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ABSTRACT (PF) [2]. However, since there are no tools to predict the performance

We derive and analyze distributed state estimators of dynamical stoc Btshe UKF and the PF, no insight has been provided with regards

tic processes, whereby low communication cost is effected by requi- performance degradation when quantized data are used in lieu of

: — : : ; - e analog-amplitude observations; furthermore, these approaches are
ing the transmission of a single bit per observation. Following a Kalmgln nificantly more complex than (E)KE. Our contribution isckesign
filtering (KF) approach, we develop recursive algorithms for diStribUtes{;ue estimators based on binary obser.vatisumat' i) complexity is
state estimation based on the sign of innovations (SOI). Even thouge ’

SOI-KF can afford minimal communication overhead, we prove thas ndered comparable to the equivalent KF based on the original obser-

in terms of performance and complexity it comes very close to th\éat'ons’ and, "). the mean squ_ared_error (MSE) of the resultant estima
- o . . __tor based on binary observations is close to the MSE of the estimator
clairvoyant KF which is based on the analog-amplitude observations, L .
ased on the original observations.

Reinforcing our conclusions, we show that the SOI-KF applied to dis-"""" . . )
tributed target tracking based on distance only observations yields d¢otation: We usep(z|y) to denote the probability density function

curate estimates at low communication cost. (pdf) of the random variable (r.v.)c given the r.v. y. A normally
distributed r.v. with meamu, = E(x) and covariance matri&, =
1. INTRODUCTION E(xxT), is written asp(x) = N (x; pz, C). For a scalar r.v., we

write p(z) = N (@; pa, 07) and defineQ(z) == [ N (u;0,1)du.

Distributed signal processing is a well-appreciated toolbox for decedVe Us€ic(t) to denote the Dirac delta function anh) to denote the
tralized tracking applications involving e.g., multiple radars, but ha&ronecker delta. Lower (upper) case boldface letters will stand for
received a revived interest in the context of wireless sensor network8!Umn vectors (matrices) arddwill denote the identity matrix .
(WSNSs). Unlike centralized signal processing, observations and the
resultant algorithms are physically distributed across sensors in the 2. PROBLEM STATEMENT AND PRELIMINARIES
network, dictating that inter-sensor communications should be viewed
as an integral part of the problem at hand. For the problem of di§onsider an ad-hoc WSN (see Fig. 1) wii distributed sensors
tributed estimation of dynamical stochastic processes considered{ifix }5-_; deployed to track @ x 1 real random vector (state).(t) €
this paper, communications dictate estimation to be based on qudk. The state evolution in continuous-time is described by
tized observations — a problem certainly different from state estima- .
tion based on the original (analog-amplitude) observations. Xe(t) = Ac(t)xe(t) + ue(t), 1)

Quantizer design for WSNs was studied in [S], where the conyhere A, (1) € RP*?, and the driving inputa.(¢) € R? is a zero-
cept of information loss was defined as the relative increase in esffean white Gaussian process with autocorreldiipn, (t, )u? (t2)] =
mation variance Wh_en analog-amplitude observations are _replaged@xc(tl)(;c(tl — t5). We model the observatiog, (¢, k) € RM of
their quantized versions. To address the challenge of building suitabdgnsors, at timet as
noise models for WSNs, universal estimators that work irrespective
of the noise distribution were introduced in [3, 6]. Estimating signals ve(t k) = He(t, k)xc(t) + ve(t, k), 2
using very noisy sensor data was studied in [6], where it was show . . .
that as the noise variance becomes comparable with the paramet@rf}?reﬂc(t’ k) € RM.XP and the observation noise(t, k) €RYis ,
dynamic range, quantization to a single bit per observation leads foZ€70-Mean Gaussian process uncorrelated across time and sensors;

T _ — —
low complexity estimators dime-invariant deterministiparameters Le. Elve(t1, k1)ve (f2, k2)] = Cu. (t1, k1)c(t1—2)0 (k1 —k2).
with minimal information loss. To trackx.(t), we consider uniform sampling with perid@d and

Accounting for the stringent bandwidth constraints of WSNs, wd€finex(n) := x.(nTs) andy(n, k) := yc(nTs, k) as the discrete-

study state estimation dfynamical stochastiprocesses based on sevellme state and observation vectors, respectively. From (1) and (2)

rely quantized observations, whereby low-cost communications rig;e can op&sun a d'?fite't'?e model|[4, ieca_f?'g]' _Ulpon defining
strict sensors to transmit a single bit per observation. The gquantiz (t2, 1) = eXP[fu <(t)dt], we solve the differential equation

tion rule manifests itself in a non-linear measurement equation inig (1) betweer(n — 1)T andnT’ with initial conditionx(n — 1) to
Kalman Filtering (KF) setup. While the discontinuous non-linearityobtain the vector time-varying auto-regressive (AR) process
precludes application of the extended (E)KF, one could use more pow- N 1
erful techniques such as the unscented (U)KF [1], or the Particle Filter x(n) = (n)x(n —1) + u(n)

y(n,k) = H(n,k)x(n)+v(n,k), 3)

* Work in this paper was prepared through collaborative participation ijyhere the maitrices arA (n) = ®(nTs, (n — 1)Ts), H(n, k) :=
the Communications and Networks Consortium sponsored by the U. S. Ar S - . [nTs
Research Laboratory under the Collaborative Technology Alliance Progranriwx,c(nTg’ k), the dr.|V|ng |r_1put. 'Sl(n_) T f(nfl_)T:I’(ﬁTS’ T)ue(7)dr
Cooperative Agreement DAAD19-01-2-0011. The U. S. Government is auth@d the observation noise is white Gaussian with jigf(n, k)] =
rized to reproduce and distribute reprints for Government purposes notwithd [v(n, k); 0, Cy (n, k)]. Since sampling (2) requires passindt, k)
standing any copyright notation thereon. through a low- or band-pass filter of bandwidtfil’s, the sampled co-




which is standard in non-linear filtering (see e.g., [2]), we obtain a
KF-like recursion described in the following propositfon

Proposition 1 Consider the model i) with y(n) < y(n) scalar
and denoteC, (n) < o2(n) andH(n) « h”(n) € R**?. If we de-

X0V () XDV v o XYy fine binary observations as i8) and assume thai[x(n)|bo:n—1] =
P < N N[x(n); %x(n|n—1), M(n|n—1)], then the MMSE estimata(n|n)
‘ S0 ‘ ‘ ) ‘ 0 can be obtained as
2/m)M(n|n—1)h(n
b(0) b(D) () S(nln) = X(nln—1) + ¢hT(<i)21<4 S R ) ©
(2/m)M(njn—1)h(n)hT (n)M(n|n—1)
M(n|n) = M(njn—1) — .
Fig. 1. Ad hoc WSN for tracking the state(n) BT (mM(njn—1)h(n) + o3(n) (10)

The assumptiop[x(n)|bo:n—1] = N[x(n); X(n|n—1), M(n|n—
variance matrix satisfie€, (n, k) = C,, (nT%, k) /Ts [4, Sec. 4.9].  1)] yields the low-complexity SOI-KF that implements distributed
Supposing thatA (n), C.(n), H(n, k) andC,(n, k) are avail- state estimation based on single bit observations using the recursions
able to all sensors for afl, k, the goal of the WSN is for each sensor (6)-(7) and (9)-(10). To estimate(n), we only require a few basic
Sk to form an estimate ok(n). Without loss of generality, we as- algebraic operations per iteration. Moreover, the SOI-KF recursion is
sume that sensors convey their observations to each other using tistekingly reminiscent of the KF recursions (for the latter see e.g., [4,
division multiple access (TDMA) wittk(n) being the index of the Section 4.2]). The covariance updates in particular are identical except
sensor scheduled at thé" time slot; for notational brevity we denote for the2/ factor in (10).
Skny = S(n) andy(n, k(n)) = y(n). Digital transmission requires To implement the SOI-KF we run two independent algorithms.
a quantization functiomy,,, to mapy (n) into binary data: The observation-transmission algorithm is run by the sensors as dic-
) M M tated by the scheduler. The sensor starts by collecting the observation
b(n) = an(y(n)), with qn:R™ —{-1,1}7, 4) y(n, k) < y(n) and computing the state and observation predicted

whereb(n) := [b(n, 1), ..., b(n, M)]T is anM x 1 binary message. estimates(n|n — 1) andg(n_|n - 1). Based on the latter, it obtains

We further suppose that(n) is correctly received by all sensors. the SOI by means of (8) which it percolates to the remaining sensors
Given messagebo., = [b7(0),...,bT(n)]T, our goal is to &S the messaggn). The reception-estimation algorithm is continu-

derive and analyze the performance of the MMSE estimator ously ran byall sensors to track(n) and is (surprisingly) identical to

a KF algorithm except for the (minor) differences in the update equa-
N o - tions. At each time slot, we computgn|n — 1) by means of (6) to
X(nln) := Epx(n)[bos] = /Rp x(n)plx(n)[bon]dx(n), () then receive the SQi(n) that we use to comput(n|n) by means

ichi . of (9). A couple of remarks are now in order.
which is to be computed by all the sensors in the network. We also © up Wi

define the so called predictors that estimate (predict) the state and ob-

servation vectors based on past observations: Remark 1 It is possible to express the SOI-KF corrector in (9) in a
form that exemplifies its link with the KF corrector [4]. Indeed, if we
x(njn—1) := E[x(n)bosn-1] = A(n)k(n—1jn—1) (6) define the SOI-KF innovation as
y(rn=1) = Ely()[bon-1] = H(n)k(njn-1). b(n) := /(2/m) 0T (n)M(nln—1)h(n) + o3(n)] b(n),  (11)

For the state estimators in (5) and (6), we define the error covariang@ can re-write the SOI-KF corrector as
matrices (ECMM (n|n) := E[(X(n|n) — x(n))(X(n|n) — x(n))T] M(n|n—1)h(n)
andM(n|jn—1) := E[(X(n|n—1) — x(n))(X(n|n—1) — x(n))T]. %(n|n) = %(njn—1) +

b(n).
The two are related by the recursion h” (n)M(n|n—1)h(n) + o3(n) (12)

M(nln—1) = A(n)M(n — 1jn — 1)AT(n) + Cu(n), (7) Note that (12) is identical to the KF corrector if we repldg¢e) «
(n). Moreover, note that the units 6{r) andg(n) are the same,
nd thatt[b(n)] = E[g(n)] = 0. Even more interesting,

which we will use in later derivations. Note that the relations in (6f1
and (7) hold true regardless of the quantization rule in (4).

= 2 -
E[b*(n)] = = [hT(n)M(nlnfl)h(n) +oy(n)| = ZE[F*(n)]
3. STATE ESTIMATION WITH SIGN OF INNOVATIONS ™
which explains theq/x) relationship between the ECM corrections
We start by considering the case of scatén) < y(n) observations for the KF and for the SOI-KF in (10). The difference between the KF
in (3) and define the messabe:) as thesign of innovatior(SOI): corrector and (12) is that in the SOI-KF the magnitude of the correc-
tion at each step is determined Byb*(n)] and it is the same regard-

+1, if y(n) > g(nln—-1) less of how large or small the actual innovatigm) is.

o) = sl = { T1 A ZITD @)

wherej(n) := y(n) — §(n|n—1) Notice that the SOb(n) is not  Remark 2 We have shown that a8 — oo, p[x(n)|bo..] converges

a standard quantizer of the dajén). It can be thought as one with uniformly to a normal distribution [7]. Thus, the assumption
judiciously setting the quantization threshold at the data predictiop(x(n)|bo:n—1] = N[x(n); %(n|n —1), M(n|n —1)] holds asymp-
§(n|n — 1). Computing the MMSEk(n|n) in (5) requires compu- totically aso? — oco.

tationally demanding numerical integration [7]. However, using the
approximatiorp[x(n)|bo.n—1] = N[x(n); %(n|n—1), M(n|n—1)], Proofs of claims in this paper can be found in [7].




Algorithm 1 SOI-KF — Observation-transmission

Algorithm 2 SOI-KF — Reception-estimation

Require: x(n —1jn — 1) andM(n — 1|jn — 1)
Ensure: b(n)
1: Computex(n|n—1) andM (n|n—1) using (6) and (7).

2: yo(n) := Cy Y (n)y(n) andHo(n) := C, */*(n)H(n)

3: for m = 1to M do

4:  Computej(n,m|n — 1,m — 1) using (16)

5. Computeb(n, m) using (17)

6: Computek(n,m), x(n|n — 1, m), andM(n|n — 1,m) us-
ing (18), (19) and (20)

7: end for

8: Transmitb(n) = [b(n, 1),...,b(n, M)]

3.1. Vector state - vector observation SOI-KF

To address the general model in (3) we define the whitened obser

tionsyo(n) := Cy */*(n)y(n), and rewrite (3) as

yo(n)=Cy * (n)H(n)x(n) + Cy ? (n)v(n):= Ho(n)x(n) +v0g% :
Upon definingyo(n) = [yo(n,1),...,50(n, M)]T, vo(n) :=
[vo(n,1),...,v0(n, M)]T andHo(n) := [ho(n, 1),..., ho(n, M)]T,
we rewrite (13) componentwise as:

yo(n,m) = h{ (n,m)x(n) +vo(n,m), m € [1, M], (14)

whereoy, := E[vg(n,m)] = 1. Mimicking steps in Section 3, we
defineb(n, 1 : m) := [b(n, 1),...,b(n,m)]” and introduce

%(n|n — 1,m) = E[x(n)|bo:n—1,b(n,1: m)], (15)

Require: prior estimatex(—1| — 1) and ECMM(—1| — 1)
1: for n = 0 to oo do {repeat for the life of the netwotk
2. Computex(n|n—1) andM(n|n—1) using (6) and (7).

3. Ho(n) = C,?(n)H(n)

4:  Receiveb(n)

5. form=1toM do

6: Computek(n, m), x(n|n — 1,m), andM(n|n — 1, m) us-
ing (18), (19) and (20)

7. endfor

8: x(n|n) =x(njn—1, M), M(n|n) = M(n|n — 1, M)

9: end for

1) and whitens the observatign(n) (step 2). Subsequently, it re-
cursively computes partial MMSE estimators via (16) and (18)-(20)
Yf-order to obtain the binary observatiobis:, m) by means of (17).
When this process is complete, the mesdage) is transmitted. Al-
gorithm 2 is continuously run by the sensors to estimate thestate

At each time slot:, all the sensors compute the predictors along with
H,(n) and move on to process the received mesdg@gg. Process-
ing b(n) entails recursive application of (18)-(20) for tié entries

of b(n). The output of this process is the MMSE estimate|n).

4. PERFORMANCE ANALYSIS

Let us comparer[M(n|n)] andtr[M(n|n — 1)] for the SOI-KF with
tr[M¥ (n|n)] and tr[M™(n|n — 1)] reserved to denote the corre-
sponding quantities for the clairvoyant KF which relies on the analog-
amplitude observationg(n). Since the ECMs for the SOI-KF are

which is the MMSE estimator based on past messages and thefirsindependent of the data, we can fid(n|n) andM(n|n — 1) by

components of the current message. We adopt the convex(tidn —
1,0) = %(n|n—1), and note thak(njn — 1, M) = %X(n|n) with

X(n|n—1) as in (6) andk(n|n) as in (5). From (15), we obtain the

MMSE predictor ofyo(n, m) as [c.f. (14) and (15)]

Jo(n,m|n — 1,m — 1) := E[yo(n, m)|bo:n—1, b(n,1 : m — 1)]

=h{ (n,m)x(njn —1,m —1). (16)
From (16), we define the SOl messages as
b(n, m) := sign[yo(n,m) — Go(n, mn — 1,m — 1)],  (17)

for m € [1, M], to introduce the SOI-KF for vector observations:

Proposition 2 Consider the model i(8), binary observations as if17)
andletHo(n) := [ho(n, 1),..., ho(n, M)]T be defined a&ly(n) :=
C. 2 (n)H(n) [cf. (13). If p[x(n)|bo:n_1,b(n,1 : m — 1)] =
N[x(n);x(nln — 1,m — 1), M(n|n — 1,m — 1)], then the MMSE
estimatex(n|n) can be obtained from
(v/2/m)M(n|n—1,m—1)ho(n, m)

k(n,m) = (18)

\/1 + hl' (n,m)M(n|n—1,m—1)hg(n, m)
X(nln —1,m) = x(njn — 1,m — 1) + k(n, m)b(n, m) 19)
M(n|n — 1,m) = M(njn — 1,m — 1) — k(n, m)kT (n, m). (20)

For each time index., (18) to (20) are repeated forn € [1, M]. We
adopt the convention&(njn — 1,0) = %X(n|n—1) and M(n|n —
1,0) = M(n|n—1), and note that the MMSE estimate and the EC
arex(n|n) = x(n|n — 1, M) andM(n|n) = M(n|n — 1, M).

solving a discrete-time Ricatti equation [7]. A better insight, though,
can be gained by recalling the underlying continuous-time model. We
start with the following definition.

Definition 1 Consider the continuous-time modg}-(2) and a family

of corresponding discrete-time mod¢® parameterized by’s. Let
M(Ts;n|n) andM(Ts; njn — 1) be the ECM of the filtered and pre-
dicted estimates of the SOI-KF in Proposition 1 when sampling period
T, is used. Then, we define the continuous-time ECM as

M, (t) :=M¢(nTs) ::jliglo M(Ts;n|n) :jliIBOM(TS; nln—1).

An equivalent definition can be written for the clairvoyant KF
whose continuous-time ECM will be denotedE: (¢) [4]. Another
definition is that of thgw/2)-equivalent system:

Definition 2 Consider a model as ifi)-(2), with observation noise
covarianceC,, (¢, k). We say that a model with otherwise identical

parameters but noise covarian(éﬁcm(t, k) = (7/2)C,, (t, k), is
(m/2)-equivalent. For a given sampling peridl,, the KF for this
latter model will be henceforth called ttfe /2)-KF. We will denote its

filtered and predicted ECM as1™/2(T%; n|n) and M™/2(T.; njn —
1) and the continuous-time ECM ad7/?(t).

Using Definitions 1 and 2, we can establish the relationship between

N}he MSEs of the SOI-KF and the KF as follows.

Theorem 1 For the state-observation model {&) — (2) and its cor-

The algorithmic description of the SOI-KF is summarized in Al-responding(r/2)-equivalent system, it holds that

gorithms 1 and 2. When dictated by the scheduling algorithm a sensor
starts by running the predictor using (6) and (7) (step 1 in Algorithm

M/ (t) = Me(t). (21)
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6. CONCLUDING REMARKS

Theorem 1 establishes that the MSE of the SOI-KF is closely réRelying on the sign of innovations (SOI), we considered the problem
lated to the MSE of thér/2)-KF, since asl. — 0 the MSEs of of distributed state estimation in the context of wireless sensor net-
these two filters are equal. Fig. 2 compares the KF, the SOI-KF anprks. The binary SOI data destroys the linearity of the problem and
the (7/2)-KF for two T values. For largd?, tr[M’*/2(Ts;n|n)] leads to prohibitively complex MMSE state estimation. This moti-
andtr[M(Ts; n|n)] are not equal (bottom); but & decreases, these vated an approxi_mation leading to the SOI-Kalman filter _(KF) which
two quantities eventually coincide (top) since, as asserted by Theeffers an approximate MMSE estimator whose complexity and per-
rem 1,tr[M.(nT})] = tr[MZ/Q(nTS)]. We finally stress that the gap formance are very close to that of the clairvoyant KF even though

between the KF and the SOI-KF is small for small/modefate the latter is based on the original (analog-amplitude) observations and
the SOI-KF is based on the transmission of a single bit per observa-

tion. Relating the discrete-time KF and SOI-KF with the underlying
continuous-time physical process monitored by the WSN, we estab-
dished that the MSE of the SOI-KF coincides with the MSE of a KF
applied to an otherwise equivalent system model witB larger ob-
servation noise covariance mafrix

5. TARGET TRACKING WITH SOI-EKF

ConsiderK sensors randomly and uniformly deployed in a square r
gion of 2. x 2L meters and suppose that sensor positipls} & ;
are known. The WSN is deployed to track the positiofn) :=
[x1(n), z2(n)]" of atarget, whose state model accountsfr) and
the velocityv(n) := [v1(n), va(n)], but not for the acceleration that 7. REFERENCES
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