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Abstract. This paper examines the problem of cooperative localization for the
case of large groups of mobile robots. A Kalman filter estimator is implemented and
tested for this purpose. The focus of this paper is to examine the effect on localization
accuracy of the number N of participating robots and the accuracy of the sensors
employed. More specifically, we investigate the improvement in localization accuracy
per additional robot as the size of the team increases. Furthermore, we provide an
analytical expression for the upper bound on the positioning uncertainty increase
rate for a team of N robots as a function of N , the odometric and orientation
uncertainty for the robots, and the accuracy of a robot tracker measuring relative
positions between pairs of robots. The analytical results derived in this paper are
validated both in simulation and experimentally for different test cases.
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1. Introduction

This paper studies the localization accuracy of a team of mobile robots
that closely cooperate while navigating within the same area. The
problem of localization is central in mobile robotics. One of the advan-
tages of multi-robot systems is that robots can accurately localize by
measuring their relative position and/or orientation and communicat-
ing localization information throughout the group. Although external
positioning information from a GPS receiver or a map of the environ-
ment can further increase the overall localization accuracy, we hereafter
consider primarily the most challenging scenario where the absolute
positions of the robots cannot be measured or inferred. In this case the
uncertainty in the position estimates for all robots will continuously
increase. Previous work on cooperative localization [18, 23, 29] has
demonstrated that the localization uncertainty increase across groups of
robots is lower compared to the situation where each robot is estimating
its position without cooperation with the rest of the team.
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The theoretical analysis of the positioning uncertainty propagation
during cooperative localization has been an open problem to this date.
In this paper we present the first theoretical treatment for determining
upper bounds on the position uncertainty accumulation for a group of
N robots by directly solving the continuous time Riccati equation for
the covariance of the errors in the position estimates. The key element
in our derivation is the separation of the covariance matrix into two sets
of submatrices: the ones that converge to steady state values and those
that capture the time dependence of the uncertainty increase during
cooperative localization.

The main focus is on homogeneous teams of robots, i.e., groups of
robots that have the same proprioceptive (odometric in this case) and
exteroceptive (orientation and relative position) sensing capabilities.
Nevertheless, the derived expressions are also applicable for determin-
ing the upper localization uncertainty bounds for heterogeneous teams
of robots based on the sensing capabilities of the robot with the least
accurate sensors within the team. The resulting formulae are for the
maximum expected uncertainty. Since both the kinematics of the robots
and the relative position measurements in 2D are described by sets of
nonlinear and time-varying equations, in this treatment we consider
maximum expected values for the covariances of the different sources
of uncertainty and noise [28].

Throughout the paper we assume that all robots move at the same
time randomly. Each robot continuously measures the relative position
of every other robot in the team. Moreover, each robot is equipped
with a sensor (such as a compass, or, sun sensor) of limited accuracy
that provides absolute orientation measurements. This is required in
the derivations that follow for determining bounds on the orientation
uncertainty for each robot. If such sensor is not available, then an upper
bound for the orientation uncertainty needs to be defined by alternative
means, e.g., by estimating orientation from the structure of the envi-
ronment around the robot [19, 22], or by deriving an estimate for the
maximum orientation uncertainty from odometry over a certain period
of time for each robot [14]. In these cases the resulting expressions will
provide an upper bound for the localization uncertainty in the group.

In the following section we outline the main approaches to coop-
erative localization. In Section 3, we present the formulation of the
multi-robot localization problem and study the effect of consecutive
relative position updates on the structure of the Riccati equation de-
scribing the time evolution of the uncertainty in the position estimates.
Section 4 contains the derivations of the analytical expression for the
uncertainty propagation in the case of cooperative localization. In Sec-
tions 5 and 6, experimental and simulation results are presented that
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validate the derived analytical expressions for the rate of localization
increase. Finally, Section 7 draws the conclusions from this analysis and
suggests directions of future work.

2. Related Work

Many robotic applications require that robots work in collaboration
[20] in order to perform a certain task [1, 5, 6, 21, 33]. When a group of
robots needs to coordinate efficiently, precise localization is of critical
importance. In these cases, multi-robot cooperation for determining
positioning estimates will result in better localization by compensating
for errors in odometry and/or a pose sensor.

Previous work on multiple robots has considered collaborative strate-
gies when lack of landmarks made localization impossible [4]. An exam-
ple of a system designed for cooperative localization was first reported
in [18]. A group of robots is divided into two teams in order to per-
form cooperative positioning. At each instant, one team is in motion
while the other team remains stationary and acts as a landmark. The
teams then exchange roles and the process continues until both teams
have reached their target. Improvements over this system and optimum
motion strategies are discussed in [17, 15, 16]. Similarly, in [11], only
one robot moves, while the rest of the team of small-sized robots forms
an equilateral triangle of localization beacons in order to update their
pose estimates. Another implementation of cooperative localization is
described in [23, 24]. In this approach a team of robots moves through
the free space systematically mapping the environment. At each time
instant at least one robot is stationary acting as a landmark for the
localization of the moving robots. Furthermore, the moving robots, by
maintaining an uninterrupted line of visual contact, ensure that the
area between the stationary and the moving robots is free of obstacles.
All previous approaches have the following limitations: (a) Only one
robot (or team) is allowed to move at any given time, and (b) The two
robots (or teams) must maintain visual (or sonar) contact at all times.

A different collaborative multirobot localization schema is presented
in [7, 8]. The authors have extended the Monte Carlo localization algo-
rithm [32] to the case of two robots when a map of the area is available
to both robots. When these robots detect each other, the combination of
their belief functions facilitates their global localization task. The main
limitation of this approach is that it can be applied only within known
indoor environments. In addition, since information interdependencies
are being ignored every time the two robots meet, this method can lead
to overly optimistic position estimates. This issue is discussed in detail
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in [27]. A particle filter was also used in the context of multi-robot
exploration in [26].

A Kalman filter based implementation of a cooperative navigation
schema is described in [31]. In this case the effect of the orientation
uncertainty in both the state propagation and the relative position
measurements is ignored resulting in a simplified distributed algorithm.
In [29, 30] a Kalman filter pose estimator is presented for a group of
simultaneously moving robots. Each of the robots collects sensor data
regarding its own motion and shares this information with the rest of
the team during the update cycles. The Kalman filter is decomposed
into a number of smaller communicating filters, one for every robot,
processing sensor data collected by its host robot. It has been shown
that when every robot senses and communicates with its colleagues at
all times, every member of the group has less uncertainty about its po-
sition than the robot with the best (single) localization results. Finally,
in [12] an alternative to the Kalman filter approach was presented. A
Maximum Likelihood estimator was formulated to process relative pose
and odometric measurements recorded by the robots and a solution was
derived by invoking numerical optimization.

Different sensing modalities have been used by teams of mobile
robots in order to track each other. Some sensors are able to estimate
accurately the distance between robots, such as the ultrasound wave
used in the milibots project [10]. Other sensors estimate the bearing of
the observed robot such as the omnidirectional video cameras used in
[13, 9], or both the distance and relative bearing, with stereo vision and
active lighting in [3], and vision and laser range scanners in [2]. Finally,
sensors are able to estimate even the orientation of the observed robot,
in addition to the distance and relative bearing [15, 24].

To the best of our knowledge there exist only two cases in the litera-
ture where analysis of the uncertainty propagation has been considered
in the context of cooperative localization. In [31] the improvement in
localization accuracy is computed after only a single update step with
respect to the previous values of position uncertainty. In this case the
robot orientations are assumed to be perfectly known and no expres-
sions are derived for the propagation of the localization uncertainty
with respect to time or the accuracy of the odometric and relative
position measurements. In [25] the authors studied in simulation the
effect of different robot tracker sensing modalities in the accuracy of
cooperative localization. Statistical properties were derived from sim-
ulated results for groups of robots of increasing size N when only one
robot moved at a time.

Hereafter we present the details of our approach for estimating the
uncertainty propagation during cooperative localization. Our initial
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formulation is based on the algorithm described in [30]. The main differ-
ence is that the robots instead of measuring their relative orientations,
have access to absolute orientation measurements.

3. Cooperative Localization

Consider the case of a mobile robot moving on flat terrain and equipped
with odometric sensors that measure its linear and rotational velocity.
In this case the pose of the robot (in discrete time) is given by

x(k + 1) = x(k) + V (k)δt cos(φ(k))
y(k + 1) = y(k) + V (k)δt sin(φ(k))
φ(k + 1) = φ(k) + ω(k)δt

where V (k) and ω(k) are the linear and rotational velocity of the robot
at time k. This non-linear set of equations can be used to propagate
the estimate for the pose of the robot as

x̂(k + 1|k) = x̂(k|k) + Vm(k)δt cos(φ̂(k|k)) (1)

ŷ(k + 1|k) = ŷ(k|k) + Vm(k)δt sin(φ̂(k|k)) (2)

φ̂(k + 1|k) = φ̂(k|k) + ωm(k)δt (3)

where

Vm(k) = V (k)− wV (k)
ωm(k) = ω(k)− wω(k)

are the measured linear and rotational velocity of the robot, and wV (k)
(wω(k)) is the noise contaminating the linear (rotational) velocity mea-
surements. Both wV (k) and wω(k) are assumed to be independent
zero-mean white Gaussian processes with known variances

σ2
V = E{w2

V }, σ2
ω = E{w2

ω} (4)

If the robot receives absolute orientation measurements

z(k + 1) = φ(k + 1) + nφ(k + 1) (5)

with nφ(k+1) a zero-mean white Gaussian process with known variance
σ2

φ = E{n2
φ}, these measurements can be processed to improve the

odometric estimates (x̂, ŷ, φ̂) of the pose of the robot.
Instead of formulating an estimator that combines both odomet-

ric and absolute orientation measurements, we follow a two-tier ap-
proach to this problem where absolute orientation measurements are
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first combined with odometric measurements of the rotational velocity
of each robot independently. Then, the resulting improved orientation
estimates are used to propagate the position estimates of the robot. Al-
though this approach is suboptimal compared to an estimation scheme
that combines all odometric and absolute orientation measurements
at once, it will facilitate the derivation of an analytical expression for
bounding the uncertainty in the case of groups of robots moving in 2D.
The same two-tier approach can be used to derive similar expressions
for motion in 3D.

3.1. Orientation Estimation

For the first layer of estimation, the rotational velocity measurements
are used to propagate the orientation estimates for the robot. This is
described by the following equation:1

˙̂
φ(t) = ωm(t) = 0 · φ̂(t) + 1 · ω(t)− 1 · wωc(t)

= F · φ̂(t) +B · ω(t) +Gc · wωc(t)

which is the continuous time form of Eq. (3) with E{wωc(t)wωc(τ)} =
σ2

ωc
δ(t−τ) = Qc(t)δ(t−τ). The orientation estimates are then updated

by processing the absolute orientation measurements

z(t) = φ(t) + nφ(t) (6)

with E{nφ(t)nφ(τ)} = σ2
φc

δ(t− τ) = Rc(t)δ(t− τ). In order to estimate
the uncertainty of the orientation estimates at steady state we invoke
the continuous time Riccati equation

Ṗ = FP + PF T +GcQcG
T
c − PHTR−1

c HP (7)

with P = σ2
φo

and H = 1. The previous equation at steady state is:

lim
t→∞ Ṗ = 0 = σ2

ωc
− 1

σ2
φc

σ4
φoc

⇒ σ2
φoc

= σφcσωc (8)

This last expression provides the estimate for the uncertainty in the ori-
entation of the robot when rotational velocity and absolute orientation
measurements are processed.

1 The subscript “c” is used to indicate continuous time quantities.



7

3.2. Position Uncertainty Propagation for a Single Robot

At this point we use this last result to provide an expression for the
uncertainty propagation of the position estimates for the case of a single
robot. By linearizing the continuous time equivalent of Eqs. (1), (2),
the position error propagation equations for the robot can be written
in a matrix expression as:[

˙̃x(t)
˙̃y(t)

]
=

[
0 0
0 0

] [
x̃(t)
ỹ(t)

]
+

[
cos φ̂(t) −Vm(t) sin φ̂(t)
sin φ̂(t) Vm(t) cos φ̂(t)

] [
wVc(t)
φ̃c(t)

]
⇔ ˙̃

X(t) = F (t)X̃(t) +Gc(t)Wc(t) (9)

where F (t) = 02×2 is a matrix of zeros,

E{Gc(t)Wc(t)W T
c (τ)GT

c (t)} = Gc(t)

[
σ2

Vc
0

0 σ2
φoc

]
GT

c (t)δ(t − τ)

= Qc(t)δ(t − τ) (10)

As evident from the previous expressions, the covariance Qc(t) for all
sources of uncertainty and noise during propagation, is a time-varying
matrix. The values of the elements of this matrix depend on the mea-
sured velocity Vm(t) of the robot and the estimate of its orientation
φ̂(t). If we assume that the robot moves with constant velocity V and
we average across all possible values of its orientation, the previous
covariance matrix is given by:

Q̄c(t) =
σ2

Vc
+ σ2

φoc
V 2

2
I2×2 = qcI2×2 (11)

When no relative positioning information is available, the covari-
ance for the position of the robot is propagated using only odometric
information. This is described by the following equation:

Ṗ = FP + PF T + Q̄c = Q̄c = qcI

or

P (t) = (qct+ p0) I (12)

where p0 is the initial positioning uncertainty of the robot. As it is
evident, the covariance (uncertainty) for the position of a single robot
increases, on the average, linearly with time at a rate of qc determined
in Eq. (11) that depends on the accuracy of the absolute orientation
measurements (σφc) and the robot’s odometry (σVc , σωc , V ).
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3.3. Relative Position Measurements

At this point instead of one robot, we consider the case of a group of
robots where each of them (i) estimates its orientation by fusing rota-
tional velocity measurements with absolute orientation measurements,
(ii) propagates its position using the previous orientation estimates and
linear velocity measurements, and (iii) measures the relative position
zij of all other robots in the team:

zij(k + 1) = i�pj(k + 1) + nzij (k + 1) = CT (φi) (�pj − �pi) + nzij (13)

This additional relative position information can be used to improve
the localization accuracy in the group. In the previous equation, �pi sym-
bolizes the xi and yi coordinates of robot’s i position, i.e. �pi = [xi yi]

T .
The preceding superscript denotes the frame of reference i attached
on the observing robot i that the position of robot j is expressed to.
For notation simplicity, when no preceding superscript appears, this
quantity is expressed with respect to the global frame of reference.
Finally, nzij is the noise in the relative position measurement, assumed
to be a zero-mean white Gaussian process, and C(φ) is the rotational
matrix:

C(φ) =
[
cosφ − sinφ
sinφ cosφ

]
By linearizing Eq. (13), the measurement error equation is given by

z̃ij(k + 1) = zij(k + 1)− ẑij(k + 1)

= Hij(k + 1)X̃(k + 1) + Γ(k + 1)Nij(k + 1)

where

Hij(k + 1) = CT (φ̂i)oHij
oHij =

[
0 . . . −I . . . I . . . 0

]
X̃(k + 1) =

[
p̃T
1 . . . p̃T

i . . . p̃T
j . . . p̃T

N

]T

Γ(k + 1) =
[
I −CT (φ̂i(k + 1))J∆̂pij(k + 1)

]
∆̂pij(k + 1) = p̂j(k + 1)− p̂i(k + 1)

Nij(k + 1) =

[
nzij(k + 1)
φ̃i(k + 1)

]
, J =

[
0 −1
1 0

]
The covariance for the measurement error is given by

Rij(k + 1) = Γ(k + 1)E{Nij(k + 1)NT
ij (k + 1)}ΓT (k + 1)

= Rzij (k + 1) +Rφ̃ij
(k + 1) (14)
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This expression encapsulates all sources of noise and uncertainty that
contribute to the measurement error z̃ij . More specifically, Rzij is the
covariance of the noise nzij in the recorded relative position measure-
ment zij and Rφ̃ij

is the additional covariance term due to the error φ̃i

in the orientation estimate φ̂i of the observing robot i.
When each of the N robots measures the relative position of every

other robot in the group, the measurement matrix is:

HT =
[

HT
1 . . . HT

N

]
where Hi is the measurement matrix for all the relative position mea-
surements received by robot i:

H i =

 Hi1
...

HiN

 =


CT (φ̂i)oHi1

...
CT (φ̂i)oHiN

 = Diag(CT (φ̂i))oH i

The total information HTR−1H available to the system is:

HTR−1H =
N∑

i=1

HT
i R−1

i H i =
N∑

i=1

oHT
i

oR−1
i

oHi (15)

Assuming that all robots move within a constrained area, it can be
shown [28] that the minimum information available to the system is:2

HTR−1H = 2NI(oR̄−1)− 21(oR̄−1)

with

oR̄−1 =
1

or̄z
I2×2 , or̄z = max(σ2

ρc
, ρ2

oσ
2
θc
) + (N − 1)ρ2

oσ
2
φoc

(16)

where σ2
ρc

and σ2
θc

are the variances of the distance and bearing mea-
surements, and ρo is the maximum distance between any two robots.

In the following section, we solve the Riccati equation for the max-
imum expected uncertainty for this group of robots when performing
cooperative localization [28].

2 From here on, we use the notation I(A) to denote a matrix composed of N
diagonal submatrices A and N(N − 1) non-diagonal submatrices 0 and 1(B) to
denote a matrix whose all N2 submatrix elements are equal to B.
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3.4. Consecutive Relative Position Updates

Assume that at the time step k = 0 all robots know their position
with the same level of accuracy, that is P0 = I(P0), P0 = p0I2×2. The
covariance matrix P0 is symmetric with equal non-diagonal submatri-
ces (here all zero) and also equal diagonal submatrices (here all p0).
We will prove that after any number of steps the covariance matrix
sustains this structure. The discrete-time inverse Riccati equation for
the propagation and update of the information matrix P−1 is:

P−1
k+1 =

(
ΦkPkΦT

k +GkQGT
k

)−1
+HTR−1H

= (Pk +Q)−1 +HTR−1H (17)

where since the robots move independently it is Φk = I(I2×2) and
Gk = I(I2×2). Substituting P0 = I(P0) and Q = I(Q̄d) we have:3

P−1
1 =

(
I(P0) + I(Q̄d)

)−1 +HTR−1H

= I
(
(P0 + Q̄d)−1 + 2N oR̄−1

)
+ 1(−2 oR̄−1)

= I(A−1
1 ) + 1(B

′−1
1 )

By employing the relations in Appendix A the covariance matrix can
be computed as:

P1 = I(A1) + 1(−(A−1
1 +NB

′−1
1 )−1B

′−1
1 A1)

= I(A1) + 1(B1)

Note again that both the diagonal and non-diagonal submatrix ele-
ments of this matrix are equal between them. Assume that after a
certain number of propagation and update steps, at time step k = m,
the covariance matrix has still equal diagonal and equal non-diagonal
submatrix elements. That is

Pm = I(Am) + 1(Bm) (18)

We will prove that the covariance matrix Pm+1 also has equal diago-
nal and non-diagonal submatrix elements. By substituting Eq. (18) in
Eq. (17) we have:

P−1
m+1 =

(
I(Am) + 1(Bm) + I(Q̄d)

)−1 +HTR−1H

= I
(
(Am + Q̄d)−1 + 2NoR̄−1

)
+1

(
−(Am + Q̄d +NBm)−1Bm(Am + Q̄d)−1 − 2 oR̄−1

)
= I(A−1

m+1) + 1(B
′−1
m+1)

3 Q̄d is the discrete time equivalent of Q̄c, the continuous time covariance for the
system propagation noise.
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By employing the relations in Appendix A once more, the covariance
matrix can be computed as:

Pm+1 = I(Am+1) + 1(−(A−1
m+1 +NB

′−1
m+1)

−1B
′−1
m+1Am+1)

= I(Am+1) + 1(Bm+1)

We have proven the following:

LEMMA 3.1. The covariance matrix for a homogeneous4 group of
robots, when they perform cooperative localization, is on the average
a matrix with equal diagonal and equal non-diagonal submatrix terms.

A direct result of the previous lemma is the following:

COROLLARY 3.2. A homogeneous group of robots, when they perform
cooperative localization, they experience the same level of positioning
uncertainty and they share the same amount of information.

The amount of information shared by two robots is captured in the
cross-correlation terms (non-diagonal submatrices) of the covariance
matrix.

4. Uncertainty Bounds for Cooperative Localization

At this point we employ Lemma 3.1 to derive the main result of this pa-
per, an analytical expression for the rate of increase in the localization
uncertainty for a group of N robots.

LEMMA 4.1. For a homogeneous group of N robots, when they per-
form cooperative localization their covariance at steady state grows, on
the average, linearly with time:

Pij(t) =


(

1
N qct+ 1

N p0 + N−1
N ac

)
I2×2 , i = j(

1
N qct+ 1

N p0 − 1
N ac

)
I2×2 , i �= j

(19)

with i, j = 1 . . . N and

ac =
√

qc
or̄z

2N
(20)

4 Homogeneous group of robots denotes a team comprised of robots with the
same level of uncertainty for their proprioceptive and exteroceptive measurements.
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Proof In order to compute the time evolution of the covariance ma-
trix for a group of N robots, we employ the continuous time Riccati
equation:

Ṗ = FP+PFT +GQGT −PHTR−1HP (21)

where F = I(02×2), G = I(I2×2), Q = I(Q̄c) and

HTR−1H = I(2N oR̄−1) + 1(−2 oR̄−1),
P = I(A) + 1(B) (22)

By substituting these terms in Eq. (21) it can be shown [28] that

Ṗ = I(Ȧ) + 1(Ḃ) = I(Q̄c − 2NA oR̄−1A) + 1(2A oR̄−1A)

or

Ȧ(t) = Q̄c − 2NA(t) oR̄−1A(t) (23)

Ḃ(t) = 2A(t) oR̄−1A(t) =
1
N

(
Q̄c − Ȧ(t)

)
(24)

with A(0) = P (0) = p0I2×2, B(0) = 02×2.
IfA(t) was known, then matrix B(t) can be determined from Eqs. (11)

and (24):

B(t) =
1
N

(∫ t

0
Q̄cdτ −

∫ t

0
Ȧ(τ)dτ

)
=

1
N

((qct+ p0)I2×2 −A(t)) (25)

In Eq. (23), due to the structure of matrices Q̄c (from Eq. (11)) and
oR̄−1 (from Eq. (16)), A(t) can be written as:

A(t) = a(t)I2×2 (26)

with a(0) = p0. Substituting in Eq. (23), yields:

ȧ(t) = qc − 2N
a2(t)

or̄z
(27)

Solving this equation, at steady state, yields limt→∞ a(t) = ac with ac

defined by Eq. (20). Using this result in Eqs. (26), (25), we have:

A(t) = acI2×2 , B(t) =
1
N

(qct+ p0 − ac) I2×2 (28)

Finally, by substituting for A(t) and B(t) in Eq. (22), for the steady
state value of a(t) (Eq. (20)), the maximum expected covariance for a
group of N robots is computed by Eq. (19).
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COROLLARY 4.2. For a homogeneous group of N robots perform-
ing cooperative localization, the maximum expected rate of positioning
uncertainty increase at steady state is Ṗii = 1

N qc, i.e., it is inversely
proportional to the number of robots N .

Proof Differentiation of Eq. (19) provides this result.

The following significant remarks are evident:

1. The rate of increase at steady state is inversely proportional to
the number N of robots and proportional to the odometric
and orientation uncertainty of each robot (captured by qc). The
above result is also supported by the simulation study presented
in [25] using a particle filter based estimator. Appropriate curve
fitting calculated the rate of uncertainty increase proportional to
N−0.948.

2. The rate of uncertainty increase at steady state does not depend
on the accuracy of the relative position measurements (cap-
tured by their covariance or̄z).

3. The time for the cooperative localization system to reach steady
state is determined by the time constant of the system related to
the flow of information amongst the robots [28]:

τ =
1
2

√
or̄z

2Nqc

Inaccurate relative position measurements or̄z will delay the system
reaching steady state. On the other hand large teams N of robots
with precise odometric and orientation information qc will quickly
reach steady state.

Up to this point, we have assumed that all robots have the same
odometric/orientation uncertainty qci = qc and relative position mea-
surement uncertainty or̄zi = or̄z. These assumptions were made in
order to facilitate the previous derivations and thus gain insight into
the structure of the cooperative localization problem. Nevertheless,
Eq. (19) can be used as an inequality to determine the upper bound of
the expected uncertainty growth with qc = max(qci),

or̄z = max(or̄zi).
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Figure 1. The Pioneer robots in the experimentation arena as viewed from the
overhead camera.

5. Experimental Results

The cooperative localization algorithm was implemented and tested
for the case of one (for comparing to dead reckoning), two, and three
Pioneer mobile robots shown in Fig. 1. The experiments were con-
ducted in a lab environment within an arena of dimensions 5.6 m ×
3.7 m. The three robots started from different locations and were com-
manded to move randomly within this area, while avoiding obstacles,
with constant linear velocity Vt = 0.1 m/sec. Every Pioneer robot is
equipped with wheel-encoders on the two front wheels that measure
the translational and rotational velocity of the vehicle. The standard
deviation for the linear and rotational velocity measurements of the
robots was experimentally determined to be σV = 0.005 m/sec and
σω = 0.0236 rad/sec.

An overhead camera based tracking system was designed for record-
ing the absolute pose (reference trajectory) of each of the three robots
(Fig. 2). This ground truth was used for determining the errors εX =
Xcamera − X̂KF in the pose estimates X̂T

KF = [ x̂ ŷ φ̂ ] of the Kalman
Filter (KF). The accuracy of the tracking system is 2 cm for the position
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Figure 2. Rectified image of the Pioneer robots with color patches for tracking and
identification as viewed from the overhead camera.

and 3◦ for the orientation. In our experiments, instead of implement-
ing a system that directly measures the relative position between two
robots, such as the ones presented in [2, 3], we use the information from
the tracking system to infer these measurements. Each relative position
measurement is the difference between the positions of two robots,
expressed in local coordinates, with the addition of noise. This way we
were able to investigate the validity of our theoretical analysis over a
wide range of values for the accuracy level of the relative position sensor
data and control the frequency of these measurements. For the exper-
iments reported here the relative distance and bearing measurements
had accuracy of σρ = 0.1 m and σθ = 0.2 rad respectively. Finally, the
absolute orientation measurements had accuracy σφ = 0.0524 rad.

We have examined and present experimental results for three differ-
ent scenarios (5 trials each): (i) Dead-reckoning (1 robot) - Fig. 3(a), (ii)
Cooperative Localization (2 robots) - Figs. 3(c), (e), (iii) Cooperative
Localization (3 robots) - Fig. 3(b), (d), (f). In each set of these figures,
the following quantities are depicted:

• The position errors εx in the estimates x̂KF along the x-axis for
each robot and during sets of 5 experiments, as these were recorded
by the overhead tracking camera (solid lines).
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Figure 3. Position errors εx (solid lines), experimentally calculated uncertainty
bounds±3σxx (dashed-dotted lines), and theoretically predicted maximum expected
uncertainty bounds ±3σT as a function of time for the following cases (a) Robot
#1 from a 1-robot team (dead reckoning), (b) Robot #1 from a 3-robot team. (c)
Robot #1 from a 2-robot team. (d) Robot #2 from a 3-robot team. (e) Robot #2
from a 2-robot team. (f) Robot #3 from a 3-robot team.
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• The experimentally calculated, by the KF on each robot, ±3σxx =
±3

√
Pxx regions of confidence for each of these 5 trials (dashed-

dotted lines). These plots verify that in all cases examined, the KF
estimator is consistent since the recorded errors εx remain between
the experimentally determined upper and lower bounds.

• The theoretically predicted ±3σT = ±3
√

PT regions of confidence
for each of the 3 different scenarios examined (dashed lines). The
values of PT are computed using the expression in Eq. (19). As
it is evident these theoretically determined maximum expected
values for the positioning uncertainty are in all cases enclosing
those calculated by the KF. These bounds can be used a priori
for determining bounds on the localization accuracy of teams of
robots as a function of their size N and the accuracy of their
proprioceptive and exteroceptive measurements.

6. Simulation Results

In order to validate the results of the theoretical analysis for larger
teams of robots (N = 2, . . . , 5), we additionally performed a series
of experiments in simulation. The setup used in these experiments
is described hereafter. N robots were placed inside a 40 m × 40 m
arena at random locations (see Fig. 4 for four robots). The robots were
kept inside the designated area thus limiting the maximum inter-robot
distance to the length of the diagonal. During the experiment the linear
velocity of all robots was maintained constant (Vt = 0.25 m/sec) while
the rotational velocity was changed randomly as follows:

ωt = ωmax · n0,1 (29)

where ωmax = 0.2 rad/sec and n0,1 is a random value drawn from the
normal distribution with zero-mean and σ = 1.

The simulated robot motion was recorded along with the dead reck-
oning (DR) and Kalman filter (KF) cooperative localization estimates.
The velocity measurements were corrupted by additive zero-mean white
Gaussian noise with noise parameters measured on a iRobot PackBot
robot (σV = 0.01 m/sec, σω = 0.0384 rad/sec). The absolute ori-
entation of each robot was measured by a simulated compass with
σφ = 0.0524 rad. The robot tracker sensor returned range and bear-
ing measurements corrupted by zero-mean white Gaussian noise with
σρ = 0.01 m and σθ = 0.0349 rad. The above values are compatible with
noise parameters observed in laboratory experiments [26]. All measure-
ments were available at 1Hz. The robots performed random walks for 10
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Figure 4. Four robots move randomly inside a 40m by 40m arena. Starting positions
are marked by “*”.

min at each trial while continuously measuring their relative positions.
Fig. 4 presents the ground truth (solid lines), the dead reckoning based
trajectories (dotted lines) and the KF (dashed lines) for four robots
from one trial.

Fig. 5 depicts the comparison between the theoretically derived up-
per bound from the analytical expression in Eq. (19) (dashed lines) and
the average, across N robots, covariance along the x and y axes for ten
different trials (solid lines). Each figure (5(a)-5(d)) presents the results
for an increasing number of robots (N = 2, . . . , 5) and consists of two
sub-plots: the top one for the x-axis and the bottom one for the y-axis.
As evident the average covariance values (Pxx, Pyy) are consistently
lower compared to the theoretically derived upper bound, and follow
(on average) the same rate of increase.

It is worth noting that as the number N of robots increases, the con-
stant offset between the theoretically derived covariance upper bound
and the recorded average covariance grows larger. This is due to the fact
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Figure 5. The covariance along x-axis and y-axis for ten experiments (solid thin
lines) and the theoretical upper bound of uncertainty (dashed lines) for different
number of robots (N = 2, . . . , 5).

that the parameter ρo (maximum average distance between the robots)
decreases significantly as the number of robots populating the same
area increases. This in effect reduces the constant term in the linear,
with respect to time, expression for the maximum expected covariance
in Eq. (19).

7. Conclusions

This paper presented a theoretical analysis for the propagation of posi-
tion uncertainty for a team of mobile robots. One of the most challeng-
ing cases of localization was considered where inter-robot observations
(cooperative localization), dead reckoning estimates, and absolute ori-
entation measurements were available. Furthermore, all robots moved
simultaneously, in contrast to previous work where often the robots
take turns to move and to act as landmarks. An analytical formula was
derived that expresses the upper bound of the uncertainty accumulation
as a function of time and the noise characteristics of the robot sensors.
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The provable upper bound on the rate of position uncertainty in-
crease in Eq. (19) allows to draw the following important conclusions.
First, the uncertainty growth is inversely proportional to the number
of robots thus the contribution of each additional robot follows a law
of diminishing return. Second, the rate of uncertainty growth depends
only on the number of robots and the odometric and orientation uncer-
tainty and not on the accuracy of the relative position measurements.
These results were verified experimentally and in simulation for robot
groups of increasing size. The estimated by the Kalman filter uncer-
tainty, consistently remained below the theoretical upper bound.

From the form of the derivations we are confident that these re-
sults can be extended to the case of motion in 3D, thus providing
upper bounds for the position uncertainty of outdoor ground robots or
autonomous aerial vehicles. Finally, we intend to study the effect on co-
operative localization of different sensing modalities, motion strategies
and robot formations.
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Appendix

A. Special Form of Matrix Inverse

LEMMA A.1. The inverse of a matrix C = I(A) + 1(B) that is com-
prised of N equal invertible diagonal submatrices (∃ B−1) and N(N−1)
equal invertible non-diagonal submatrices (∃ (A+NB)−1), with N ≥ 2
is C−1 = I(A−1)− 1((A+NB)−1 BA−1).

Proof Multiplying the previous two matrices and employing the rela-
tion 1(X)1(Y ) = 1(NXY ) yields CC−1 = I(I)


