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ABSTRACT

We derive and analyze distributed state estimators of dynamical stochas-
tic processes, whereby low communication cost is effected by requir-
ing the transmission of a single bit per observation. Following a Kalman
filtering (KF) approach, we develop recursive algorithms for distributed
state estimation based on the sign of innovations (SOI). Even though
SOI-KF can afford minimal communication overhead, we prove that
in terms of performance and complexity it comes very close to the
clairvoyant KF which is based on the analog-amplitude observations.
Reinforcing our conclusions, we show that the SOI-KF applied to dis-
tributed target tracking based on distance only observations yields ac-
curate estimates at low communication cost.

1. INTRODUCTION

Distributed signal processing is a well-appreciated toolbox for decen-
tralized tracking applications involving e.g., multiple radars, but has
received a revived interest in the context of wireless sensor networks
(WSNs). Unlike centralized signal processing, observations and the
resultant algorithms are physically distributed across sensors in the
network, dictating that inter-sensor communications should be viewed
as an integral part of the problem at hand. For the problem of dis-
tributed estimation of dynamical stochastic processes considered in
this paper, communications dictate estimation to be based on quan-
tized observations – a problem certainly different from state estima-
tion based on the original (analog-amplitude) observations.

Quantizer design for WSNs was studied in [5], where the con-
cept of information loss was defined as the relative increase in esti-
mation variance when analog-amplitude observations are replaced by
their quantized versions. To address the challenge of building suitable
noise models for WSNs, universal estimators that work irrespective
of the noise distribution were introduced in [3, 6]. Estimating signals
using very noisy sensor data was studied in [6], where it was shown
that as the noise variance becomes comparable with the parameter’s
dynamic range, quantization to a single bit per observation leads to
low complexity estimators oftime-invariant deterministicparameters
with minimal information loss.

Accounting for the stringent bandwidth constraints of WSNs, we
study state estimation ofdynamical stochasticprocesses based on seve-
rely quantized observations, whereby low-cost communications re-
strict sensors to transmit a single bit per observation. The quantiza-
tion rule manifests itself in a non-linear measurement equation in a
Kalman Filtering (KF) setup. While the discontinuous non-linearity
precludes application of the extended (E)KF, one could use more pow-
erful techniques such as the unscented (U)KF [1], or the Particle Filter
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(PF) [2]. However, since there are no tools to predict the performance
of the UKF and the PF, no insight has been provided with regards
to performance degradation when quantized data are used in lieu of
the analog-amplitude observations; furthermore, these approaches are
significantly more complex than (E)KF. Our contribution is todesign
state estimators based on binary observationsso that: i) complexity is
rendered comparable to the equivalent KF based on the original obser-
vations; and, ii) the mean squared error (MSE) of the resultant estima-
tor based on binary observations is close to the MSE of the estimator
based on the original observations.

Notation: We usep(x|y) to denote the probability density function
(pdf) of the random variable (r.v.)x given the r.v. y. A normally
distributed r.v. with meanµx = E(x) and covariance matrixCx =
E(xxT ), is written asp(x) = N (x; µx,Cx). For a scalar r.v., we
write p(x) = N (x; µx, σ2

x) and defineQ(x) :=
∫∞

x
N (u; 0, 1)du.

We useδc(t) to denote the Dirac delta function andδ(n) to denote the
Kronecker delta. Lower (upper) case boldface letters will stand for
column vectors (matrices) andI will denote the identity matrix .

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider an ad-hoc WSN (see Fig. 1) withK distributed sensors
{Sk}K

k=1 deployed to track ap× 1 real random vector (state)xc(t) ∈
Rp. The state evolution in continuous-time is described by

ẋc(t) = Ac(t)xc(t) + uc(t), (1)

whereAc(t) ∈ Rp×p, and the driving inputuc(t) ∈ Rp is a zero-
mean white Gaussian process with autocorrelationE[uc(t1)u

T
c (t2)] =

Cuc(t1)δc(t1 − t2). We model the observationyc(t, k) ∈ RM of
SensorSk at timet as

yc(t, k) = Hc(t, k)xc(t) + vc(t, k), (2)

whereHc(t, k) ∈ RM×p and the observation noisevc(t, k) ∈ RM is
a zero-mean Gaussian process uncorrelated across time and sensors;
i.e.,E[vc(t1, k1)v

T
c (t2, k2)] = Cvc(t1, k1)δc(t1−t2)δ(k1−k2).

To trackxc(t), we consider uniform sampling with periodTs and
definex(n) := xc(nTs) andy(n, k) := yc(nTs, k) as the discrete-
time state and observation vectors, respectively. From (1) and (2)
we can obtain a discrete-time model [4, Sec. 4.9]. Upon defining
Φ(t2, t1) := exp[

∫ t2
t1

Ac(t)dt], we solve the differential equation
in (1) between(n − 1)Ts andnTs with initial conditionx(n − 1) to
obtain the vector time-varying auto-regressive (AR) process

x(n) = A(n)x(n− 1) + u(n)

y(n, k) = H(n, k)x(n) + v(n, k), (3)

where the matrices areA(n) := Φ(nTs, (n − 1)Ts), H(n, k) :=

Hc(nTs, k), the driving input isu(n) :=
∫ nTs

(n−1)Ts
Φ(nTs, τ)uc(τ)dτ

and the observation noise is white Gaussian with pdfp[v(n, k)] =
N [v(n, k);0,Cv(n, k)]. Since sampling (2) requires passingyc(t, k)
through a low- or band-pass filter of bandwidth1/Ts, the sampled co-
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Fig. 1. Ad hoc WSN for tracking the statex(n)

variance matrix satisfiesCv(n, k) = Cvc(nTs, k)/Ts [4, Sec. 4.9].
Supposing thatA(n), Cu(n), H(n, k) andCv(n, k) are avail-

able to all sensors for alln, k, the goal of the WSN is for each sensor
Sk to form an estimate ofx(n). Without loss of generality, we as-
sume that sensors convey their observations to each other using time
division multiple access (TDMA) withk(n) being the index of the
sensor scheduled at thenth time slot; for notational brevity we denote
Sk(n) = S(n) andy(n, k(n)) = y(n). Digital transmission requires
a quantization functionqn, to mapy(n) into binary data:

b(n) := qn(y(n)), with qn : RM → {−1, 1}M , (4)

whereb(n) := [b(n, 1), . . . , b(n, M)]T is anM ×1 binary message.
We further suppose thatb(n) is correctly received by all sensors.

Given messagesb0:n := [bT (0), . . . ,bT (n)]T , our goal is to
derive and analyze the performance of the MMSE estimator

x̂(n|n) := E[x(n)|b0:n] =

∫

Rp

x(n)p[x(n)|b0:n]dx(n), (5)

which is to be computed by all the sensors in the network. We also
define the so called predictors that estimate (predict) the state and ob-
servation vectors based on past observations:

x̂(n|n−1) := E[x(n)|b0:n−1] = A(n)x̂(n− 1|n− 1) (6)

ŷ(n|n−1) := E[y(n)|b0:n−1] = H(n)x̂(n|n−1).

For the state estimators in (5) and (6), we define the error covariance
matrices (ECM)M(n|n) := E[(x̂(n|n)− x(n))(x̂(n|n)− x(n))T ]
andM(n|n−1) := E[(x̂(n|n−1) − x(n))(x̂(n|n−1) − x(n))T ].
The two are related by the recursion

M(n|n−1) = A(n)M(n− 1|n− 1)AT (n) + Cu(n), (7)

which we will use in later derivations. Note that the relations in (6)
and (7) hold true regardless of the quantization rule in (4).

3. STATE ESTIMATION WITH SIGN OF INNOVATIONS

We start by considering the case of scalary(n) ↔ y(n) observations
in (3) and define the messageb(n) as thesign of innovation(SOI):

b(n) = sign[ỹ(n)] :=

{
+1, if y(n) ≥ ŷ(n|n−1)
−1, if y(n) < ŷ(n|n−1)

, (8)

whereỹ(n) := y(n) − ŷ(n|n−1) Notice that the SOIb(n) is not
a standard quantizer of the datay(n). It can be thought as one with
judiciously setting the quantization threshold at the data prediction
ŷ(n|n − 1). Computing the MMSÊx(n|n) in (5) requires compu-
tationally demanding numerical integration [7]. However, using the
approximationp[x(n)|b0:n−1]

.
= N [x(n); x̂(n|n−1),M(n|n−1)],

which is standard in non-linear filtering (see e.g., [2]), we obtain a
KF-like recursion described in the following proposition1,

Proposition 1 Consider the model in(3) with y(n) ↔ y(n) scalar
and denoteCv(n) ↔ σ2

v(n) andH(n) ↔ hT (n) ∈ R1×p. If we de-
fine binary observations as in(8) and assume thatp[x(n)|b0:n−1] =
N [x(n); x̂(n|n−1),M(n|n−1)], then the MMSE estimator̂x(n|n)
can be obtained as

x̂(n|n) = x̂(n|n−1) +
(
√

2/π)M(n|n−1)h(n)√
hT (n)M(n|n−1)h(n) + σ2

v(n)
b(n) (9)

M(n|n) = M(n|n−1)− (2/π)M(n|n−1)h(n)hT (n)M(n|n−1)

hT (n)M(n|n−1)h(n) + σ2
v(n)

.

(10)

The assumptionp[x(n)|b0:n−1] = N [x(n); x̂(n|n−1),M(n|n−
1)] yields the low-complexity SOI-KF that implements distributed
state estimation based on single bit observations using the recursions
(6)-(7) and (9)-(10). To estimatex(n), we only require a few basic
algebraic operations per iteration. Moreover, the SOI-KF recursion is
strikingly reminiscent of the KF recursions (for the latter see e.g., [4,
Section 4.2]). The covariance updates in particular are identical except
for the2/π factor in (10).

To implement the SOI-KF we run two independent algorithms.
The observation-transmission algorithm is run by the sensors as dic-
tated by the scheduler. The sensor starts by collecting the observation
y(n, k) ↔ y(n) and computing the state and observation predicted
estimateŝx(n|n − 1) andŷ(n|n − 1). Based on the latter, it obtains
the SOI by means of (8) which it percolates to the remaining sensors
as the messageb(n). The reception-estimation algorithm is continu-
ously ran byall sensors to trackx(n) and is (surprisingly) identical to
a KF algorithm except for the (minor) differences in the update equa-
tions. At each time slot, we computêx(n|n − 1) by means of (6) to
then receive the SOIb(n) that we use to computêx(n|n) by means
of (9). A couple of remarks are now in order.

Remark 1 It is possible to express the SOI-KF corrector in (9) in a
form that exemplifies its link with the KF corrector [4]. Indeed, if we
define the SOI-KF innovation as

b̃(n) :=
√

(2/π) [hT (n)M(n|n−1)h(n) + σ2
v(n)] b(n), (11)

we can re-write the SOI-KF corrector as

x̂(n|n) = x̂(n|n−1) +
M(n|n−1)h(n)

hT (n)M(n|n−1)h(n) + σ2
v(n)

b̃(n).

(12)
Note that (12) is identical to the KF corrector if we replaceb̃(n) ↔
ỹ(n). Moreover, note that the units ofb̃(n) and ỹ(n) are the same,
and thatE[b̃(n)] = E[ỹ(n)] = 0. Even more interesting,

E[b̃2(n)] =
2

π

[
hT (n)M(n|n−1)h(n) + σ2

v(n)
]

=
2

π
E[ỹ2(n)]

which explains the (2/π) relationship between the ECM corrections
for the KF and for the SOI-KF in (10). The difference between the KF
corrector and (12) is that in the SOI-KF the magnitude of the correc-
tion at each step is determined byE[b̃2(n)] and it is the same regard-
less of how large or small the actual innovationỹ(n) is.

Remark 2 We have shown that asσ2
v →∞, p[x(n)|b0:n] converges

uniformly to a normal distribution [7]. Thus, the assumption
p[x(n)|b0:n−1]

.
= N [x(n); x̂(n|n−1),M(n|n−1)] holds asymp-

totically asσ2
v →∞.

1Proofs of claims in this paper can be found in [7].



Algorithm 1 SOI-KF – Observation-transmission

Require: x̂(n− 1|n− 1) andM(n− 1|n− 1)
Ensure: b(n)

1: Computex̂(n|n−1) andM(n|n−1) using (6) and (7).
2: y0(n) := C

−1/2
v (n)y(n) andH0(n) := C

−1/2
v (n)H(n)

3: for m = 1 to M do
4: Computeŷ(n, m|n− 1, m− 1) using (16)
5: Computeb(n, m) using (17)
6: Computek(n, m), x̂(n|n − 1, m), andM(n|n − 1, m) us-

ing (18) , (19) and (20)
7: end for
8: Transmitb(n) = [b(n, 1), . . . , b(n, M)]

3.1. Vector state - vector observation SOI-KF

To address the general model in (3) we define the whitened observa-
tionsy0(n) := C

−1/2
v (n)y(n), and rewrite (3) as

y0(n)=C
− 1

2
v (n)H(n)x(n)+C

− 1
2

v (n)v(n):=H0(n)x(n)+v0(n),
(13)

Upon definingy0(n) := [y0(n, 1), . . . , y0(n, M)]T , v0(n) :=
[v0(n, 1), . . . , v0(n, M)]T andH0(n) := [h0(n, 1), . . . ,h0(n, M)]T ,
we rewrite (13) componentwise as:

y0(n, m) = hT
0 (n, m)x(n) + v0(n, m), m ∈ [1, M ], (14)

whereσ2
v0 := E[v2

0(n, m)] = 1. Mimicking steps in Section 3, we
defineb(n, 1 : m) := [b(n, 1), . . . , b(n, m)]T and introduce

x̂(n|n− 1, m) = E[x(n)|b0:n−1,b(n, 1 : m)], (15)

which is the MMSE estimator based on past messages and the firstm
components of the current message. We adopt the conventionx̂(n|n−
1, 0) = x̂(n|n−1), and note that̂x(n|n − 1, M) = x̂(n|n) with
x̂(n|n−1) as in (6) and̂x(n|n) as in (5). From (15), we obtain the
MMSE predictor ofy0(n, m) as [c.f. (14) and (15)]

ŷ0(n, m|n− 1, m− 1) := E[y0(n, m)|b0:n−1,b(n, 1 : m− 1)]

= hT
0 (n, m)x̂(n|n− 1, m− 1). (16)

From (16), we define the SOI messages as

b(n, m) := sign[y0(n, m)− ŷ0(n, m|n− 1, m− 1)], (17)

for m ∈ [1, M ], to introduce the SOI-KF for vector observations:

Proposition 2 Consider the model in(3), binary observations as in(17)
and letH0(n) := [h0(n, 1), . . . ,h0(n, M)]T be defined asH0(n) :=

C
−1/2
v (n)H(n) [c.f. (13)]. If p[x(n)|b0:n−1,b(n, 1 : m − 1)] =

N [x(n); x̂(n|n − 1, m − 1),M(n|n − 1, m − 1)], then the MMSE
estimatêx(n|n) can be obtained from

k(n, m) =
(
√

2/π)M(n|n−1, m−1)h0(n, m)√
1 + hT

0 (n, m)M(n|n−1, m−1)h0(n, m)
(18)

x̂(n|n− 1, m) = x̂(n|n− 1, m− 1) + k(n, m)b(n, m) (19)

M(n|n− 1, m) = M(n|n− 1, m− 1)− k(n, m)kT (n, m). (20)

For each time indexn, (18) to (20) are repeated form ∈ [1, M ]. We
adopt the conventionŝx(n|n − 1, 0) ≡ x̂(n|n−1) and M(n|n −
1, 0) ≡ M(n|n−1), and note that the MMSE estimate and the ECM
are x̂(n|n) = x̂(n|n− 1, M) andM(n|n) = M(n|n− 1, M).

The algorithmic description of the SOI-KF is summarized in Al-
gorithms 1 and 2. When dictated by the scheduling algorithm a sensor
starts by running the predictor using (6) and (7) (step 1 in Algorithm

Algorithm 2 SOI-KF – Reception-estimation

Require: prior estimatêx(−1| − 1) and ECMM(−1| − 1)
1: for n = 0 to∞ do {repeat for the life of the network}
2: Computex̂(n|n−1) andM(n|n−1) using (6) and (7).
3: H0(n) := C

−1/2
v (n)H(n)

4: Receiveb(n)
5: for m = 1 to M do
6: Computek(n, m), x̂(n|n− 1, m), andM(n|n− 1, m) us-

ing (18) , (19) and (20)
7: end for
8: x̂(n|n) = x̂(n|n− 1, M), M(n|n) = M(n|n− 1, M)
9: end for

1) and whitens the observationy(n) (step 2). Subsequently, it re-
cursively computes partial MMSE estimators via (16) and (18)-(20)
in order to obtain the binary observationsb(n, m) by means of (17).
When this process is complete, the messageb(n) is transmitted. Al-
gorithm 2 is continuously run by the sensors to estimate the statex(n).
At each time slotn, all the sensors compute the predictors along with
H0(n) and move on to process the received messageb(n). Process-
ing b(n) entails recursive application of (18)-(20) for theM entries
of b(n). The output of this process is the MMSE estimatex̂(n|n).

4. PERFORMANCE ANALYSIS

Let us comparetr[M(n|n)] andtr[M(n|n−1)] for the SOI-KF with
tr[MK(n|n)] and tr[MK(n|n − 1)] reserved to denote the corre-
sponding quantities for the clairvoyant KF which relies on the analog-
amplitude observationsy(n). Since the ECMs for the SOI-KF are
independent of the data, we can findM(n|n) andM(n|n − 1) by
solving a discrete-time Ricatti equation [7]. A better insight, though,
can be gained by recalling the underlying continuous-time model. We
start with the following definition.

Definition 1 Consider the continuous-time model(1)-(2)and a family
of corresponding discrete-time models(3) parameterized byTs. Let
M(Ts; n|n) andM(Ts; n|n− 1) be the ECM of the filtered and pre-
dicted estimates of the SOI-KF in Proposition 1 when sampling period
Ts is used. Then, we define the continuous-time ECM as

Mc(t) :=Mc(nTs) := lim
Ts→0

M(Ts; n|n)= lim
Ts→0

M(Ts; n|n−1).

An equivalent definition can be written for the clairvoyant KF
whose continuous-time ECM will be denoted asMK

c (t) [4]. Another
definition is that of the(π/2)-equivalent system:

Definition 2 Consider a model as in(1)-(2), with observation noise
covarianceCvc(t, k). We say that a model with otherwise identical
parameters but noise covarianceCπ/2

vc (t, k) = (π/2)Cvc(t, k), is
(π/2)-equivalent. For a given sampling periodTs, the KF for this
latter model will be henceforth called the(π/2)-KF. We will denote its
filtered and predicted ECM asMπ/2(Ts; n|n) andMπ/2(Ts; n|n −
1) and the continuous-time ECM asMπ/2

c (t).

Using Definitions 1 and 2, we can establish the relationship between
the MSEs of the SOI-KF and the KF as follows.

Theorem 1 For the state-observation model in(1) – (2) and its cor-
responding(π/2)-equivalent system, it holds that

Mπ/2
c (t) = Mc(t). (21)
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Theorem 1 establishes that the MSE of the SOI-KF is closely re-
lated to the MSE of the(π/2)-KF, since asTs → 0 the MSEs of
these two filters are equal. Fig. 2 compares the KF, the SOI-KF and
the (π/2)-KF for two Ts values. For largeTs, tr[Mπ/2(Ts; n|n)]
andtr[M(Ts; n|n)] are not equal (bottom); but asTs decreases, these
two quantities eventually coincide (top) since, as asserted by Theo-
rem 1,tr[Mc(nTs)] = tr[M

π/2
c (nTs)]. We finally stress that the gap

between the KF and the SOI-KF is small for small/moderateTs.

5. TARGET TRACKING WITH SOI-EKF

ConsiderK sensors randomly and uniformly deployed in a square re-
gion of 2L × 2L meters and suppose that sensor positions{xk}K

k=1

are known. The WSN is deployed to track the positionx(n) :=
[x1(n), x2(n)]T of a target, whose state model accounts forx(n) and
the velocityv(n) := [v1(n), v2(n)]T , but not for the acceleration that
is modelled as a random quantity,

x(n) = x(n− 1) + Tsv(n− 1) + T 2
s /2u(n)

v(n) = v(n− 1) + Tsu(n), (22)

with Ts the sampling period andp(u(n)) = N (u(n);0; σ2
uI). Sen-

sors gather information about their distance to the target by measuring
the received power of a pilot signal following the path-loss model

yk(n) = α log ‖x(n)− xk‖+ v(n), (23)

with α ≥ 2 a constant,‖x(n) − xk‖ denoting the distance between
the target andSk, andv(n) the observation noise with distribution
p(v(n)) = N (v(n); 0; σ2

v). Mimicking an extended (E)KF approach,
we linearize (23) in a neighborhood ofx̂(n|n−1) to obtain

yk(n)− y0
k(n) ≈ hT (n)x(n) + v(n), (24)

whereh(n) := αx̂(n|n−1)/‖x̂(n|n−1)− xk‖2 andy0
k(n) is an

explicit function ofα, x̂(n|n−1) andxk.
The approximate model in (22)-(24) is of the form (3) and we can

apply the SOI-KF outlined in Algorithms 1 and 2 to track the target’s
positionx(n). This procedure amounts to the implementation of an
extended SOI-(E)KF which is a low communication cost version of
the EKF. The results of simulating this setup are depicted in Fig. 3,
where we see that the SOI-KF succeeds in tracking the target with
distance error for the position estimates of less than10 meters (m).
More important, note that the clairvoyant EKF and the SOI-EKF have
almost identical performance even when the former relies on analog-
amplitude observations and the SOI-EKF on the transmission of only
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Fig. 3. Target tracking with EKF and SOI-EKF (Ts = 1s, L = 2km,
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a single bit per sensor.

6. CONCLUDING REMARKS

Relying on the sign of innovations (SOI), we considered the problem
of distributed state estimation in the context of wireless sensor net-
works. The binary SOI data destroys the linearity of the problem and
leads to prohibitively complex MMSE state estimation. This moti-
vated an approximation leading to the SOI-Kalman filter (KF) which
offers an approximate MMSE estimator whose complexity and per-
formance are very close to that of the clairvoyant KF even though
the latter is based on the original (analog-amplitude) observations and
the SOI-KF is based on the transmission of a single bit per observa-
tion. Relating the discrete-time KF and SOI-KF with the underlying
continuous-time physical process monitored by the WSN, we estab-
lished that the MSE of the SOI-KF coincides with the MSE of a KF
applied to an otherwise equivalent system model withπ/2 larger ob-
servation noise covariance matrix2.

7. REFERENCES

[1] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear esti-
mation,”Proc. of the IEEE, vol. 92, pp. 401–422, March 2004.

[2] J. Kotecha and P. Djuric, “Gaussian particle filtering,”IEEE
Transactions on Signal Proc., vol. 51, pp. 2602–2612, Oct. 2003.

[3] Z.-Q. Luo, “An isotropic universal decentralized estimation
scheme for a bandwidth constrained ad hoc sensor network,”
IEEE JSAC, vol. 23, pp. 735–744, April 2005.

[4] P. S. Maybeck,Stochastic Models, Estimation and Control –
Vol.1. Academic Press, first ed., 1979.

[5] H. Papadopoulos, G. Wornell, and A. Oppenheim, “Sequential
signal encoding from noisy measurements using quantizers with
dynamic bias control,”IEEE Transactions on Information Theory,
vol. 47, pp. 978–1002, 2001.

[6] A. Ribeiro and G. B. Giannakis, “Bandwidth-Constrained Dis-
tributed Estimation for Wireless Sensor Networks, Part II: Un-
known pdf,” IEEE Trans.on Signal Proc., 2006 (to appear).

[7] A. Ribeiro, G. B. Giannakis, and S. Roumeliotis, “SOI-
KF: Distributed Kalman Filtering with Low-Cost Communica-
tions using the Sign Of Innovations,”IEEE Transactions on
Signal Processing, August 2005 (submitted). Available at
http://www.ece.umn.edu/users/aribeiro/research/pubs.html.

2 The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Govern-
ment.


