+ dtdsds.
_ Ga C(th) (103) k,1 " “ ( qG) " ( qls) o
where ®a:=%a+Cg [34], and the initial condition is (110)
(3.1) _
P =05 Thulsftl 5. Analytic Expression fok”;")
e = Ca(t) C(Cq,)dt In order to computed,”;", we must Prst determing,’;":
t
] 1 <i>(3'4) —_FBIEY — T (I 111
_ Gé('[) dt C(qul) k,1 k,1 ( qG) ( )
EE{] - with initial condition®!*;") = 0. Employing this relationship,
k .
t k
| o> = C" (" qg)dr. (112)
= IE‘VM GV|1 +Gg6tk C(th) (104) k.1 t, ( G)
wheredt, = (k  1)dt. ) We proceed now with the computation®{’;", i.e.
We now turn our attention td)l((‘?'ll). Using the dePnition in
(41) and the structure @by ; [see (44)], we have that <i>|<(5’14) - F<5~)¢,I((¢vf> - q>|<(3'14)
L (51) 5 g (01 _ g (3.1) (-}
P =F"70 =@, (105) = C"(""gg)drt (113)
= Y
with initial condition®};" = 0;. Thus )
o, . — with initial condition®{;" = 0;. Thus
2 = v, S, 4% t) dt CCa)
- - 2. = CT("ge)dds.  (114)
1 . t t
= °pi, °pi, Cvi Ot + Eegétﬁ C(®a,) Y
. APPENDIXC
_ G G G 2 G G
= "tV e 57l Ppye CCa). (106) e seek] as a solution, to the optimization problem
- L 7 1 .
4. Analytic Expression fo@f{f‘l?) minimize J(q) = ;a4 ;
In order to compute an analytic expr)essionidff),we will subjectto C I‘i_‘(le,kH“ I—_G|g = C(q)C %G’k* ) I%‘g
. 3,2 .
prst need to determine the eleméff1 . Specibcally 0T q=1. (115)
<i>fj”12> = F(?’“)(I),((:"f) Although,q R*, we can bnd a more compact representation

through the feasible set of (115). Using quaternion algébra,

T I o T 10 . . L ]
=C ( k QG) k4 C ( i, )dT. (107) _ See [36] for the_ dePnition of the quaternion multiplication operaticand
t its associated matriced R.
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