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Optimal Sensor Scheduling for Resource-Constrained
Localization of Mobile Robot Formations

Anastasios I. Mourikis and Stergios I. Roumeliotis

Abstract— This paper addresses the problem of resource allo-
cation in formations of mobile robots localizing as a group. Each
robot receives measurements from various sensors that provide
relative (robot-to-robot) and absolute positioning information.
Constraints on the sensors’ bandwidth, as well as communication
and processing requirements, limit the number of measurements
that are available or can be processed at each time step. The
localization uncertainty of the group, determined by the covari-
ance matrix of the equivalent continuous-time system at steady
state, is expressed as a function of the sensor measurements’
frequencies. The trace of the weighted covariance matrix is
selected as the optimization criterion, under linear constraints
on the measuring frequency of each sensor and the cumulative
rate of the Extended Kalman filter updates. This formulation
leads to a convex optimization problem (semidefinite program)
whose solution provides the sensing frequencies, for each sensor
on every robot, required in order to maximize the positioning
accuracy of the group. Simulation and experimental results are
presented that demonstrate the applicability of this method and
provide insight into the properties of the resource-constrained
cooperative localization problem.

Index Terms— Robot Formations, Multirobot Localization,
Resource-constrained Localization, Sensor Scheduling, Semidef-
inite Program,

I. I NTRODUCTION

A large number of applications require robots to move
in a coordinated fashion, in order to accomplish a certain
task (e.g., object moving [1], surveillance [2], platooning for
efficient transportation systems [3], formation flying [4], and
spacecraft formations [5]). In particular, the case in which
the members of a robotic team maintain constant relative
positions as they traverse the space, offers certain advantages,
such as simplified motion control, collision avoidance, and the
ability to collectively manipulate objects in the environment.
Due to the increased versatility that robot formations provide,
they have recently attracted significant interest in the mobile
robotics community.

In this paper, we address the problem ofCooperative Local-
ization(CL) in robot formations. Several estimation techniques
have been applied to the CL problem, such as Extended
Kalman Filtering (EKF) [6], Least Squares Estimation [7],
Particle Filtering [8], etc. In this paper, we study the problem
of determining sensing strategies that maximize localization
accuracy, and for this reason employ an EKF approach, similar
to the one presented in [6]. The EKF was chosen for our
work because it encompasses a well-studied mechanism, the
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Riccati equation, for propagating the covariance matrix of
the pose estimates through time. Thus, it provides us with
a theoretically sound metric of localization accuracy.

Roumeliotis and Bekey [6], have shown that proprioceptive
measurements from the robots’ odometry sensors can be
processed locally by each robot to propagate its own pose
estimates. However, every time an exteroceptive measurement
is received by any of the robots in the formation,all robots
must communicate their current pose estimates. Additionally,
the measuring robot must transmit its new measurement in
order for the EKF update to be performed. Therefore, every
exteroceptive measurement that is processed incurs a penalty
in terms of use of both communication bandwidth and CPU
time, as well as in terms of power consumption. In a realistic
scenario, the robots of a team will need to allocate com-
putational and communication resources to mission-specific
tasks and this may force them to reduce the number of mea-
surements they process for localization purposes. Moreover,
the finite battery life of robots imposes constraints on the
amount of power that can be used for tracking their position.
The limitations on the available resources may thus prohibit
the robots from registering, transmitting, and processing all
measurements available at every time instant.

It is clear that whether or not an exteroceptive measurement
should be processed in an EKF update, is determined by a
tradeoff between the value of the localization information it
carries, and the cost of processing it. In this paper, we assume
that the robots process each of the available measurements at
a constant frequency, and we seek theoptimal measurement
frequencies, in order to attain the highest possible positioning
accuracy. The key element in our analysis is the derivation
of an equivalent continuous-time system modelfor the robot
team, whose noise parameters are functionally related to the
frequency of the measurements. This enables us to express the
covariance matrix of the pose errors as afunctional relation
of the frequencies, and thus to formulate the problem of
determining the optimal sensing strategy as an optimization
one. An important result that we prove is that this is aconvex
optimization problemand therefore it is possible to compute
a globally optimal solution, using very efficient algorithms.

In addition to satisfying application-imposed constraints on
communication, power, and processing resources, the results
of this work may also be employed to reduce the cost of a
robot team design. Specifically, if measurements from certain
active sensors (e.g., lasers) are processed at a low rate, it may
be possible to replace these particular sensors with slower
(and cheaper) ones. Finally, in the event that the utilization
frequency of a specific sensor is determined, through the
optimization process, to be approximately zero, this sensor
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can then be excluded from the payload of the host robot, thus
reducing the total cost for equipping the robot group.

The rest of the paper is structured as follows: In the
following section, we outline relevant approaches that appear
in the literature. In Section III, the formulation of the local-
ization problem is presented. In Section IV, we show how
the measurement frequencies are related to the localization
accuracy of the robots. Section V describes the formulation of
the optimization problem, and in the following sections, we
present experimental and simulation results that demonstrate
the application of this method to several example cases.
Finally, in Section VIII the conclusions of this work are drawn
and future research directions are suggested.

II. RELATED WORK

In [9], [10], [7], localization algorithms for recovering
the relative poses between the robots in a formation, using
omnidirectional cameras as the primary sensors, are described.
The authors propose suboptimal estimation algorithms for
achieving efficient implementations. These are derived by
either considering that each robot localizes using only rela-
tive position measurements to a “leader” robot in the team,
or by decoupling the problems of orientation and position
estimation. In presenting these methods, the trade-offs that
exist between localization accuracy and the overhead for com-
municating and processing relative position measurements are
pointed out by the authors. However, no analysis is conducted
to reveal the effect of the varying available resources on
positioning uncertainty, and no optimal sensing strategies are
proposed.

The impact of thegeometry of a robot formation on
localization accuracy has been addressed in previous work.
Specifically, the case of astatic formation is studied in the
work of Zhang et al. [11]. The authors consider formations
of robots that receive absolute position measurements, as well
as robot-to-robot measurements (i.e., relative range, bearing,
or orientation). A study of the structure of the measurement
equations shows that the information matrix corresponding to
the exteroceptive measurements is a function of the relative
positions of the robots, and a gradient-based optimization
technique is employed to determine local maxima of the trace
of this matrix. However, due to the non-concavity of the
objective function, the selected optimization method does not
guarantee global optimality of the solution. The effects of
formation geometry in the case ofmoving robots is studied
in [12]. In that work, an evolutionary optimization algorithm
is proposed for determining the optimal relative positions of
the robots in a moving formation. The optimality criterion
is the steady-state position uncertainty of the team, and it
is shown that genetic algorithm-based minimization is an
appropriate tool for this problem, due to the existence of
multiple local minima in the objective function. In [13], a
robot team comprised of one master and two slave robots
is considered, and aportable landmarks-basedtechnique is
adopted for localization, i.e., at each time instant at least one
robot remains stationary. The authors propose a method for
determining the optimal relative positions between the robots,

and identify configurations that yield the maximum possible
localization accuracy at the end of a straight-line path.

We note that in all aforementioned approaches the con-
straints imposed by the available computational and commu-
nication resources are not taken into consideration. In [14],
particle filtering-based localization with limited processing
power is examined. The authors study the case where, due
to restricted CPU capabilities,k > 1 measurements become
available in the time interval necessary to update the entire
particle set. In an effort to avoid completely discarding these
measurements, an approximate real-time particle filter is pro-
posed, that expresses the belief function of the robot pose as
a mixture ofk belief functions. The sample set is separated
in k subsets, and each of the measurements is employed to
process one subset. This approach is well-suited for single-
robot localization, where the dimension of the state vector
is small, and localization is possible with a relatively small
number of particles.

Our work is more closely related to work in the Sensor
Networks community, that aims at determining the optimal
scheduling of measurements received by astaticset of sensors,
in order to attain the best possible estimation results. Repre-
sentative examples of this line of research can be found in [15],
[16], [17], while a similar analysis, in the context of designing
observers for dynamical systems, is presented in [18], [19],
[20], [21]. The defining assumption in all these cases is that
the observation model switchessequentiallybetween modes
determined by the candidatesubsetsof sensors, afinitenumber
of times during a certain time interval. This problem amounts
to determining the optimal measurement ordering, so as to
maximize the achieved estimation accuracy and/or minimize
the consumed energy [17]. For this problem, tree-search algo-
rithms (e.g., [15], [16]), as well as optimization methods in
the continuous domain (e.g., [18]-[21]), have been proposed.

The main limitation of these approaches, that consider a
finite time-horizon (or equivalently a finite number of mea-
surements), is that the complexity of determining the optimal
sensing strategy increases, often exponentially (e.g., in tree-
search based algorithms) as the time-span of sensor operation
increases. In contrast, in our work we consider thefrequencies
of the measurements as the design variables, and we are
interested in thesteady-stateestimation accuracy. The benefit
of this formulation is that the optimal strategy has to be
determined onlyonce, potentially off-line, for a given spatial
configuration of the sensors, and the computational cost of
determining the optimal solution isindependentof the time
duration of the sensor’s operation.

A formulation of the scheduling problem that also con-
siders the infinite time-horizon problem has been presented
in [22], [23]. In that work, a probability density function
(pdf) is employed to describe the time instants at which each
measurement is performed. An upper bound on theexpected
steady-state covarianceof the target’s position estimate is then
computed as a function of the pdf’s parameters. Employing
a numerical optimization routine, it is possible to minimize
this upper bound, and the resulting pdf is used as the opti-
mal sensing strategy. Despite its mathematical elegance, this
approach only aims at optimizing an upper bound (this is the
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case also in [20]). Since no means of determining the looseness
of the bound are available, we cannot have any guarantee of
optimality, or a measure of suboptimality, when this method
is used.

Our work differs from the aforementioned approaches, in
that we consider a team of robots thatmovewhile maintaining
their formation, and localize in a global coordinate frame. The
steady-state covariance matrix of the robots’ localization is ex-
pressed as a function of the frequencies of all the exteroceptive
measurements, and we seek to select the optimal frequencies,
in order to attain the best possible positioning accuracy for
the team. The constraints imposed by the available resources
are taken into account, and their effect on the attainable
localization accuracy is examined.

III. PROBLEM FORMULATION

We consider a team ofN robots that move in formation,
employing a suitable control strategy in order to maintain
a constant heading and constant relative positions among
them. The spatial configuration of the robots is assumed to
be given, defined, for example, by the application at hand.
All robots are equipped with proprioceptive sensors (such as
wheel encoders) that measure their translational and rotational
velocities at every time step. Additionally, some (or all) of
the robots are equipped with exteroceptive sensors that enable
them to measure: (i) distance between two robots, (ii) relative
bearing between two robots, (iii) relative orientation between
two robots, (iv) absolute position of a robot, and (v) absolute
orientation of a robot. The measurements received from all the
sensors are processed using an Extended Kalman Filter (EKF),
in order to estimate the pose of the robots with respect to a
global frame of reference.

Clearly, due to cost, reliability, or other design considera-
tions, it may not be desirable for all robots to be equipped with
identical sensors. This potential heterogeneity of the team is
incorporated naturally in our approach, under the restriction
that at least onerobot has access, at least intermittently,
to absolute position information, such as those provided by
a GPS or from observing previously mapped features. This
constraint is imposed because our goal is to minimize the
steady-statelocalization uncertainty of the robots in a global
coordinate frame. It is well known [24], [25], that when no
absolute position information is available to a robot team, the
system is unobservable, and at steady state, the uncertainty
of the robots continuously increases. The assumption for the
availability of absolute positioning information could be raised
if we studied a scenario in which onlyrelative localization was
sought. For that scenario, robot-to-robot measurements would
(under certain conditions) be sufficient, in order to attain a
bounded steady-state error covariance, and our approach would
be applicable.

Since the processing, communication, and power resources
allocated for localization are inevitably limited, it may not be
possible to process all available exteroceptive measurements at
every time instant. In this paper, we assume that measurements
can be processed at a maximum total rate offtotal throughout
the robot team, and our goal is to determine the frequency

at which each individual sensorshould be utilized, in order
to attain the highest possible localization accuracy. Before
describing the details of our method for obtaining the optimal
measurement frequencies, we now present the system and
measurement models used for pose estimation.

A. Propagation

Consider N non-holonomic robots moving in 2D. The
discrete-time kinematic equations for thei-th robot are:

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (1)

yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (2)

φi(k + 1) = φi(k) + ωi(k)δt, i = 1 . . . N (3)

whereVi(k) and ωi(k) denote the translational and rotational
velocity of thei-th robot at time stepk, respectively, andδt is
the odometry sampling period. In the Kalman filter framework,
the position estimates of roboti are propagated using the
measurements from its proprioceptive sensors:1

x̂ik+1|k = x̂ik|k + Vmi
(k)δt cos(φ̂ik|k) (4)

ŷik+1|k = ŷik|k + Vmi (k)δt sin(φ̂ik|k) (5)

φ̂ik+1|k = φ̂ik|k + ωmi (k)δt, i = 1 . . . N (6)

whereVmi (k) andωmi (k) are the measurements of the robot’s
translational and rotational velocity, respectively. By lineariz-
ing Eqs. (1) - (3) the error propagation equation for the robot’s
pose is readily derived:



x̃ik+1|k
ỹik+1|k

φ̃ik+1|k


 =




1 0 −Vmi (k)δt sin(φ̂ik|k)
0 1 Vmi (k)δt cos(φ̂ik|k)
0 0 1







x̃ik|k
ỹik|k

φ̃ik|k




+




δt cos(φ̂ik|k) 0
δt sin(φ̂ik|k) 0

0 δt




[
wVi (k)

wωi (k)

]

⇔ X̃ik+1|k = Φi(k)X̃ik|k + Gi(k)Wi(k) (7)

wherewVi (k) andwωi (k) are white, zero-mean, Gaussian and
uncorrelated noise sequences of varianceσ2

Vi
andσ2

ωi
affecting

the linear and rotational velocity measurements, respectively.
Considering that the robot team moves in a predefined

formation, all robots are required to head towards the same
direction, and move with the same velocity, both of which are
known constants. Assuming that a motion controller is used in
order to minimize the deviations from the desired formation,
and that the accuracy of the velocity measurements and
orientation estimates is sufficiently high, we can replace the
quantitiesVmi (k), ωmi (k), and φ̂ik|k in the above expressions
by their respective predefined values,Vo, ωo andφo. Thus the
time-varying matricesΦi(k) and Gi(k) can be approximated

1In the remainder of the paper the subscript`|j refers to the estimate of a
quantity at time step̀ , after all measurements up to time-stepj have been
processed. The “hat” symbol,b , is used to denote the estimated value of a
quantity, while the “tilde” symbol,e , is used to signify the error between
the actual value of a quantity and its estimate. The relationship between a
variable,x, and its estimate,bx, is ex = x− bx.
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by theconstantmatrices:

Φi(k) '



1 0 −Voδt sin(φo)
0 1 Voδt cos(φo)
0 0 1


 = Φo (8)

and

Gi(k) '



δt cos(φo) 0
δt sin(φo) 0

0 δt


 = Go (9)

With this approximation, the error-state covariance propaga-
tion equation for thei-th robot can be written as:

Pik+1|k+1 = ΦoPik+1|kΦT
o + GoQiG

T
o (10)

whereQi = diag(σ2
Vi

, σ2
ωi

).
At this point, a comment regarding our selection of the

state propagation model is due. In the preceding expressions, a
simple non-holonomic kinematic model for the robots’ motion
is employed, because it is appropriate for the robots used in
our experiments (cf. Section VI). However,any other motion
model could be employed in our analysis, such as that of
skid-steered vehicles [26], that of four-wheeled vehicles [3],
or a more accurate kinematic model that assumes constant
rotational velocity during an integration step [27]. If a different
motion model is used, the structure of the Jacobians (cf.
Eqs. (8) and (9)) will be different, but the approach for
determining the optimal measurement frequencies remains
unchanged.

The state vector for the entire robot team,X, is defined as
the 3N × 1 vector comprising of the poses of all the robots,
Xi = [xi yi φi]T , i = 1 . . . N . Therefore, the covariance
propagation equation can be written as:

Pk+1|k = ΦPk|kΦ
T + Q (11)

where P`|k = E{X̃`|kX̃T
`|k), Φ = Diag(Φo), and Q =

Diag(GoQiG
T
o ) are3N × 3N block-diagonal matrices.

B. Update

The robots of the team employ the measurements recorded
by their exteroceptive sensors, in order to perform pose
updates in the EKF. Thei-th exteroceptive measurement is
described by the (generally nonlinear) model

zi(k) = h(X(k), ni(k)) (12)

whereni(k) is a Gaussian noise vector. In the EKF framework,
we employ linearization, to obtain the measurement error
equation

z̃i(k) = Hi(k)X̃(k) + Γi(k)ni(k) (13)

where

Hi(k) = ∇X(k)h(X(k), ni(k))
∣∣∣bX(k),0

(14)

and

Γi(k) = ∇ni(k)h(X(k), ni(k))
∣∣∣bX(k),0

(15)

Clearly, the Jacobian matricesHi(k) and Γi(k) are time-
varying, due to the dependence on the state estimates. For

many practical observation models, the Jacobians are only
functions of the robots’ orientation and the relative poses
between robots, both of which are, in the case of formation
motion, approximately constant. We can thus employ the
constantapproximations

Hi(k) ' ∇X(k)h(X(k), ni(k))
∣∣∣
Xo(k),0

= Hio (16)

and

Γi(k) ' ∇ni(k)h(X(k), ni(k))
∣∣∣
Xo(k),0

= Γio (17)

where Xo(k) is the desired state of the formation at time
stepk. To demonstrate the application of our method based
on concrete examples, we hereafter consider five types of
exteroceptive measurements:

1) Relative range measurements:If robot i is equipped with
a sensor capable of measuring the distance of other robots with
respect to itself, such as a laser scanner, then the distance
measurement between robotsi and j is:

zρij
(k) =

√
∆xij(k)2 + ∆yij(k)2 + nρij (k) (18)

where∆xij = xj − xi, ∆yij = yj − yi, andnρij is a white,
zero-mean, Gaussian noise process, whose standard deviation,
σρi , is determined by the characteristics of the sensor. By
linearizing, the measurement error equation is determined:2

z̃ρij (k) = Hρij (k)X̃(k) + nρij (k)

=
[

0 .. Hρi .. Hρj .. 0
]
X̃ + nρij (19)

whereHρij (k) is a 1× 3N matrix, whosei-th andj-th block
elements are, respectively:

Hρj (k) = −Hρi (k) =
[ c∆xij(k)

ρ̂ij(k)

c∆yij(k)

ρ̂ij(k)
0

]
(20)

In the preceding expression,̂∆xij(k), ∆̂yij(k) and ρ̂ij(k)

represent the estimated differences in thex andy coordinates,
and the estimated distance between robotsi andj, respectively.
By replacing the estimates with the values corresponding to the
desired formation of the robots, we can derive the following
approximations:

Hρi (k) '
[ −∆xijo

ρijo

−∆yijo

ρijo
0

]
= Hρio

(21)

Hρj (k) '
[

∆xijo

ρijo

∆yijo

ρijo
0

]
= Hρjo

(22)

For practical reasons, it may not be possible for all robots
to measure relative distances to all other robots in the team.
For example, some robots may not be equipped with range
sensors, or certain measurements may be impossible due to
occlusions in the formation. In order to describe the set of all
possible measurements we define the set

Hρ = {Hρij | robot i can measure range to robot j}

2In the following derivations, the time step indices are omitted wherever
this does not cause confusion. This is done in order to make the notation less
cumbersome.
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2) Relative bearing measurements:Assuming roboti mea-
sures the relative bearing towards robotj, the corresponding
measurement equation is:

zθij
(k) = Atan2(∆yij(k),∆xij(k))− φi(k) + nθij

(k) (23)

wherenθij
(k) is a white, zero-mean, Gaussian noise process,

with standard deviationσθi . Linearization yields the following
measurement error equation:

z̃θij
(k) = Hθij

(k)X̃(k) + nθij
(k)

' Hθijo
X̃(k) + nθij

(k)

=
[

0 .. Hθio
.. Hθjo

.. 0
]
X̃ + nθij

(24)

where we have once again approximated the time-varying
position estimates with their constant, desired values. Note
that Hθijo

is a 1 × 3N matrix, whosei-th and j-th block
elements are, respectively:

Hθio
=

[
∆yijo

ρ2
ijo

−∆xijo

ρ2
ijo

−1
]

(25)

Hθjo
=

[ −∆yijo

ρ2
ijo

∆xijo

ρ2
ijo

0
]

(26)

Similarly to the case of range measurements, we describe all
possible bearing measurements with the set

Hθ = {Hθij | robot i can measure bearing to robot j}
3) Relative orientation measurements:If robot i measures

the relative orientation of robotj, the corresponding measure-
ment equation is:

z∆φij (k) = φj(k)− φi(k) + n∆φij (k) (27)

wheren∆φij (k) is a white, zero-mean, Gaussian noise process,
with standard deviationσ∆φi . The measurement error equation
is:

z̃∆φij (k) = H∆φijX̃ + n∆φij (k)

=

[
.. [0 0 − 1]︸ ︷︷ ︸

ith block

.. [0 0 1]︸ ︷︷ ︸
jth block

..
]
X̃ + n∆φij (k)

All possible relative orientation measurements are described
by the set

H∆φ = {H∆φij | robot i can measure rel. ori. of robot j}
4) Absolute orientation measurements:If the i-the robot of

the team is equipped with an absolute orientation sensor, such
as a compass, the corresponding measurement equation is:

zφi (k) = φi(k) + nφi (k) (28)

wherenφi is a white, zero-mean, Gaussian noise process, with
standard deviationσφi . In this case the measurement error
equation is:

z̃φi (k) = HφiX̃(k) + nφi (k)

=
[

0 .. [0 0 1]︸ ︷︷ ︸
ith block

.. 0
]
X̃(k) + nφi (k) (29)

All possible absolute orientation measurements are described
by the set

Hφ = {φi| robot i can measure absolute orientation}

5) Absolute position measurements:In this work, the robots
localize with respect to a global coordinate frame. Therefore,
in order for the position errors to remain bounded for all times,
it is necessary that at least one of the robots has access to
absolute position measurements. The measurement equation
for the i-the robot is

zpi
(k) =

[
xi(k) yi(k)

]T + npi
(k) (30)

where npi
(k) is a 2 × 1 white, zero-mean, Gaussian noise

process, with covariance matrixRpi . The measurement error
equation for this type of measurement is

z̃pi
(k) = Hpi

X̃(k) + npi
(k)

=
[

02×3 .. [I2 02×1]︸ ︷︷ ︸
ith block

.. 02×3
]
X̃(k) + npi

(k)

whereHpi is a 2× 3N matrix, In denotes then× n identity
matrix, and0m×n is a m× n matrix of zeros.

In order to describe all possible absolute position measure-
ments we define the set

Hp = {Hpi | robot i can measure absolute position}
C. The Riccati recursion

The exteroceptive measurements recorded by the robots at
each time instant are processed by the EKF, in order to update
the robots’ pose estimates. The covariance update equation of
the EKF is

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
k S−1

k HkPk+1|k (31)

whereSk = HkPk+1|kHT
k + Rk. In these equationsHk is

the measurement matrix for the system at time stepk, andRk

is the corresponding measurement-noise covariance matrix.
In most realistic cases, when only a subset of sensor

measurements, often varying, can be processed at each time
instant,Hk and Rk will not remain constant, and will pos-
sibly vary even in size at each time step. Specifically, if
at time stepk a total of mk measurements are performed,
Hk will comprise mk block rows belonging in the set
H = Hρ

⋃Hθ

⋃H∆φ

⋃Hφ

⋃Hp, andRk will be a block-
diagonal matrix whose elements can be defined accordingly.

Combining Eqs. (11) and (31) yields the Riccati recur-
sion [28]

Pk+2|k+1 = Φ
(
Pk+1|k −Pk+1|kHT

k S−1
k HkPk+1|k

)
ΦT

+ Q (32)

that describes the discrete-time evolution of the covariance
of the pose estimates for the robot team. If the system is
observable, then after undergoing an initial, transient phase,
the covariance matrix will enter a steady state, where its
elements will fluctuate around some mean value (cf. Fig. 1).
Had we been able to provide a description of this mean
value as a function of the measurement frequencies, then
we would have a means of directly relating the localization
performance of the system to these frequencies. However,
there exist no analytical tools for describing the mean value
of a Riccati recursion with time-varying coefficients. To solve
this problem, we propose a transition from the discrete-time
system model to a continuous-time one, as described in the
following section.
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IV. T HE RICCATI DIFFERENTIAL EQUATION

In this section, we present the main idea of this paper, which
enables us to formulate a convex optimization problem for de-
termining the optimal frequencies at which the measurements
of the available sensors should be utilized. Intuitively, the rate
at which a given sensor is providing measurements determines
the amount of localization information this sensor contributes
per unit of time. If we view this as acontinuous information
flow, then the frequency of the measurements determines the
magnitudeof the flow. This key idea allows us to express the
steady-state localization accuracy of the robots as an analytical
function of the measurement frequencies, by employing a
transition to the continuous-time domain.

In particular, in [28] it is shown that given a discrete-time
Riccati recursion, we can derive a continuous-time Riccati dif-
ferential equation that isequivalent, in the sense that the state
estimates’ accuracy in both cases is the same. Specifically, if
state observations whose covariance isRd are performed with
frequencyf in the discrete-time description, then the equiv-
alent continuous-time measurements’ covariance function is
E{nc(t)nT

c (τ)} = Rcδ(t−τ), wherenc(·) is a white Gaussian
noise process,δ(·) denotes the Dirac delta function, and3

Rc = f−1Rd. We observe that the covariance matrix of the
continuous-time model is scaled by the inverse measurement
frequency, to ensure a constant information influx. By a similar
argument, we can derive the appropriate value of the system
noise covariance matrix.

We now employ the idea of deriving an equivalent
continuous-time Riccati, in order to formulate aconstant
coefficientdifferential equation for the covariance of the pose
estimates in the robot team. Specifically, since each of the
measurements in the setH occurs at a constant frequency
(generally different for each measurement), we can formulate
a continuous-time model, whereall the measurements occur
continuously, and the covariance of each measurement is
scaled by the inverse of its frequency. In the continuous-time
formulation, the measurement matrixHc will be a constant
matrix comprising of all the block rows in the setH. The
covariance matrix of the measurements,Rc, will be a (block)
diagonal matrix, with elements theweightedcovariances of the
discrete-time measurements. For example, if roboti receives
absolute orientation measurements with covarianceσφi at
a rate offφi , then the continuous-time covariance function
corresponding to this measurement isRφic

δ(t− τ), where

Rφic
= σ2

φic
=

σ2
φid

fφi

=
1

fφi

Rφid
(33)

We can now use the Riccati differential equation in order to
describe the time evolution of the covariance of the robots’
pose estimates. We note that the state transition matrix for the
system in continuous time is equal toFc = Diag(Fo), where

Fo =




0 0 −Vo sin(φo)
0 0 Vo cos(φo)
0 0 0


 (34)

3The subscriptsc and d denote continuous- and discrete-time quantities,
respectively.

while the matrix describing the influx of uncertainty in the
continuous-time system is equal toQc = Diag(Goc

Qic
GT

oc
)

with

Goc
=




cos(φo) 0
sin(φo) 0

0 1


 (35)

and Qic
= f−1

oi
diag(σ2

Vi
, σ2

ωi
). In this last expression,foi

denotes the rate at which roboti samples its proprioceptive
sensors. Using the previous relations, the Riccati differential
equation is written as

Ṗ(t) = FcP(t) + P(t)FT
c + Qc −P(t)CP(t) (36)

where we have denoted

C = HT
c R−1

c Hc (37)

The first two terms in Eq. (36) describe the effect of the
dynamics of the system on the state covariance matrix, the
term Qc accounts for theincrease in uncertaintydue to the
existence of system noise, while the termP(t)CP(t) describes
the influx of localization informationdue to the exteroceptive
measurements. If we denote byM the total number of avail-
able exteroceptive measurements (i.e., the number of elements
in H), by fi the frequency of thei-th measurement inH, by
Hi the corresponding measurement matrix, and byRdi the
associated covariance matrix, thenC can be rewritten as

C =
M∑

i=1

fiH
T
i R−1

di
Hi =

M∑

i=1

fiCi (38)

We can therefore see that the elements ofC are linear combi-
nationsof the measurement frequencies. This is an important
observation, because it allows us to express the problem of
determining the optimal measurement frequencies as a convex
optimization problem, as shown in the next section.

We note that the Riccati equation in (36) is aconstant-
coefficientdifferential equation, and its steady-state solution,
Pss, can be found by solving the Algebraic Riccati Equation
(ARE)

FcPss + PssFT
c + Qc −PssCPss = 0 (39)

The solution is a function of the matrix coefficients of the
ARE [29], and therefore the steady-state covariance of the
pose estimates for the robots of the formation is afunction of
the measurement frequencies, which appear inC. To be more
precise,Pss is the steady-state covariance of the equivalent
continuous-time system, whose parameters depend on the
measurement frequencies. In Fig. 1, we present the time-
evolution of the diagonal elements of the covariance matrix in
theactualdiscrete-time system (solid lines) and compare them
to the theoretical continuous-time computed values (dashed
lines) computed by solving Eq. (39). For these simulations,
a team of 3 robots, that have access to all four types of
exteroceptive measurements, discussed in Section III-B, was
considered. The relative positions, as well as the measurement
frequencies for all robots were selected randomly.

It becomes clear that, at steady state, the actual values of the
covariance fluctuate around the theoretically predicted values.
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Fig. 1. True covariance vs. theoretical values. The diagonal elements of the
covariance matrix corresponding to the position of the 3 robots are plotted.

Thus, we can employ the continuous-time analysis in order
to study the properties of the localization accuracy in the
formation.

V. M EASUREMENTFREQUENCYOPTIMIZATION

In this section, we formulate the problem of determining
the optimal measurement frequencies as a convex optimization
problem. Our goal is to determine the optimal frequencies for
all available measurements, i.e., these frequencies that will
yield the best possible localization results under given con-
straints. Clearly, in order to improve the localization accuracy
of the formation, the steady-state covariance matrix should be
minimized. However,Pss is a 3N × 3N matrix, and several
criteria of optimality can be defined based on it (e.g., its
determinant, its maximum eigenvalue, its trace). A difficulty
that arises is that while the elements ofPss that correspond
to the position estimates of the robots have units ofm2, the
elements that correspond to orientation have units ofrad2.
Clearly, we cannot treat these two types of elements equally.
One approach is to introduce a weighting matrixW, and try
to minimize a function of the weighted matrixWPssWT .
However, any selection ofW that would incorporate both
the orientation and the position uncertainty in the objective
function would bead-hocand thus difficult to motivate. We
have therefore selected to focus only on the diagonal elements
of Pss that correspond to the position estimates of the robots,
while ensuring that the orientation uncertainty of each robot
does not exceed a thresholdεφ (this is necessary, in order to
guarantee small linearization errors). We thus formulate the
following optimization problem:

minimize trace(WpPssWT
p )

subject to FcPss + PssFT
c + Qc −PssCPss = 0

C =
M∑

i=1

fiCi

0 ≤ fi ≤ fimax , for i = 1 . . .M (40)

M∑

i=1

fi ≤ ftotal

eT
3iPsse3i ≤ εφ, i = 1 . . . N

In the preceding expressionsei denotes thei-th canonical basis
vector in the3N -dimensional space, and the weighting matrix
is defined as

Wp =
N∑

i=1

(
e3i−2e

T
3i−2 + e3i−1e

T
3i−1

)
(41)

This definition means that the objective function is the sum
of all the diagonal elements ofPss that correspond to the
positions of the robots. The linear constraints on the measure-
ment frequencies express the facts that: (i) each sensor has a
maximum sampling rate,fimax , that cannot be exceeded, and
(ii) the total frequency of the measurements cannot exceed a
threshold,ftotal, which is determined by the available com-
munication and computational resources. We note that more
general constraints can be incorporated in this formulation. For
example, different types of measurements may have different
costs associated with them, and this can be easily taken
into consideration, by introducing weights for each of their
frequencies. Additionally, if the positioning accuracy of some
robots in the team is of higher importance than that of others,
this can be easily taken into account by introducing weights,
i.e., by defining a weighting matrix of the form

Wwp =
N∑

i=1

wi

(
e3i−2e

T
3i−2 + e3i−1e

T
3i−1

)
(42)

For clarity of presentation, the case of equal weights for all
robots and all frequencies will be considered in the remainder
of the paper.

In [30], it is shown that the steady-state solution of the ARE
in Eq. (39) is aconvexfunction of the matrixC. Because
the elements ofC are linear functions of the measurement
frequencies (cf. Eq. (38)), we conclude thatPss is a convex
function of the measurement frequencies. As a result, the
optimization problem (40) is a convex one (the objective is a
convex function, and the feasible set is convex). This is a very
important property, because it guarantees that the problem has
a unique global minimum which can be found using standard
gradient-based optimization techniques [31].

Our initial approach to solving the optimization prob-
lem (40) was to employ an iterative gradient-based
constrained-optimization method, in which at every iteration
an instance of the ARE is solved to providePss [32]. The
method we used for solving the ARE was the one based on
the Hamiltonian matrix [29]. Despite the simplicity of this
approach, the numerical experiments we conducted indicated
that due to ill-conditioning of the Hamiltonian matrix in cases
where the total frequency of measurements is low, the ARE
solver was often unable to provide a solution with sufficient
accuracy. This caused the optimization procedure to suffer
from a slow convergence rate, and to produce inaccurate
results. Additionally, enforcing the constraintseT

3iPsse3i ≤
εφ, i = 1 . . . N in (40) had to be implemented in anad-hoc
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manner, by introducing an additional cost term in the objective,
to penalize solutions with large orientation uncertainties.

In order to overcome the numerical problems and treat
the constraints on the orientation uncertainty in a more
elegant way, we reformulate the optimization problem as a
Semi-Definite Programming (SDP) problem, which exhibits
substantially better numerical characteristics. In particular,
the following Lemma holds:

Lemma 1:The original problem in (40) is equivalent to the
following one:

minimize trace(WpPWT
p )

subject to
[ P I3N

I3N J

]
º 0

[
−JFc − FT

c J +
∑M

i=1 fiCi JQ1/2
c

Q1/2
c J I3N

]
º 0

0 ≤ fi ≤ fimax , for i = 1 . . .M (43)
M∑

i=1

fi ≤ ftotal

eT
3iPe3i ≤ εφ, i = 1 . . . N

where the variables in this problem are the matricesP and
J, belonging to the positive semidefinite coneS3N

+ , and the
measurement frequencies,fi, i = 1 . . . M . In the above
expressions the symbolº denotes matrix inequality in the
positive semidefinite sense, andQ1/2

c is the symmetric matrix
square root ofQc.

Proof:
We first note that by employing the properties of the Schur

complement, the first inequality constraint in problem (43) is
written as:

P º J−1 (44)

while the second matrix inequality is equivalent to:

−JFc − FT
c J +

M∑

i=1

fiCi − JQcJ º 0 (45)

Using these relations, problem (43) is written equivalently as

minimize trace(WpPWT
p )

subject to J−1 −P ¹ 0

JFc + FT
c J−

(
M∑

i=1

fiCi

)
+ JQcJ ¹ 0

0 ≤ fi ≤ fimax , for i = 1 . . . M (46)
M∑

i=1

fi ≤ ftotal

eT
3iPe3i ≤ εφ, i = 1 . . . N

This is a convex optimization problem, since the objective as
well as the inequality constraints are convex. Our goal is to
show that this problem is equivalent to the problem described
in (40), in the sense that the optimal frequencies for this
problem are also optimal for (40).

We observe that forany feasible point,Y , for (40), with
Y = (f1, . . . , fM ,Pss) ∈ RM × S3N

+ , we can construct
the point Ξ = (f1, . . . , fM ,P = Pss,J = P−1

ss ) ∈ RM ×
S3N

+ × S3N
+ which is also feasible for (46), and yields the

sameobjective value.
Similarly, given any feasible point for the problem (46),

we can also construct a feasible point for (40). LetΞ? =
(f?

1 , . . . , f?
M ,P?,J?) be the optimal solution to the prob-

lem (46). Then, solving the ARE

FcP?
ss + P?

ssF
T
c + Qc −P?

ss

(
M∑

i=1

f?
i Ci

)
P?

ss = 0 (47)

for P?
ss yields a feasible pointY ? = (f?

1 , . . . , f?
M ,P?

ss) for
the problem described in (40). In Appendix I it is shown that
the objective value corresponding toY ? in (40) is equal to
the objective value corresponding toΞ? in (46). Using this
key result, we can employ proof by contradiction to show that
Y ? is optimal for (40). Specifically, ifY ? were not optimal,
there would exist a point̆Y that would give an objective
value smaller than that ofY ?. But in that case, we would
be able to construct a point̆Ξ for problem (46), that would
give a smaller objective value thanΞ?. However, this is a
contradiction sinceΞ? is optimal. Thus, the optimal solution
for the measurement frequencies arising from problem (46) is
also optimal for problem (40).

The above proof relies on the fact that the objective value
corresponding toY ? is equal to the optimal value of prob-
lem (46). To provide intuition about this key result, whose
proof can be found in Appendix I, we consider the simple case
where the weighting matrixWp is replaced by the identity
matrix, and thus the minimization objective in (46) is simply
trace(P). We note that sinceP is bounded belowonly by
J−1, selectingP = J−1 yields the minimum cost. Thus, at
the optimal solution we haveP? = J?−1, and substitution in
Eq. (45) yields

FcP? + P?FT
c + Qc −P?

(
M∑

i=1

f?
i Ci

)
P? ¹ 0 (48)

or equivalently,

FcP? + P?FT
c + Q′

c − P?

(
M∑

i=1

f?
i Ci

)
P? = 0, Q′

c º Qc

Thus, P? satisfies an ARE withQ′
c º Qc. However, the

solution of an ARE is a monotonically increasing function
of Qc [30], and therefore the smallest value of the objective
function,trace(P), is obtained whenQ′

c is minimum. Clearly,
this occurs whenQ′

c = Qc, thus the optimal solutionP?

satisfies Eq. (48) with equality. Note that this ARE isidentical
to the one in Eq. (47), henceP? = P?

ss, which means that
the objective values of the two problems are equal. We stress
that this proof outline is only valid whenWp is invertible.
This is clearly not the case for the selection ofWp in
this paper (cf. Eq. (41)), and this results in a significantly
more complicated proof in Appendix I. However, the main
underlying ideas remain the same.
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Notice that the solution of the SDP (43) doesnot involve
explicitly solving an ARE, thus resulting in superior numer-
ical performance. Additionally, by employing the principle
of strong duality, which holds for convex SDPs under mild
qualifications that are valid in the particular problem [31], we
can obtain a bound for the suboptimality of any solution. In
particular, for any convex SDP problem we can define adual
SDP maximization problem [31]. When strong duality holds,
the optimal solutions to the primal and dual problems yield the
same objective value. This implies that, if any solution to the
dual problem of (43) is available, we immediately have alower
boundon the minimum attainable objective value for (43).

Most SDP solvers automatically generate the dual problem,
and proceed by simultaneously solving the primal and dual
problems in an iterative fashion. Therefore the problem of
determining the optimal measurement frequencies is solved by
an any-time algorithm, since at any point during the solution
procedure, a suboptimal solution is available. Moreover, by
comparing the objective value of this intermediate solution
to that of the corresponding intermediate solution of the
dual problem, and employing strong duality, we obtain a
concrete measure of “how good” the solution is. In a scenario
where a large number of sensors is involved, and in which
computation time is a significant factor (e.g., if we are solving
in real-time to determine the best sensing strategy in a slowly
varying formation), we may wish to trade-off optimality for
efficiency, and in this case, the any-time property of the
solution algorithm is very important.

At this point, we comment on the applicability of the
method to cases where the assumption of a constant formation
shape does not hold. A significant property of the solution to
the ARE in Eq. (39) is that it isindependentof the initial
conditions, since the system under consideration is observable.
This implies that if the geometry of the robot formation
changes temporarily, for example due to the presence of
obstacles that need to be avoided, then, once the robots return
to the initial configuration, the solution becomes valid again.
For practical purposes, this observation means that if we
know in advance that a robot team will move in a known
formation most of the time, then it might be desirable, from
an implementation point of view, to use the measurement
frequencies obtained with the proposed method for the entire
duration of the robots’ run.

If alternatively, the optimal sequence of measurements for
a time-varying formation were sought, a tree-search within a
finite time horizon ofn time steps would be necessary [22].
However, the complexity of such a search is exponential in
the number of time-steps, and can become intractable even for
a search within a short-time horizon, if many measurements
are available in the system. Such a search would need to
be performed necessarily in real time, employing the most
current pose estimates for the robots, and the results would
need to be transmitted to all the members of the team.
Contrary to that, the proposed method lends itself to off-line
execution4, before the robot team is deployed, and additionally,

4If the geometry of the relative positions of the robots of a team changes
slowly, then our algorithm can also be used on-line, to provide an approximate
solution to the optimal measurement scheduling.

Fig. 2. The heterogeneous robot team used in our experiments.

programming the sensors to record measurements at fixed
time intervals is simpler. Clearly, the proposed approach is
suboptimal when the robots do not maintain a fixed formation,
and its performance has to be evaluated on a case-by-case
basis.

VI. EXPERIMENTAL RESULTS

To demonstrate the application of our method, we have
conducted experiments with a heterogeneous robot team, com-
prised of one iRobot Packbot robot and 3 Pioneer-I robots.
The robots move outdoors in a diamond-shaped formation,
where the Packbot is the “leader”, as shown in Fig. 2. Each of
the Pioneers is equipped with a laser scanner, and is able to
detect the robots of the team that lie within its field of view.
Using a linefitting technique, we are able to extract relative
position (i.e., range and bearing) as well as relative orientation
information. It is important to note that since the same laser
points are used in order to measure the relative position and
relative orientation of a particular robot, these measurements
are correlated, and must be treated as a single, vector-valued
measurement.

In addition to the relative pose measurements, absolute
position and orientation measurements are provided to the
team by a GPS receiver and a magnetic compass, which are
mounted on the Packbot. In total, 5 relative pose measurements
(the robot in the rear is able to measure the relative pose of
all other robots, while the ones on the sides can only detect
the formation leader) and 2 absolute measurements (absolute
position and orientation of the Packbot) are available. The
absolute measurements are available at a maximum frequency
of 1Hz, while the relative pose measurements are available
at a maximum frequency of 3Hz. In Fig. 3, the geometry
of the formation is shown, and the available relative pose
measurements are presented by the dash-dotted arrows.R1

is the Packbot, whileR2 - R4 are the Pioneer robots, andMij

denotes the measurement of the relative pose of robotj with
respect to roboti. The formation moves on a 50m-long path
parallel to the globalx axis at a velocity ofVo = 0.2m/sec.
During the experiments the robots keep records of the raw
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Fig. 3. Robot formation and motion direction. The dash-dotted arrows
represent the relative pose measurements available to the robots.

sensor data, thus enabling us to run the EKF off-line with
various measurement frequencies, and facilitating comparison
between different sensing strategies.

In order to maintain the desired formation shape, a simple
leader-follower control scheme is implemented. Each of the
Pioneer-I robots adjusts its rotational and translational velocity
using a PI-controller. The feedback input to the controller is
the difference between the desired and the measured relative
pose of the formation leader with respect to the measuring
robot. Since control is performed locally on each robot, it does
not introduce any communication overhead, and additionally,
it is very inexpensive computationally. Although very simple,
this controller is sufficient for the purposes of our experiments,
in which the formation is commanded to move in an almost
straight line. In fact, the deviations from the desired geometry,
that arise due to the simple controller we have employed, facil-
itate the demonstration of the robustness of our measurement
frequency optimization method to small changes in formation
shape5.

By constraining the maximum total frequency of mea-
surements that can be processed by the system to be equal
to 3Hz, the optimal frequencies of all measurements are
shown in Table I. These results are obtained by a Matlab
implementation of the algorithm, that requires 11secs of CPU
time on a 1.6GHz Pentium M processor. In order to execute
the optimization algorithm, it is necessary to evaluate the
matricesCi (cf. Eq. (38)). This was performed by computing
the measurement covariance matrices as well as the Jacobians
Hi for each of the exteroceptive measurements, based on
the nominal formation geometry. From the numerical results
in Table I, we note that the absolute position and absolute
orientation sensors are utilized at their maximum frequency,
while the remaining resources are allocated to the relative pose
measurements. It is interesting to note that the measurement
between the rear robot and the leader is assigned a smaller

5We should note that the objective of this work is the determination of
optimal measurement frequencies given a formation geometry, andnot the
design of an optimal controller for maintaining such a desired geometry. This
second problem has received considerable attention in the literature, and the
interested reader is referred to [33] for an overview of existing approaches.

TABLE I

OPTIMAL MEASUREMENT FREQUENCIES FOR THE EXPERIMENT

GPS Comp. M21 M42 M41 M43 M31

1.0 1.0 0.216 0.234 0.099 0.234 0.216
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Fig. 4. Time evolution of the covariance along the two coordinate axes for
all the robots, when the optimal measurement frequencies are used. The (red)
solid lines represent the actual covariance values computed by the EKF, while
the dashed lines represent the theoretically computed steady-state values.

frequency (althoughnot zero), which should be attributed to
the fact that this measurement is less accurate, due to the larger
distance from the leader.

In Fig. 4 we present the time evolution of the covariance
along thex and y axes, for the robots of the team (solid
lines). The time evolution of the actual covariance is compared
to the theoretically predicted values (dashed lines), computed
by solving the SDP (43) . Although the time duration of
the experiment did not allow for the covariance matrix to
converge fully to its steady-state value, these figures indicate,
that the deviation between the theoretically predicted values,
and those computed by the EKF, is very small. This deviation
is due to the facts that i) there is a small discretization
error inherent in the transition between the continuous- and
discrete-time system models [28], ii) in the EKF theestimates
for the pose of the robots are employed to evaluate the
measurement Jacobians, and these estimates are generally not
precisely equal to the desired poses of the robots, iii) the
laser scanners provide measurements at a frequency which is
only approximatelyconstant, and iv) the formation maintains
the desired geometry within some error, determined from the
controller’s performance.

Variations in the formation geometry during the experiment
are shown in Fig. 5, where we plot the estimated coordinates
of the relative position ofR1 with respect toR4, as a
function of time. As evident, the estimates deviate significantly
from their nominal values of(∆x14,∆y14) = (2, 0)m. These
deviations are primarily due to the rough terrain that the robots
move on, which often resulted in the Pioneers’ caster wheels
getting stuck. As a consequence of the fluctuations in the
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Fig. 5. Time evolution of the estimates for the relative position of the leader
with respect to the rear robot.

relative poses of the robots, the covariance of the relative pose
measurements was also time-varying, since the number of laser
points used for linefitting was not constant for each robot pair.
It is significant to observe that despite these differences from
the nominal values, the theoretically predicted covariance is
very close to the actual one, which verifies the applicability
of our approach to practical scenarios.

In order to demonstrate the positioning accuracy improve-
ment that is achieved using the proposed optimization algo-
rithm, we compare the performance of the optimal strategy
with that of an “intuitive” strategy, where the available re-
sources are divided equally among all the available measure-
ments (i.e., when we use all measurements at the same rate,
fj = 3/7 Hz). In Fig. 6, the time evolution of the covariance
in these two scenarios is shown. As evident, there is a clear
improvement of performance by using the frequency values
produced by the proposed algorithm. Evaluating thesteady-
state covariance attained with the equal-frequency strategy
shows that it is approximately 130% and 50% larger along
thex andy axes, respectively, compared to the optimal values
obtained with our approach. Due to the slow transient response
of the covariance, the steady-state value for the case of equal
frequencies is not reached in the duration of this experiment.
This explains the smaller difference in covariance between the
optimal and the “intuitive” approach that appears in Fig. 6.

VII. S IMULATION RESULTS

This section presents simulation results that demonstrate
certain additional interesting properties of the problem of
determining the optimal sensing frequencies for groups of
robots. We here consider a formation with the same geometry
as the one shown in Fig. 3, but we now examine the case where
all robots are equipped with a distance and a bearing sensor,
that are capable of providing independent measurements, with
standard deviationsσρ = 0.05m, andσθ = 1o, respectively.
Additionally, we assume that all robots have a 360o field
of view, and can potentially record relative measurements of
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Fig. 6. Comparison of the covariance values that arise when using the optimal
measurement frequencies (solid lines) vs. equal measurement frequencies for
all exteroceptive measurements (dashed lines with circles). The two plots
correspond to the covariance along thex- and y-axis respectively, for all
robots.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Total frequency of measurements (Hz)

C
os

t (
m

2 )
Cost with optimal freq.
Cost with equal freq.

Fig. 7. Cost function vs. Total frequency of measurements.

 R1    R2  R3       
0

0.05

0.1

0.15

Measured robot

R
4

 R1    R2       R4  
0

0.05

0.1

0.15

R
3

 R1      R3  R4 
0

0.05

0.1

0.15

R
2

       R2  R3   R4  
0

0.05

0.1

0.15

R
1

Rel. bearing
Rel. range

M
ea

su
rin

g 
ro

bo
t

Fig. 8. Optimal values for the relative range and bearing frequencies.



12

0 2 4 6 8 10 12 14 16 18 20
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Formation size scale factor

O
pt

im
al

 c
os

t f
un

ct
io

n 
(m

2 )
σθ = 1o

σθ = 2o

(a)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

Formation size scale factor

P
er

ce
nt

ag
e 

of
 r

es
ou

rc
es

 a
llo

ca
te

d 
(%

)

Relative range
Relative bearing
Absolute position

(b)

Fig. 9. (a) The optimal cost as a function of the formation size, for two values of the relative bearing errors’ standard deviation. (b) The percentage of
resources allocated to each type of measurement, as a function of the formation size, forσθ = 1o.

all other robots. The leader robot receives absolute position
measurements with standard deviations equal toσp = 0.3m
along each axis, and absolute orientation measurements with
standard deviationσφ = 3o. The maximum frequency of all
measurements is equal to 1Hz, and the threshold on the ori-
entation variance for the robots, is equal toεφ = 0.0027rad2,
corresponding to a standard deviation of3o.

We first examine the effect of varying the total frequency of
measurements processed by the robots. In Fig. 7, the optimal
value of the cost function is plotted as a function of the total
frequency of measurements (solid line) (ftotal = 0.5 . . . 20Hz),
and compared to the cost that arises if equal measurement
frequencies are employed (dashed line). In this plot, the sub-
stantial improvement in localization accuracy attained using
our method becomes apparent. For example, forftotal = 1Hz,
the cost when using equal frequencies is 560% larger than
when using the optimal frequencies. Moreover, in this plot
we observe a law of diminishing return: there is a sharp
improvement in performance by increasing the total number
of measurements per time step, when this number is small, but
the incremental gain reduces as the frequency of measurements
increases further. Since the necessary communication and
computational resources increase linearly with the number of
measurements performed by the robots, it becomes clear that
unless resources are abundant, it is not beneficial for the robots
to process a very large number of measurements.

We now constrain the total frequency of measurements to
be equal toftotal = 2Hz, and run the optimization algorithm.
At the optimal solution, the GPS receiver is utilized at its
maximum frequency (fGPS = 1Hz), and interestingly,no
absolute orientationmeasurements need to be recorded. The
optimal frequencies for the range and bearing measurements
are shown in Fig. 8, in the form of a bar plot, where each
row of the plot corresponds to the measurements recorded by
one robot. The fact that no absolute orientation measurements
are used implies that the correlations between the position

and orientation estimates of the robots suffice for guaranteing
orientation variance smaller thanεφ for all robots. However,
it should be made clear that this isnot a general result.
For example, if we double the standard deviation of the
absolute position measurements, the results of the optimization
under the same conditions show that absolute orientation
measurementsare processed by the robots. Nevertheless, the
fact that for certain formations some measurement frequencies
may turn out to be equal to zero implies that the corresponding
sensors arenot necessary, and can be omitted, thus resulting
in lower cost and easier implementation.

In the last set of experiments, we assume that no absolute
orientation sensors are available to the robots, and thus the
absolute position measurements ofR1 constitute the only
source of absolute state information. We once again select
ftotal = 2Hz, and vary the formation size, by scaling all
distances among robots by a factor ranging between 1 and
20. The solid line in Fig. 9(a) presents the optimal cost
as a function of the formation size, forσθ = 1o. It is
worth noting that in this case as the formation scale factor
increases, the robots’ localization accuracy becomesbetter.
This is attributed to the fact that in the sensor model for
relative measurements, the noise variance is independent of the
distance between robots. Therefore, the bearing measurements
provide better orientation information for the measuring robot,
as the robots get further apart, since the errors in the measured
robot’s position have less impact. This interpretation is also
corroborated by Fig. 9(b) where we plot the proportion of
resources (i.e., proportion of the total measurement frequency)
assigned to each type of measurement, as the formation size
increases. We observe that as robots become more distant,
more relative bearing information is utilized. However this is,
once again, not a general result: if we increase the standard
deviation of the bearing measurements by a mere factor of 2,
to σθ = 2o, then as the formation becomes larger, the robots’
localization accuracy degrades (this is shown by the dashed
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line in Fig. 9(a)). In this case, the bearing measurements con-
tribute less localization information, and cannot compensate
for the loss of information in the range measurements, due to
the increased distances among robots.

As a closing remark, we note that the parameters affecting
the selection of optimal measurement frequencies include the
number of robots, the size and geometric configuration of
the formation in space, the robots’ velocity, the accuracy
of all available sensors, the type and number of available
measurements, and the maximum frequency of each sensor.
The results presented in this section illustrate the fact that
the interactions between these factors are quite intricate, and
determining general “rules of thumb” for the optimal sensing
strategy appears difficult, if not infeasible. This further estab-
lishes the necessity for a design tool that allows, given all the
relevant parameters of a particular robot team, to determine
measurement strategies that areprovably optimal. In this work,
we have presented a method that yields these optimal results,
within the described problem formulation.

VIII. C ONCLUSIONS

In this paper, we present a new approach to the resource-
constrained localization problem for formations of mobile
robots. We consider heterogeneous groups of robots equipped
with sensors that provide both relative and absolute informa-
tion. In our formulation theratesat which the measurements
from individual sensors are utilized are the design variables,
and these rates are determined by a trade-off between the
localization information each sensor provides, and the cost
of processing its measurements. The basis of our approach
for determining the optimal sensing strategy is the transition
from the discrete-time system model, whose study is analyt-
ically intractable, to acontinuous-timeone. The frequency
at which each sensor input is processed specifies the accu-
racy of the corresponding measurement in the continuous-
time model. This relation enables us to formulate aconvex
optimization problemfor the measurement frequencies, where
the constraints on the communication, processing, and power
resources of the team are naturally incorporated. Moreover,
this problem can be cast as a semidefinite programming (SDP)
problem, whose unique global solution can be computed using
well-studied and very efficient minimization algorithms.

The results of our work can be employed in practice for de-
termining the sensing frequencies for robot formations of any
size and shape comprised of robots with various types of sen-
sors and sensing capabilities. The optimal sensing frequencies
can be used not only for obtaining the best localization results,
but also for determining the necessity of certain sensors (e.g.,
sensors with zero frequency can be omitted) which can lead
to significant cost savings. Suboptimal solutions, accompanied
by a measure of performance loss, are easy to compute based
on the properties of the semidefinite optimization problem,
and can be employed in scenarios where the time to compute
a solution is of critical importance. In our future work, it is
our intention to capitalize on this methodology and expand
our results to groups of robots that have no access to absolute
position data. In this case the problem formulation will be

modified so as to express the optimization criterion as a
function of the covariance of the pose estimates with respect to
one of the robots in the team (relative localization). Moreover,
we should point out that the applicability of the proposed
method is not limited to the problem of formation localization.
The idea of employing a transition from the discrete-time
to a continuous-time system model is general, and can be
applied to any scheduling problem for which the continuous-
time system is linear time invariant.

APPENDIX I

In this appendix, we prove that the objective value cor-
responding to the pointY ? = (f?

1 , . . . , f?
M ,P?

ss), with P?
ss

defined in Eq. (47), is equal to the optimal objective value for
problem (46), i.e., that

WpP?
ssW

T
p = WpP?WT

p (49)

To simplify the notation, in the following derivations
we employ the substitutionsC =

∑M
i=1 fiCi and

C? =
∑M

i=1 f?
i Ci. In order to prove Eq. (49) we will

employ three intermediate results:

Derivation of first result:Pre- and post-multiplying Eq. (45)
by J−1 results in the equivalent matrix inequality:

−FcJ−1 − J−1FT
c −Qc + J−1CJ−1 º 0

Thus, at the optimal solution, we obtain

FcJ?−1 + J?−1FT
c + Qc − J?−1C?J?−1 = A

whereA ¹ 0. If we denoteQ′
c = Qc−A, then it isQ′

c º Qc,
and we see thatJ?−1 satisfies an ARE given by

FcJ?−1 + J?−1FT
c + Q′

c − J?−1C?J?−1 = 0

It can be shown, that the solution of an algebraic Riccati
equation is a monotonically increasing function ofQc [30].
Therefore, by comparison of the last ARE to the ARE in
Eq. (47), we conclude that

J?−1 º P?
ss ⇒ J? ¹ P?−1

ss (50)

Additionally, from the propertyJ?−1 º P?
ss we derive the

first intermediate result:

WpJ?−1WT
p º WpP?

ssW
T
p (51)

Derivation of second result:The Karush-Kuhn-Tucker (KKT)
optimality conditions [31] for problem (46) include the fol-
lowing “complementary slackness” conditions:

trace(Λ?
1(J

?−1 − P?)) = 0 (52)

trace
(
Λ?

2

(
J?Fc + FT

c J?− C? + J?QcJ?)
)

= 0 (53)

λ?
i f

?
i = 0, i = 1 . . . M

µ?
i (f

?
i − fimax) = 0, i = 1 . . . M

ν?

(
M∑

i=1

f?
i − ftotal

)
= 0

ξ?
i

(
eT
3iP?e3i − εφ

)
= 0, i = 1 . . . N



14

as well as the “stationarity” condition:

∇ trace(WpPWT
p ) +∇ trace

(
Λ?

1

(
J−1 − P))

+∇ trace
(
Λ?

2

(
JFc + FT

c J− C + JQcJ
))

−
M∑

i=1

∇λ?
i fi +

M∑

i=1

∇µ?
i (fi − fimax)

+∇ν?

(
M∑

i=1

fi − ftotal

)
+

N∑

i=1

∇ξ?
i

(
eT
3iPe3i − εφ

)
= 0

(54)

whereΛ1,Λ2 ∈ S3N
+ , andλi, µi, ν, ξi ≥ 0 are the variables

of the dual problem, and the superscript? indicates the value of
a variable at the optimal solution. In the Eq. (54) differentiation
is with respect to the primal variablesP, J, fi, and the
derivatives are computed at the optimal solution. Applying
the derivative with respect toP, and evaluating at the optimal
point, yields:

0 = WpWT
p − Λ?

1 +
N∑

i=1

ξ?
i e3ie

T
3i ⇒

Λ?
1 = WpWT

p +
N∑

i=1

ξ?
i e3ie

T
3i ⇒ Λ?

1 = W′
pW

′T
p (55)

where W′
p is a diagonal matrix, whose diagonal elements

corresponding to the robots’ positions are equal to 1, while the
elements corresponding to the robots’ orientation are equal to√

ξ?
i , i = 1 . . . N .

We now employ the KKT complementary slackness condi-
tion with respect to the dual variableΛ1 (Eq. (52)), to obtain:

trace(Λ?
1(P? − J?−1)) = 0 ⇒

trace(W′T
p (P? − J?−1)W′

p) = 0 ⇒
W′T

p (P? − J?−1)W′
p = 0 (56)

This result follows from the fact that for any symmetric
(positive or negative) semidefinite matrixA,

trace(A) = 0 ⇒ A = 0

Pre- and post-multiplying Eq. (56) byWp = WT
p , and

using the fact thatWpW′
p = Wp, we obtain the second

intermediate result:

WpP?WT
p = WpJ?−1WT

p (57)

Derivation of third result:Applying Eq. (54) for the derivative
with respect toJ, and evaluating at the optimal solution, yields

−J?−1Λ?
1J

?−1 + FT
c Λ?

2 + Λ?
2Fc + Λ?

2J
?Qc + QcJ?Λ?

2 = 0
(58)

We now pre-multiply Eq. (47) byΛ?
2P

?−1
ss , post-multiply by

P?−1
ss , and apply the trace operator, to obtain the identity

trace
(
Λ?

2

(
P?−1

ss Fc + FT
c P?−1

ss − C? + P?−1
ss QcP?−1

ss

))
= 0

Subtracting this equation from the second complementary
slackness condition (Eq. (53)), and rearranging terms, we find

trace
( (

J? −P?−1
ss

) (
Λ?

2Fc + FT
c Λ?

2+

Λ?
2J

?Qc + QcP?−1
ss Λ?

2

) )
= 0 (59)

Using the result of Eq. (58) to simplify this expression, and
separating terms, yields

trace
( (

J? −P?−1
ss

)
J?−1Λ?

1J
?−1

)

= trace
( (

J? −P?−1
ss

)
Qc(J? −P?−1

ss )Λ?
2

)
(60)

At this point, we note that the right-hand side of this
equation is a nonnegative quantity, since the matrices(
J? −P?−1

ss

)
Qc(J? −P?−1

ss ) andΛ?
2 are symmetric positive

semidefinite. We now show that the left hand side of Eq. (60)
is nonpositive. Using the expression of Eq. (55), as well as
the propertyJ? ¹ P?−1

ss (cf. Eq. (50)), we obtain

α = trace
((

J? −P?−1
ss

)
J?−1Λ?

1J
?−1

)

= trace
(
W′T

p J?−1
(
J? −P?−1

ss

)
J?−1W′

p

) ¹ 0

Combining this last result and the fact that the right-hand side
of Eq. (60) is a nonnegative quantity, we conclude that both
sides must be equal to zero. Consequently,

W′T
p J?−1

(
J? −P?−1

ss

)
J?−1W′

p = 0 ⇒
W′T

p J?−1W′
p −W′T

p J?−1P?−1
ss J?−1W′

p = 0 (61)

We now consider the following matrix:

E =
[

P?
ss −J?−1W′

p

−W′T
p J?−1 W′T

p J?−1W′
p

]

Applying the lemma of Appendix II, we see that the minimum
value of the quadratic product[uT vT ]E[uT vT ]T over all
vectors[uT vT ]T is equal to

vT
(
W′T

p J?−1W′
p −W′T

p J?−1P?−1
ss J?−1W′

p

)
v

Using the result of Eq. (61) we conclude that the minimum
value of the quadratic product[uT vT ]E[uT vT ]T equals
zero, and thusE is positive semidefinite. Therefore

[
Wp Wp

]
E

[
Wp Wp

]T º 0 ⇒
WpP?

ssW
T
p −WpJ?−1WT

p º 0

WpP?
ssW

T
p º WpJ?−1WT

p (62)

where we have used the fact thatW′
pWp = Wp. Eq. (62) is

the third intermediate result.

Proof of Eq. (49): Substituting from Eq. (57) in Eqs. (51)
and (62) we obtain

WpP?WT
p º WpP?

ssW
T
p

and
WpP?

ssW
T
p º WpP?WT

p

respectively. The desired result of Eq. (49) follows directly
from the last two relations.

APPENDIX II

It can be easily shown that ifA Â 0, andD is symmetric,
then for any vectory of appropriate dimensions, the minimum
of [

x
y

]T [
A B

BT D

] [
x
y

]

with respect tox is equal toyT
(
D −BT A−1B

)
y and is

attained forx = −A−1By.
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