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Abstract—In this paper, we investigate the consistency of
extended Kalman filter (EKF)-based cooperative localization
(CL) from the perspective of observability. To the best of our
knowledge, this is the first work that analytically shows that the
error-state system model employed in the standard EKF-based
CL always has an observable subspace of higher dimension than
that of the actual nonlinear CL system. This results in unjustified
reduction of the EKF covariance estimates in directions of the
state space where no information is available, and thus leads to
inconsistency. To address this problem, we adopt an observability-
based methodology for designing consistent estimators and pro-
pose a novel Observability-Constrained (OC)-EKF. In contrast to
the standard EKF-CL, the linearization points of the OC-EKF
are selected so as to ensure that the dimension of the observable
subspace remains the same as that of the original (nonlinear)
system. The proposed OC-EKF has been tested in simulation and
experimentally, and has been shown to significantly outperform
the standard EKF in terms of both accuracy and consistency.

I. INTRODUCTION

In order for multi-robot teams to perform tasks such as ex-
ploration, surveillance, and search and rescue, their members
need to precisely determine their positions and orientations
(poses). In GPS-denied areas and in the absence of robust
landmarks, teams of robots can still jointly estimate their
poses by sharing relative position measurements (cf. [1], [2],
[3]). Current approaches to solving the cooperative localization
(CL) problem, in either centralized or distributed fashion, are
based on the extended Kalman filter (EKF) [3], maximum
likelihood estimation (MLE) [4], maximum a posteriori (MAP)
estimation [5], or particle filtering (PF) [6]. Among these
algorithms, the EKF arguably remains a popular choice due to
its relatively low computational cost and easy implementation.

While recent research efforts have focused on reducing
the computational complexity of EKF-CL [7], [8], [9], the
fundamental issue of consistency has received little attention.
As defined in [10], a state estimator is consistent if the
estimation errors are zero-mean and have covariance smaller
than or equal to the one calculated by the filter. Consistency
is one of the primary criteria for evaluating an estimator’s
performance; if an estimator is inconsistent, then the accuracy
of the produced state estimates is unknown, which renders
them unreliable.

In this paper, we present a study of the consistency of EKF-
based CL from the perspective of observability. Based on the

study, we introduce a novel EKF estimator that significantly
improves consistency as well as accuracy. In particular, the
major contributions of this work are the following:
• We investigate the observability properties of the error-
state system model employed by the EKF, and show that its
observable subspace has higher dimension than that of the
underlying nonlinear CL system. As a result, the covariance
estimates of the EKF undergo reduction in directions of the
state space where no information is available, hence leading
to inconsistency. To the best of our knowledge, this is the first
work to identify and report the inconsistency of EKF-CL.
• Based on the observability analysis, we introduce the
Observability-Constrained (OC)-EKF to improve consistency.
Specifically, the linearization points of the OC-EKF’s system
model are judiciously selected to ensure that the linearized
CL system has an observable subspace of the same dimension
as the nonlinear CL system. We show that this requirement
is satisfied by evaluating the state-propagation Jacobians at
the state estimates before (instead of after) each update, while
the measurement Jacobians are computed in the same way
as for the standard EKF. Through extensive simulation and
experimental tests, we verify that the OC-EKF outperforms the
standard EKF in terms of both accuracy and consistency, even
though it uses older (and thus less accurate) state estimates to
compute the filter Jacobians. This result in turn indicates that
the observability properties of the system model play a key
role in determining the filter’s accuracy and consistency.

II. RELATED WORK

To the best of our knowledge, no work has yet analyt-
ically addressed the consistency issue in CL. In contrast,
recent research has focused on the consistency of EKF-SLAM
(cf. [11], [12], [13], [14], [15]) showing that the computed
state estimates tend to be inconsistent. Specifically, Julier and
Uhlmann [11] first observed that when a stationary robot mea-
sures the relative position of a new landmark multiple times,
the estimated variance of the robot’s orientation becomes
smaller. Since the observation of a previously unseen feature
does not provide any information about the robot’s state, this
reduction is “artificial” and thus leads to inconsistency. Bailey
et al. [13] examined several symptoms of the inconsistency
of the standard EKF SLAM algorithm, and argued, based on



simulation results, that the uncertainty in the robot orientation
is the main cause of the inconsistency of EKF-SLAM. Huang
and Dissanayake [14] extended the analysis of [11] to the case
of a robot observing a landmark from two positions (i.e., the
robot observes a landmark, moves and then re-observes the
landmark), and proposed a constraint that the filter Jacobians
must satisfy to allow for consistent estimation. They also
showed that this condition is generally violated, due to the fact
that the filter Jacobians at different time instants are computed
using different estimates for the same state variables.

In our previous work [15], we conducted a theoretical
analysis of EKF-SLAM inconsistency and identified as a
fundamental cause the mismatch in the dimensions of the
observable subspaces between the linearized system, employed
by the EKF, and the underlying nonlinear system. Furthermore,
we introduced the First Estimates Jacobian (FEJ)-EKF, which
significantly outperforms the standard EKF and the robocentric
mapping algorithm [12], in terms of both accuracy and con-
sistency. The FEJ-EKF solution to the SLAM inconsistency
problem was reached by imposing constraints inferred from
the system observability analysis, and can serve as a model
for a new methodology for designing consistent estimators for
nonlinear systems. Such an approach is therefore employed in
this work for addressing the inconsistency of EKF-CL.

We should note that a recent publication by Bahr et
al. [16] addresses a related but different problem, namely the
consistency of a distributed CL algorithm due to re-use of
information. In the decentralized estimation scheme of [16],
the cross-correlations between the state estimates of different
robots are not estimated. However, it is well-known that if
cross-correlations between robots are not properly taken into
account during filter updates, inconsistency can arise [6], [17].
The algorithm in [16] avoids inconsistency by maintaining a
careful record of past robot-to-robot measurement updates. In
contrast to the above fully decentralized scenario, in our work
the cross-correlation terms are maintained in the filter, and
the EKF employed for estimation is optimal, except for the
inaccuracies introduced by linearization. Our work focuses on
identifying and addressing the cause of inconsistency of this
EKF-based CL estimator.

III. STANDARD EKF-BASED CL
In this section, we present the equations of 2D EKF-CL

with general system and measurement models.1 In particular,
in the standard formulation of CL, the state vector comprises
the N robot poses expressed in the global frame of reference.
Thus, at time-step k the state vector is given by:

xk =
[
xT
1k

. . . xT
Nk

]T
(1)

where xik , [pT
ik

ϕik ]
T denotes the ith robot pose (position

and orientation). In general, EKF-CL recursively evolves in
two steps: propagation and update, based on the discrete-time
system and measurement models, respectively.

1For the purpose of the consistency study and in order to simplify the
derivations, in this paper we focus on centralized EKF-CL. Note that a
distributed implementation [3] does not alter the system properties.

A. EKF Propagation

In the propagation step, each robot processes its odome-
try measurements to obtain an estimate of the pose change
between two consecutive time steps, which is then employed
in the EKF to propagate the robot state estimate. The EKF
propagation equations are given by:2

p̂ik+1|k = p̂ik|k +C(ϕ̂ik|k) ·
kp̂ik+1

(2)

ϕ̂ik+1|k = ϕ̂ik|k + kϕ̂ik+1
(3)

for all i = 1, . . . , N . In the above expressions, C(·) denotes
the 2× 2 rotation matrix, and kx̂ik+1

, [kp̂T
ik+1

kϕ̂ik+1
]T is

the odometry-based estimate of the ith robot’s motion between
time-steps k and k + 1, expressed with respect to the robot’s
frame of reference at time-step k. This estimate is corrupted by
zero-mean, white Gaussian noise wik = kxik+1

−kx̂ik+1
, with

covariance Qk. Clearly this system model is nonlinear, and can
be described by the following generic nonlinear function:

xik+1
= f(xik ,

kx̂ik+1
+wik) (4)

In addition to the state propagation equations, the linearized
error-state propagation equation is necessary for the EKF:

x̃ik+1|k = Φik x̃ik|k +Gikwik (5)

In the above expression, Φik and Gik are obtained by lin-
earization of the state propagation equations (2)-(3):

Φik =

[
I2 J

(
p̂ik+1|k − p̂ik|k

)
01×2 1

]
(6)

Gik =

[
C(ϕ̂ik|k) 02×1

01×2 1

]
(7)

where we have employed the identity C(ϕ̂ik|k) · kp̂ik+1
=

p̂ik+1|k − p̂ik|k , and J ,
[
0 −1
1 0

]
.

By stacking all N robots’ states to create the state vector
for the entire system, we have

x̃k+1|k

=

Φ1k · · · 0
...

. . .
...

0 · · · ΦNk

 x̃1k|k
...

x̃Nk|k

+

G1k · · · 0
...

. . .
...

0 · · · GNk

w1k

...
wNk


, Φkx̃k|k +Gkwk (8)

It is important to point out that the form of the propagation
equations presented above is general, and holds for any robot
kinematic model (e.g., unicycle, bicycle, or Ackerman).

2Throughout this paper the subscript ℓ|k refers to the estimate of a quantity
at time-step ℓ, after all measurements up to time-step k have been processed,
while the superscript (ij) refers to the relative measurement from robot i
to robot j. x̂ is used to denote the estimate of a random variable x, while
x̃ = x − x̂ is the error in this estimate. 0m×n and 1m×n denote m × n
matrices of zeros and ones, respectively, while In is the n×n identity matrix.



B. EKF Update
The measurements used for updates in CL are always a

function of the relative pose of the observed robot j with
respect to the observing robot i:

z
(ij)
k = h(xik ,xjk) + v

(ij)
k = h

(
ixjk

)
+ v

(ij)
k (9)

where ixjk ,
[
ipjk
iϕjk

]
=

[
CT (ϕik)(pjk − pik)

ϕjk − ϕik

]
is the relative

pose of the observed robot j with respect to the observing
robot i at time-step k, and v

(ij)
k is zero-mean Gaussian noise

with covariance R
(ij)
k associated with the measurement z(ij)k .

In this work, we allow h to be any measurement function. For
instance, z(ij)k can be a direct measurement of relative pose,
a pair of distance and bearing measurements, bearing-only
measurements from monocular cameras, etc. In general, the
measurement function is nonlinear, and hence it is linearized
for use in the EKF. The linearized measurement-error equation
is given by:

z̃
(ij)
k ≃

[
0 · · · H

(ij)
ik

· · · H
(ij)
jk

· · · 0
]
x̃k|k−1 + v

(ij)
k

, H
(ij)
k x̃k|k−1 + v

(ij)
k (10)

where H
(ij)
ik

and H
(ij)
jk

are the Jacobians of h with respect to
the ith and jth robot poses, respectively, evaluated at the state
estimate x̂k|k−1. Using the chain rule of differentiation, these
are computed as:

H
(ij)
ik

=− (∇h
(ij)
k )A(ϕ̂ik|k−1

)

[
I2 J(p̂jk|k−1

− p̂ik|k−1
)

01×2 1

]
(11)

H
(ij)
jk

= (∇h
(ij)
k )A(ϕ̂ik|k−1

) (12)

where A(ϕ̂ik|k−1
) ,

[
CT (ϕ̂ik|k−1

) 02×1

01×2 1

]
, and ∇h

(ij)
k de-

notes the Jacobian of h with respect to the vector ixjk

evaluated at the state estimate x̂k|k−1.

IV. CL OBSERVABILITY ANALYSIS

In this section, we perform an observability analysis for the
EKF-CL system derived in the previous section, and compare
its observability properties with those of the underlying non-
linear system. Based on this analysis, we draw conclusions
about the consistency of the filter.

Martinelli and Siegwart [18] have shown that the underlying
nonlinear system of CL in general has three unobservable
degrees of freedom, corresponding to the global position and
orientation. Thus, when the EKF is used for state estimation
in CL, we would expect that the system model employed by
the EKF also shares this property. However, in this section
we show that this is not the case, since the unobservable
subspace of the linearized error-state model of the standard
EKF is generally only of dimension two.

Note that, in general, the Jacobian matrices Φk, Gk, and
Hk used in the EKF-CL linearized error-state model (cf. (8)
and (10)) are defined as:

Φk=∇xk
f
∣∣∣{x⋆

k,0}, Gk=∇wk
f
∣∣∣{x⋆

k,0}, Hk=∇xk
h
∣∣∣x⋆

k
(13)

In these expressions, x⋆
k denotes the linearization point for

the state xk, used for evaluating the Jacobians, while a
linearization point equal to the zero vector is chosen for the
noise. The EKF employs the above linearized system model
for propagating and updating the estimates of the covariance
matrix, and thus the observability properties of this model
affect the performance of the estimator.

The observability properties of the linearized error-state
model of EKF-CL can be studied by examining the observ-
ability matrix for the time interval between time-steps ko and
ko +m, defined as [19]:

M ,


Hko

Hko+1Φko

...
Hko+mΦko+m−1 · · ·Φko

 (14)

= M(x⋆
ko
,x⋆

ko+1, . . . ,x
⋆
ko+m) (15)

The last expression makes explicit the fact that the observabil-
ity matrix is a function of the linearization points used in com-
puting all the Jacobians within the time interval [ko, ko+m]. In
turn, this implies that the choice of linearization points affects
the observability properties of the linearized error-state system
of the EKF. This key fact is the basis of our analysis. In what
follows, we discuss different possible choices for linearization,
and the observability properties of the corresponding linearized
systems.

A. Ideal EKF-CL

Before considering the rank of the matrix M, which is
constructed using the estimated values of the state in the filter
Jacobians, it is interesting to study the observability properties
of the “oracle”, or “ideal” EKF (i.e., the filter whose Jacobians
are evaluated using the true values of the state variables). In
the following, all matrices evaluated using the true state values
are denoted by the symbol “ ˘ ”.

For our derivations, it will be useful to define:

δpij(k, ℓ) , pik − pjℓ (16)

which is the difference between two robot positions at time-
steps k and ℓ. Using the above definition, we note that (cf. (6))

Φ̆iko+1
Φ̆iko

=

[
I2 Jδpii(ko + 2, ko)

01×2 1

]
(17)

Based on this identity, it is easy to show by induction that

Φ̆iko+ℓ−1
Φ̆iko+ℓ−2

· · · Φ̆iko
=

[
I2 Jδpii(ko + ℓ, ko)

01×2 1

]
(18)

which holds for all ℓ > 0.
In the ensuing analysis, we study the case of a two-robot

team, and assume that both robots continuously observe each
other during the time interval [ko, ko +m]. Note that this is
not a necessary assumption and is made only to simplify the
notation. The generalized analysis for the case where the team
consists of an arbitrary number of robots is presented in [20].



The measurement Jacobian H̆ko+ℓ in this case can be written
as (cf. (11) and (12)):

H̆ko+ℓ =−Diag
(
(∇h̆

(12)
ko+ℓ)A(ϕ1ko+ℓ

), (∇h̆
(21)
ko+ℓ)A(ϕ2ko+ℓ

)
)

(19)

×

 I2 Jδp21(ko+ℓ, ko+ℓ) −I2 02×1

01×2 1 01×2 −1
−I2 02×1 I2 Jδp12(ko+ℓ, ko+ℓ)
01×2 −1 01×2 1


while the following identity is immediate (cf. (8) and (18)):

Φ̆ko+ℓ−1Φ̆ko+ℓ−2 · · · Φ̆ko = (20) I2 Jδp11(ko+ℓ, ko) 02×2 02×1

01×2 1 01×2 0
02×2 02×1 I2 Jδp22(ko+ℓ, ko)
01×2 0 01×2 1


Multiplication of equations (19) and (20) yields:

H̆ko+ℓΦ̆ko+ℓ−1Φ̆ko+ℓ−2 · · · Φ̆ko = (21)
−Diag

(
(∇h̆

(12)
ko+ℓ)A(ϕ1ko+ℓ

), (∇h̆
(21)
ko+ℓ)A(ϕ2ko+ℓ

)
)

× I2 Jδp21(ko+ℓ, ko) −I2 −Jδp22(ko+ℓ, ko)
01×2 1 01×2 −1
−I2 −Jδp11(ko+ℓ, ko) I2 Jδp12(ko+ℓ, ko)
01×2 −1 01×2 1


Using this result, the observability matrix of the ideal EKF-
CL, M̆, can be obtained as (cf. (14)):

M̆ =−Diag
(
(∇h̆

(12)
ko

)A(ϕ1ko
), ··· , (∇h̆

(21)
ko+m)A(ϕ2ko+m

)
)︸ ︷︷ ︸

D̆

× (22)



I2 Jδp21(ko, ko) −I2 02×1

01×2 1 01×2 −1
−I2 02×1 I2 Jδp12(ko, ko)
01×2 −1 01×2 1

I2 Jδp21(ko+1, ko) −I2 −Jδp22(ko+1, ko)
01×2 1 01×2 −1
−I2 −Jδp11(ko+1, ko) I2 Jδp12(ko+1, ko)
01×2 −1 01×2 1

...
...

...
...

I2 Jδp21(ko+m, ko) −I2 −Jδp22(ko+m, ko)
01×2 1 01×2 −1
−I2 −Jδp11(ko+m, ko) I2 Jδp12(ko+m, ko)
01×2 −1 01×2 1


︸ ︷︷ ︸

Ŭ

Lemma 4.1: The rank of the observability matrix, M̆, of
the ideal EKF-CL is equal to 3.

Proof: The rank of the product of the matrices D̆ and
Ŭ is given by (cf. (4.5.1) in [21]), rank(D̆Ŭ) = rank(Ŭ)−
dim(N (D̆)

∩
R(Ŭ)). By denoting Ŭ ,

[
ŭ1 · · · ŭ6

]
, it

is evident that ŭ1 = −ŭ4, ŭ2 = −ŭ5, while ŭ3 + ŭ6 =
α1ŭ4 + α2ŭ5, where

[
α1 α2

]T , −Jδp21(ko, ko). We
also note that {ŭi}6i=4 are linearly independent. Therefore,
R(Ŭ) = span

[
ŭ4 ŭ5 ŭ6

]
. Thus, rank(Ŭ) = 3. We

now observe that in general D̆ui ̸= 0, for i = 4, 5, 6.
Moreover any vector y ∈ R(Ŭ) \ 0 can be written as
y = β4ŭ4 + β5ŭ5 + β6ŭ6 for some βi ∈ R, where βi,
i = 4, 5, 6, are not simultaneously equal to zero. Thus, in
general, D̆y = β4D̆ŭ4 + β5D̆ŭ5 + β6D̆ŭ6 ̸= 0, which

implies that y does not belong to the nullspace of D̆. There-
fore, dim(N (D̆)

∩
R(Ŭ)) = 0, and, finally, rank(M̆) =

rank(Ŭ)− dim(N (D̆)
∩
R(Ŭ)) = rank(Ŭ) = 3.

Most importantly, by inspection, it can be verified that a
basis for the right nullspace of Ŭ (and thus for the right
nullspace of M̆) is given by:

N (M̆) = span
col.

 I2 Jp1ko

01×2 1
I2 Jp2ko

01×2 1

 , span [n1 n2 n3] (23)

From the structure of the vectors n1 and n2 we see that a
change in the state by ∆x = αn1+βn2, α, β ∈ R corresponds
to shifting the x− y plane by α units along x, and by β units
along y. Thus, if the two robots are shifted equally, the states
x and x′ = x+∆x will be indistinguishable given the relative
measurements. To understand the physical meaning of n3, we
consider the case where the x− y plane is rotated by a small
angle δϕ. Rotating the coordinate system transforms any point
p = [x y]T to a point p′ = [x′ y′]T , given by:[

x′

y′

]
= C(δϕ)

[
x
y

]
≃

[
1 −δϕ
δϕ 1

] [
x
y

]
=

[
x
y

]
+ δϕ

[
−y
x

]
where we have employed the small angle approximations
cos(δϕ) ≃ 1 and sin(δϕ) ≃ δϕ. Using this result, we see that
if the plane containing the two robots is rotated by δϕ, the CL
state vector will change to x′ ≃ x + δϕn3, which indicates
that n3 corresponds to rotation of the x− y plane. This result
implies that any such global rotation is unobservable, and will
cause no change to the measurements. The preceding analysis
for the meaning of the basis vectors of the unobservable
subspace agrees with [18] as well as with intuition, which
dictates that the global coordinates of the robots (rotation and
translation) are unobservable, since the measurements only
depend on the relative robot configurations.

B. Standard EKF-CL

We now study the observability properties of the standard
EKF-CL, in which the Jacobians are evaluated at the estimated
state (i.e., x⋆

k is the latest state estimate). The following
definitions will be useful for our derivations:

dp̂i(k) , p̂ik|k − p̂ik|k−1
(24)

∆p̂ij(k, ℓ) , p̂ik|k−1
− p̂jko|ko−1

−
ℓ∑

κ=ko

dp̂j(κ) (25)

δp̂ij(k, ℓ) , p̂ik|k−1
− p̂jℓ|ℓ−1

(26)

where ko is the first time instant of interest, and k, ℓ ≥ ko.
In the above expressions, dp̂i is the correction in the ith
robot position estimate due to the EKF update at time-step
k, while δp̂ij is the estimated difference between two robot
positions (cf. (16)) evaluated using the uncorrected estimates
immediately after the respective propagation steps.

We start by deriving an expression analogous to that of (17):

Φiko+1
Φiko

=

[
I2 J∆p̂ii(ko + 2, ko + 1)

01×2 1

]
(27)



Using induction, we can show that:

Φiko+ℓ−1
Φiko+ℓ−2

· · ·Φiko
=

[
I2 J∆p̂ii(ko+ℓ, ko+ℓ−1)

01×2 1

]
for ℓ > 0. As a result, the following identity is immediate:

Φko+ℓ−1Φko+ℓ−2 · · ·Φko = (28) I2 J∆p̂11(ko+ℓ,ko+ℓ−1) 02×2 02×1

01×2 1 01×2 0
02×2 02×1 I2 J∆p̂22(ko+ℓ,ko+ℓ−1)

01×2 0 01×2 1


The measurement Jacobian now is given by (cf. (19)):

Hko+ℓ = (29)
−Diag

(
(∇h

(12)
ko+ℓ)A(ϕ̂1ko+ℓ|ko+ℓ−1

), (∇h
(21)
ko+ℓ)A(ϕ̂2ko+ℓ|ko+ℓ−1

)
)

×

 I2 Jδp̂21(ko+ℓ,ko+ℓ) −I2 02×1

01×2 1 01×2 −1
−I2 02×1 I2 Jδp̂12(ko+ℓ,ko+ℓ)

01×2 −1 01×2 1


Multiplication of (29) and (28) yields:

Hko+ℓΦko+ℓ−1 · · ·Φko = (30)
−Diag

(
(∇h

(12)
ko+ℓ)A(ϕ̂1ko+ℓ|ko+ℓ−1

), (∇h
(21)
ko+ℓ)A(ϕ̂2ko+ℓ|ko+ℓ−1

)
)

× I2 J∆p̂21(ko+ℓ,ko+ℓ−1) −I2 −J∆p̂22(ko+ℓ,ko+ℓ−1)

01×2 1 01×2 −1
−I2 −J∆p̂11(ko+ℓ,ko+ℓ−1) I2 J∆p̂12(ko+ℓ,ko+ℓ−1)

01×2 −1 01×2 1


Thus, the observability matrix M (cf. (14)) can be written as:

M = (31)
−Diag

(
(∇h

(12)
ko

)A(ϕ̂1ko|ko−1
), ··· , (∇h

(21)
ko+m)A(ϕ̂2ko+m|ko+m−1

)
)︸ ︷︷ ︸

D

×



I2 Jδp̂21(ko,ko) −I2 02×1

01×2 1 01×2 −1
−I2 02×1 I2 Jδp̂12(ko,ko)

01×2 −1 01×2 1

I2 J∆p̂21(ko+1,ko) −I2 −J∆p̂22(ko+1,ko)

01×2 1 01×2 −1
−I2 −J∆p̂11(ko+1,ko) I2 J∆p̂12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...
I2 J∆p̂21(ko+m,ko+m−1) −I2 −J∆p̂22(ko+m,ko+m−1)

01×2 1 01×2 −1
−I2 −J∆p̂11(ko+m,ko+m−1) I2 J∆p̂12(ko+m,ko+m−1)

01×2 −1 01×2 1


︸ ︷︷ ︸

U

By proceeding similarly to the proof of Lemma 4.1, it can be
verified (cf. [20]) that in general rank(M) = rank(U) = 4.
We thus see that the linearized error-state system model of the
standard EKF-CL has different observability properties from
that of the ideal EKF-CL. In particular, by processing the
measurements collected in the time interval [ko, ko+m], the
EKF acquires information along the 4 directions of the state
space corresponding to the observable subspace of the lin-
earized system. However, the measurements actually provide
information in only 3 directions of the state space (i.e., the

robot-to-robot relative pose). This shows that the filter gains
“spurious information” along unobservable directions of the
underlying nonlinear CL system, which leads to inconsistency.

To probe further, we note that a basis of the right nullspace
of M is given by (cf. (23)):

N (M) = span
[
n1 n2

]
(32)

Recall that these two vectors correspond to shifting the x −
y plane, while the direction corresponding to the rotation is
“missing” from the unobservable subspace of the EKF system
model (cf. (23)). Therefore, we see that the filter will gain
“nonexistent” information about the robots’ global orientation.
This will lead to an unjustified reduction in the orientation
uncertainty, which will, in turn, further reduce the uncertainty
in all state variables. We point out that the root cause of the
problem is that the linearization points used for computing the
Jacobians in the standard EKF-CL are the latest state estimates
(i.e., the linearization point corresponding to the same state
variable changes after each propagation). This increases the
dimension of the observable subspace, and thus fundamentally
alters the properties of the estimation process.

V. OBSERVABILITY CONSTRAINED (OC)-EKF CL
In the preceding section, it was shown that when the state-

propagation Jacobians are evaluated using the latest state
estimates, the EKF linearized error-state system model has
an observable subspace of dimension higher than that of
the actual CL system. This will always lead to unjustified
reduction of the covariance estimates, and thus inconsistency.
This issue is related to the problem of inconsistency of EKF-
SLAM, which was identified in [15]. In that work, to address
the problem, we proposed an observability-based methodol-
ogy for designing consistent estimators for EKF-SLAM. The
key idea of this approach is to select linearization points
to ensure that the EKF linearized error-state system model
has appropriate observability properties, even at the cost of
sacrificing linearization accuracy if necessary (i.e., choosing a
linearization point which may increase the linearization error).
By doing so, the influx of spurious information along the
erroneously observable direction of the state space is avoided,
thus improving the consistency of the estimates. It is important
to note that this solution can be used for designing consistent
estimators for any nonlinear system. Therefore, in this work,
we adopt this observability-based methodology to design a
consistent EKF estimator, termed Observability-Constrained
(OC)-EKF for CL. In particular, to guarantee the appropriate
observability properties of the EKF linearized system model,
we propose selecting the linearization points based on the
following lemma:

Lemma 5.1: If the linearization points, x⋆
ik+1

,x⋆
ik

and x⋆
jk

,
at which the filter Jacobian matrices Φik = Φik(x

⋆
ik+1

,x⋆
ik
)

and H
(ij)
k = Hk(x

⋆
ik
,x⋆

jk
), are evaluated, are selected as

x⋆
ik+1

= x̂ik+1|k x⋆
ik

= x̂ik|k−1
x⋆
jk

= x̂jk|k−1
(33)

then it is guaranteed that the EKF linearized error-state model
has unobservable subspace of dimension 3.



Proof: Using the linearization points (33), the state-
propagation Jacobian Φik (cf. (6)) is now computed as:

Φik =

[
I2 J

(
p̂ik+1|k − p̂ik|k−1

)
01×2 1

]
(34)

The difference compared to (6) in the standard EKF is that
the robot position estimate prior to updating, p̂ik|k−1

, is
used in place of the updated estimate, p̂ik|k . In contrast, the
measurement Jacobian, H(ij)

k , is computed in the same way as
for the standard EKF (cf. (10)). As a result, using the definition
of δp̂ij (26), the observability matrix of the OC-EKF becomes:

M′ = (35)
−Diag

(
(∇h

(12)
ko

)A(ϕ̂1ko|ko−1
), ··· , (∇h

(21)
ko+m)A(ϕ̂2ko+m|ko+m−1

)
)︸ ︷︷ ︸

D

×



I2 Jδp̂21(ko,ko) −I2 02×1

01×2 1 01×2 −1
−I2 02×1 I2 Jδp̂12(ko,ko)

01×2 −1 01×2 1

I2 Jδp̂21(ko+1,ko) −I2 −Jδp̂22(ko+1,ko)

01×2 1 01×2 −1
−I2 −Jδp̂11(ko+1,ko) I2 Jδp̂12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...
I2 Jδp̂21(ko+m,ko) −I2 −Jδp̂22(ko+m,ko)

01×2 1 01×2 −1
−I2 −Jδp̂11(ko+m,ko) I2 Jδp̂12(ko+m,ko)

01×2 −1 01×2 1


︸ ︷︷ ︸

U′

It becomes evident that, compared to the observability matrix
of the ideal EKF-CL (cf. (22)), the only difference arising in
U′ is that δpij is replaced by its estimate δp̂ij , for i, j = 1, 2.
Thus, by a proof analogous to that of Lemma 4.1, we can show
that rank(M′) = 3. Moreover, the nullspace of M′ becomes:

N (M′) = span
col.

 I2 Jp̂1ko|ko−1

01×2 1
I2 Jp̂2ko|ko−1

01×2 1

 (36)

This implies that the error-state system model used by the OC-
EKF has unobservable subspace of dimension 3. The above
proof is for the case of a two-robot team. In the more general
case of an N -robot team (N ≥ 2), it can be shown [20] that
the corresponding observability matrix is of rank 3N −3, and
thus its nullspace is also of dimension 3.

It is important to point out that, compared to the standard
EKF, the only change in the OC-EKF is the way in which the
state-propagation Jacobians are computed (cf. (34) vs. (6)),
while the state estimate and covariance in the OC-EKF are
propagated and updated in the same way as in the standard
EKF. We also stress that the OC-EKF estimator is realizable
and causal, as it does not require knowledge of the true state.

VI. SIMULATION RESULTS

A series of Monte-Carlo comparison studies were conducted
under various conditions to validate the preceding theoretical

analysis and the proposed OC-EKF. The metrics used to
evaluate filter performance are: (i) the average root mean
square (RMS) error, and (ii) the average normalized (state)
estimation error squared (NEES) [10]. We compute these error
metrics by averaging over all Monte Carlo runs for each time
step. It is known that the NEES of an M -dimensional Gaussian
random variable follows a χ2 distribution with M degrees of
freedom. Therefore, if a filter is consistent, we expect that the
average NEES for each robot pose will be close to 3 for all
k. The larger the deviation of the NEES from this value, the
larger the inconsistency of the filter.

In the simulation tests, we consider the CL scenario
in which four robots randomly move in an area of size
20 m × 20 m. 100 Monte Carlo simulations were performed,
and during each run, all filters process the same data, to ensure
a fair comparison. The three estimators compared are: (i) the
ideal EKF, (ii) the standard EKF, and (iii) the OC-EKF.

For the results presented in this section, four identical robots
with a simple differential drive model move on a planar
surface, at a constant linear velocity of v = 0.25 m/sec, while
the rotational velocity is drawn from the uniform distribution
over [−0.5, 0.5] rad/sec. The two drive wheels are equipped
with encoders, which measure their revolutions and provide
measurements of velocity (i.e., right and left wheel velocities,
vr and vl, respectively), with standard deviation equal to
σ = 5%v for each wheel. These measurements are used to
obtain linear and rotational velocity measurements for the
robot, which are given by v = vr+vl

2 and ω = vr−vl
a , where

a = 0.5 m is the distance between the drive wheels. Thus,
the standard deviations of the linear and rotational velocity
measurements are σv =

√
2
2 σ and σω =

√
2
a σ, respectively.

Each robot records distance and bearing measurements to
all other robots. Note that for simplicity we assume that each
robot can observe all others at every time step. However, this
is not a necessary assumption, as the analysis can easily be
extended to the case where multiple propagation steps occur
between updates (e.g., limited sensing range, or different sam-
pling frequencies between proprioceptive and exteroceptive
sensors). The standard deviation of the distance measurement
noise is equal to σd = 0.1 m, while the standard deviation
of the bearing measurement noise is set to σθ = 5 deg. It
should be pointed out that the sensor-noise levels selected for
the simulations are larger than what is typically encountered in
practice. This was done purposefully, since larger noise levels
lead to higher estimation errors, which make the effects of
inconsistency more apparent.

The results of all filters for one of the robots are presented
in Fig. 1 (the results for the other three robots are very similar
and are omitted due to space limitations). Specifically, Fig. 1(a)
shows the orientation estimation errors, obtained from a typical
simulation. Clearly, the standard-EKF errors grow significantly
faster than those of the ideal and the OC-EKF, which indicates
that the standard EKF tends to diverge. Note also that although
the orientation errors of the ideal and the OC-EKF remain well
within their corresponding 3σ bounds, those of the standard
EKF exceed them. Most importantly, in contrast to those of the
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Fig. 1. Simulation results for one robot of a 4-robot team. The results for the other robots are similar to the ones presented here. (a) Orientation estimation
errors vs. 3σ bounds obtained from one typical realization of the Monte Carlo simulations. The σ values are computed as the square-root of the corresponding
element of the estimated covariance matrix. (b)-(c) Monte Carlo results of average NEES and RMS errors, respectively. In these two plots, the solid lines
correspond to the ideal EKF, the solid lines with circles to the standard EKF, and the dash-dotted lines to the OC-EKF. Note that the NEES and RMS errors
as well as the estimation errors of the ideal and the OC-EKF are almost identical, which makes the corresponding lines difficult to distinguish.

OC-EKF, the 3σ bounds of the standard EKF remain almost
constant as if the orientation of the robot was observable.
However, as discussed in Section IV, the robots have no access
to absolute orientation information and thus the orientation
covariance should continuously grow (as is the case for the
ideal and the OC-EKF). The results of Fig. 1(a) clearly
demonstrate that the incorrect observability properties of the
standard EKF cause an unjustified reduction of the orientation
uncertainty.

Figs. 1(b)-1(c) show the average NEES and RMS errors. As
evident, the performance of the OC-EKF is almost identical to
that of the ideal EKF, and substantially better than the standard
EKF, both in terms of RMS errors and NEES. This occurs even
though the OC-EKF Jacobians are less accurate than those of
the standard EKF, as explained in the preceding section. This
fact indicates that the errors introduced by the use of inaccurate
linearization points (for computing the Jacobians) have a less
detrimental effect on consistency than the use of an error-state
system model with observable subspace of dimension larger
than that of the actual CL system.

VII. EXPERIMENTAL RESULTS

A real-world experiment was performed to further validate
the presented analysis and the OC-EKF algorithm. During the
test, a team of four Pioneer I robots moves in a rectangular area
of 2.5 m × 4.5 m, within which the positions of the robots are
tracked by an overhead camera. The vision system provides
measurements of the robot poses in a global coordinate frame,
which serve as the ground truth for evaluating the estimators’
performance in terms of NEES and RMS errors. The standard
deviation of the noise in these measurements is approximately
0.5 deg for orientation and 0.01 m, along each axis, for
position. The robots were commanded to move at a constant
velocity of v = 0.1 m/sec while avoiding collision with the
boundaries of the arena as well as with their teammates. In
order to preserve legibility, only the first 200 sec of the four
robot trajectories are shown in Fig. 2(a).

Although four robots of the same model were used, their
wheel-encoders are not equally accurate. Specifically, dur-
ing calibration, the velocity measurement errors, modeled as
zero-mean white Gaussian noise processes, exhibited stan-
dard deviations ranging from σvmin = 3.8%v for the most
accurate odometer to σvmax = 6.9%v for the robot with
the highest noise levels. Similarly, the standard deviations of
the rotational velocity measurements assumed values between
σωmin = 0.0078 rad/sec and σωmax = 0.02 rad/sec for the four
robots. We observe that as a result of this variability of sensor
characteristics, the experiment can be considered as involving
a heterogeneous robot team.

Distance-bearing measurements are produced synthetically
using the differences in the positions of the robots, as these are
recorded by the overhead camera, expressed in the measuring
robot’s coordinate frame, with the addition of noise. For
the experimental results shown in this section, the distance
and bearing measurements are corrupted by zero-mean white
Gaussian noise, with standard deviation σd = 0.05 m for
distance and σθ = 2 deg for bearing measurements, re-
spectively. Pose estimation was run offline, and two filters
were compared: (i) the standard EKF, and (ii) the proposed
OC-EKF. Comparative results of the standard EKF and the
proposed OC-EKF for one of the robots are presented in
Figs. 2(b) and 2(c). The results for the other robots are
similar to the ones presented here. From the experimental
results it becomes clear that, just as in simulation, also in the
real-world experiment the OC-EKF outperforms the standard
EKF, in terms of both accuracy and consistency. Moreover,
these results further support our conjecture that the mismatch
in the dimension of the unobservable subspace between the
linearized CL system and the underlying nonlinear system is
a fundamental cause of filter inconsistency.

VIII. CONCLUSIONS

In this paper, we have studied in depth the issue of consis-
tency in EKF-based CL, from an observability perspective. By



0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

x (m)

y 
(m

)

 

 

Robot 1
Robot 2
Robot 3
Robot 4

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Time (sec)

R
o

b
o

t 
p

o
se

 N
E

E
S

 

 

Std−EKF
OC−EKF

(b)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

R
o

b
o

t 
p

o
si

ti
o

n
 R

M
S

 (
m

)

 

 

Std−EKF
OC−EKF

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

R
o

b
o

t 
h

ea
d

in
g

 R
M

S
 (

ra
d

)

(c)

Fig. 2. Experimental results: (a) Four Pioneer I robots move inside a 2.5 m × 4.5 m arena, with starting positions marked by ∗. To maintain clarity, only
the first 200 sec of the trajectories are plotted. (b)-(c) NEES and RMS errors respectively for one robot. The results for the other robots are similar to the
ones presented here. As in the simulations, the OC-EKF outperforms the standard EKF in terms of both accuracy (RMS errors) and consistency (NEES).

comparing the observability properties of the linearized error-
state model employed in the EKF with those of the underlying
nonlinear CL system, we proved that the observable subspace
of the standard EKF-CL is always of higher dimension than
that of the actual CL system. As a result, the covariance
estimates of the EKF undergo reduction in directions of
the state space where no information is available, and thus
the standard EKF-CL is always inconsistent. Moreover, we
proposed a new OC-EKF, which improves the consistency of
EKF-based CL. The design methodology followed for deriving
the OC-EKF requires appropriate selection of the linearization
points at which the Jacobians are evaluated, which ensures that
the observable subspace of the linearized error-state system
model is of the same dimension as that of the underlying actual
system. Simulations and experiments have verified that the
proposed OC-EKF performs better, in terms of both accuracy
and consistency, than the standard EKF.
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