
Architecture for Asymmetric Collaborative 
Navigation 

Zhen Zhui, Stergios Roumeliotis2, Joel Hesch2, Han Park\ Don Venable3 

iNorthrop Grumman Corporation 

Woodland Hills, CA 

2University of Minnesota 

Minneapolis, MN 

3Air Force Research Laboratory 

WPAFB, OH 

Abstract- Under the Air Force Research Laboratory (AFRL) 

Collaborative Robust Integrated Sensor Positioning (CRISP) 

program, Northrop Grumman Corporation (NGC) is designing 

and building a collaborative navigation system for multiple 

airborne platforms. The collaborative navigation architecture 

has been designed to take advantage of AFRL's Layered Sensing 

construct which enables platforms to share information. In 

particular, the ability to share GPS, relative range, imagery, geo­

registered maps, and other measurements opens up many 

opportunities to improve the navigational accuracy and the 

robustness to GPS-denied conditions. 

In the CRISP program, the collaborative navigation system is 

being designed to be more robust and accurate by leveraging the 

asymmetry in the sensing, computation, and communication 

capabilities of disparate platforms. For example, the system 

takes advantage of higher performing sensors on the high-flyer 

(HF) platform, which are less susceptible to jamming, and 

cameras that generate larger sensor footprint and higher 

resolution images of the terrain. The low-flyers (LFs) have 

poorer navigation sensors, are more likely to be jammed, and 

have a more limited view of the terrain. Under this scenario, the 

HF may assist one or more LFs such that they, too, can have 

similar accuracy as the HF in a GPS-denied environment. 

Keywords- layered sensing, vision-aided, asymmetric, 
collaborative navigation 

I. INTRODUCTION 

In the layered sensing paradigm introduced by AFRL, 
every platform will be networked such that they can share 
information with every other platform. Layered sensing offers 
the promise of new revolutionary capabilities in cooperative 
operations. In particular, navigation may benefit since aircraft 
with lesser capability or in disadvantageous conditions (e.g. 
GPS-denied) may be able to take advantage of assets on 
another aircraft. The first phase of AFRL's CRISP program 
seeks to explore concepts for improving the navigation 
performance if aircraft can share information such as GPS (for 
relative positioning), relative ranging, imagery, and inertial 
measurement unit (lMU) data. The concept is being proven 
using a government furnished (GF) dataset provided by AFRL. 
The second phase of the program is to develop a real-time 
system which will be tested in-flight. This paper will describe 
the system architecture and algorithms which currently being 
developed by NGC and teammate, University of Minnesota 
(UMN). 

The CRISP concept deviates from the usual peer-to-peer 
cooperative navigation. In peer-to-peer systems, such as the 
ones reported in [1] and [2], the vehicles are often equipped 
with similar sensors. In CRISP, however, there is a high-flyer 
(HF) and a low-flyer (LF) each with different capabilities. The 
HF, a persistent surveillance platform, is assumed to have 
higher quality sensors, including IMU and camera, and less 
susceptible to GPS jamming. The LF(s) is expected to have 
lower quality navigation sensors and cameras, and is more 
likely to be GPS-denied. The NGC team has been designing an 
architecture and algorithms that fully exploit these asymmetries 
in the processing, sensing, and communication capabilities 
between the HF and LF(s). 

II. SYSTEM ARCHITECTURE 

The NGC CRISP physical architecture is shown in Figure 
I. Instead of a point-to-point communication architecture, it 
also includes a ground base station. For collaborative 
navigation, geo registered imagery is shared between the HF 
and the LFs. In a point-to-point architecture, it may require 
datalink bandwidth greater than a few MHz between a HF and 
each LF. Availability of a dedicated high-speed datalink will 
be subject to a number of limitations. For instance, it may 
require directional gain pattern for the LF antenna, which 
becomes challenging for small UA Vs. Alternatively, the 
proposed architecture exploits the current asymmetry in 
datalinks - the downlink bandwidth to the ground is much 
greater than the uplink bandwidth. Hence, in this architecture, 
the imagery from both LF and HF are transmitted to the 
ground, which is part of the data product already being 
collected today. Computationally intensive operations, 
including inter-platform feature matching are now 
accomplished on the ground. Thus, it is more aligned with the 
current military datalinks and concept of operations. It is also 
suited to support multiple LFs. However, there is increased 
complexity and reduced reliability because of the increase in 
the number of datalinks in the architecture. 
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Figure 1 CRISP Physical Architecture 

III. SUBSYSTEMS 

A. HF Simultaneous Localization and Mapping 

Given the HF's large sensor footprint, and processing and 
storage capabilities, it is well suited to create a high-fidelity 
geo-registered imagery map by performing visual 
Simultaneous Localization and Mapping (SLAM). The 
imagery map will serve two purposes. First, whenever the HF 
loses GPS, it will be able to maintain an accurate own-ship 
pose estimate with bounded errors. Second, the HF will share 
the map with the LFs to improve their localization accuracy. 
Figure 2 illustrates a block diagram of the HF components. 
The GPS receiver and IMU in the HF supply raw 
measurements for the GPSIIMU navigation solution. The raw 
GPS pseudorange and carrier phase measurements will also be 
used in a relative navigation solution for LF initialization. 
These measurements, along with HF pose data, are transmitted 
to the LF via the HF -LF datalink. A camera is synchronized 
with GPS time. In reality, the camera may be installed on a 
gimbaled platform, which has not been accounted for in this 
block diagram. 

The core of the SLAM algorithm is an extended Kalman 
filter (EKF), which estimates a sliding window of past camera 
poses, the current vehicle pose, and a sparse map of the 
features in the environment. The SLAM state vector is 

(1) 

where XCi' i = 1, ... , N is the 7xl dimensional vector 

describing the i-th camera pose, XR is the 16xl dimensional 

vector representing the state of the vehicle at the current time 

step, and XLi' i = 1, ... , M is the 3xl dimensional vector 

describing the 3D position of the j-th feature in the estimated 

map. More specifically, the camera pose is defined by the 

following state vector 

T _ [
Ci-T G T] XCi - Gq, PCi (2) 

where cJq is a unit quaternion representing the orientation of 

the global frame (G) with respect to the camera frame (Cj), 

and Gpr is the position of Cj with respect to the global frame. 
, 

Whenever the HF records an image, we save the 

corresponding camera pose, XCi which can be used later to 

initialize new features into the map. The vehicle state is given 
by the following vector 

(3) 

where bg and ba are the gyroscope and accelerometer biases, 

which are time-varying and modeled as random-walk 

processes, driven by zero-mean white Gaussian noise; Gv is 

the velocity of the vehicle expressed in a global frame and �q 

and GpR represent attitude and position of the HF. Lastly, the 
map is comprised of N landmark features, where the j-th 
feature state in the map is denoted using the 3x I position vector 

XL = [Gpd. One potential issue with SLAM implementation 
] ] 

is that the computational complexity grows quadratically with 
the number of features [3]. This issue is address by applying 
the Power SLAM algorithm [4]. In PowerS LAM, a two-step 
novel estimation process is as followed: (i) use dimensionality­
reduction techniques to reduce the rank of the covariance 
correction term during updates, and (ii) determine and apply 
low-rank covariance corrections only along the most 
informative state space directions. 

With the HF pose estimation optimized by PowerSLAM, 
geo-registered imagery or map can be created and processed in 
different ways. For example, images can be ray-traced to a 
terrain model, such as a digital terrain elevation data (DTED), 
where the 3D position of each pixel can be estimated. 
However, the accuracy of such geo-registration is limited by 
camera pose accuracy, and the resolution and accuracy of 
available DTED. Consequently, accuracy of LF navigation is 
also limited accordingly when using this type of maps. 
Alternatively, a dense 3D map can be created by tracking 
visual features in continuous frames by using bundle 
adjustment or similar techniques. As a result, the accuracy of 
map is no longer directly affected by DTED. However, a 
dense 3D map based on this approach requires significant 
amount of computational power, which may not be feasible for 
real-time implementation. In this architecture, geo-registered 
HF imagery will be transmitted to the ground station, and used 
to aid LF navigation, which will be further discussed in the 
following sections. 
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Figure 2 Function Blocks of the High Flyer 

B. LF Own-Ship Navigation 

LF navigation is initialized with standalone GPS-IMU 
solution or relative navigation (ReINav) from differential GPS 
solution when available. The LF navigation own-ship 
algorithm is capable of providing standalone solution when 
GPS becomes denied, and incorporating updates from HF. 
Due to limited processing capabilities and smaller sensor 
footprints, the LFs are less suited to build their own visual 
terrain maps. Instead, they use common visual features 
between frames to constrain the motion estimation. Therefore, 
LF vision-based navigation algorithm is considered a "visual 
odometry" system instead of a SLAM [5]. LF navigation is 
based on a Multi-State Constraint Kalman Filter (MSC-KF) 
[6]. The MSC-KF is referred to as an opportunistic algorithm, 
in that it uses any matched image features, but does not attempt 
to build a database from them for long-term mapping. A large 
number of point features, also known as opportunistic features 
(OFs) can be observed and tracked between images. The 
objective of MSC-KF is to impose constraints between 
consecutive poses and reduce the rate error increase. To 
efficiently process these OFs without loss of information, the 
MSC-KF's estimated state vector is augmented to include a 
sliding window of the camera poses where each image was 
taken. The OF constraints are enforced in a mathematically 
rigorous and efficient way, such that hundreds of constraint 
updates can be processed with linear computational cost, in real 
time by the MSC-KF. A block diagram of LF navigation 
system can be found in Figure 3. 

Stochastic clones of the past camera pose estimates are 
created that will account for the maximum time window (or 
equivalently, number of images) in which a given feature can 
be tracked. For example, based on the flight profile of the LF 
in the GF data, we have observed that features remain within 
the camera's Field of View (FoV) for approximately five to six 
frames, hence, the MSC-KF state vector is constructed as 

(4) 

where C�qk' Gpk, and GVk denote the quaternion of 

orientation, position, and velocity of the camera at time step k, 

while bgb and bak are the gyro and accelerometer biases, 

respectively. Each clone comprises the orientation and position 
of the camera at the time that a previous image was recorded 
(i.e., k-I to k-K). A standard kinematic model of motion is 
employed for propagating the states. 

The OF tracks are obtained by matching Harris comers in 
consecutive frames. Down selection of feature matches is 
necessary to detect and reject false matches. Especially in the 
GF data, the LF flies over both urban and rural areas, where 
some portion of the imagery data contains only forests. Due to 
the terrain condition, low image quality and low frame rate, it 
is likely to have a large number of incorrect matches, which 
makes this problem much more challenging. The down 
selection step implemented in this paper utilizes the five point 
algorithm [7] combined with RANSAC [8]. In addition, when 
a track is processed, a Mahalanobis distance test is exercised to 
verify that the measurement residual for that track follows a l 
distribution. Even with the above steps, it is still possible for 
incorrect tracks to pass the test. Additional layers of robustness 
have to be added to minimize the error caused by outliers. 

Own-ship navigation with a visual odometry system is 
going to drift with time and distance traveled. In order to 
further limit the drift of LF pose, each LF will exploit the geo­
registered imagery map collected by the HF. Ideally, matching 
features detected in the LF images to corresponding features 
from HF can make the position and orientation of the LF fully 
observable. The relative pose between HF and LF is estimated 
based feature correspondence, such that the drift can be 
bounded in GPS-denied conditions. This type of update does 
require that the sensor footprints of the HF and the LF overlap. 
However, the HF and LFs do not have to fly simultaneously 
observing the same area. 

The RF datalink between LF and HF can be also used for 
relative ranging estimates. Although it has been discovered 
that relative ranging integrated with IMU may not be sufficient 
for stable relative pose computation in the GF data, it can be 
added as an additional input into MSC-KF. 

Harris r�:::--����;Q�;] Corner ��� 
Detector 1+ 

Image Processing 

Sync. 

Figure 3 Function Blocks of the Lower Flyer 

Approved for public release; distribution is unlimited, P A Case # RY - 12-0229 

779 



C. Ground Station Block Diagram 

The ground station receives imagery from both HF and LF. 
[t is noted that in the GF data, the footprints of HF and LF do 
not always overlap. When they do, there can be only a limited 
number of feature correspondences between each pair of LF 
and HF images. It does not necessarily require a dense 3D map 
to make use of these matched features. [n the meanwhile, we 
have observed that the features from a single HF image are not 
sufficient for an accurate update for a single LF pose. [n that 
case, a LF image may be paired with multiple HF images to 
gain more observables. Without using a dense map, 3D 
location of the matched features can be jointly estimated 
together with the relative HF-LF pose. 

In order to find more matching features between the LF and 
HF it is desirable to have a search method that would find as 
many potential HF matches as possible for a given LF image, 
while maintaining robustness to false positives. Furthermore, 
the method should be efficient in order to support real-time 
updates. [n addition, although the image matching algorithm 
may make use of the LF's prior pose estimates, it should not 
depend on them. Thus, even in the absence of any information 
about the LF's pose, the visual information should still be 
utilized to generate hypotheses for its location. The matching 
algorithm is based a vocabulary tree [9], which is a purely 
appearance-based system for matching images using S[FT 
descriptors [10] for image comparisons. The vocabulary tree is 
usually constructed ahead of time with training images. As 
shown in Figure 4, a set of HF images S, is filled into the tree 
in real time. Given a query LF image I_Q, the vocabulary tree 
returns a list L VT of the top N most visually similar images to 
CQ within S. 

-
As the approach is purely appearance-based, it 

will return some image matches that are visually similar but do 
not actually correspond to the same location, especially for 
visually ambiguous areas such as forests. In the second stage, a 
set of a geographic and geometric consistency tests are applied 
to eliminate false matches, which leverage approximate pose 
estimates of the HF and LF when available. 

When matched images are selected, HF-to-LF relative pose 
updates become available based on common observations of 
visual features. However, there are still a few more challenges. 
First, the LF and HF images of the same area do not 
necessarily look "similar". For example, the GF data, the HF 
and LF cameras largely differ in blurriness, resolution and field 
of view, which result in substantial dissimilarity in image 
appearance. [n addition, the images were recorded at different 
times of the year, and the seasonal changes in the foliage cause 
visual disparities. Change of vegetation, on-going construction 
and direction of shade can be observed in the images. As a 
result, the appearance-based feature matching approaches such 
as SIFT keys will limit the number of accurate matches. To 
address this issue, a patch correlation based method has been 
used in addition to descriptor matching, which significantly 
increases matching accuracy. Second, the HF camera has a 
narrower field of view and takes images at a greater distance 
compared against the LF. With few matches concentrated in a 
narrow FoV in HF camera, which is responsible for a possible 
degenerate geometry condition for LF pose estimation. 
Finally, accuracy of relative pose update is obviously 

dependent on the intrinsic and extrinsic calibration of both 
cameras. 

Even with all the challenges, there exist a few viable 
approaches that can constrain the relative LF pose. For 
example, common features from each pair of LF-HF images 
can provide five degrees of freedom (5-DOF) constraints on 
the relative pose without knowing the location of features. The 
relative orientation and translation (up to scale) of LF is 
estimated in a maximum likelihood (ML) sense by solving a 
nonlinear least-squares problem to minimize the sum of the 
squared reprojection errors in both the HF and LF images. A 
6-DOF method can jointly estimate relative pose and the 
location of common features, with the n-point pose 
determination (PNP) on the LF [11]. Robustification 
techniques, including those introduced in [12] and [[3], have 
been applied to both methods. As afore mentioned, 3D 
positions of these features can be computed with this method, 
which is a different approach from extracting feature location 
from a dense 3D reconstruction. 

Although feature matching, computation of relative pose 
and integration into the LF MSC-KF can be implemented in 
different approaches, it generally requires substantial amount 
of data being transmitted from HF and LF. The ground station 
can be equipped with directional antennas that will enable high 
speed datalinks from both the HF and LF. Finally, the HF-to­
LF updates can be uploaded to LF and integrated into the 
MSC-KF framework. 

HF/LF 
Feature 

Matching; 

Matched 

image'_._-----, 
T._VT Image set ,-\', Pose 

& Covariance 

Image, Pose & 
Covariance 

Pose Updates 

Figure 4 Function Blocks of the Ground Station 

[v. RESULTS AND ONGOING EFFORT 

LF position and attitude are estimated for using GF data by 
incorporating both MSC-KF and HF-LF updates. As part of 
the ongoing effort of further improving the accuracy, results 
from a portion of the data that contains 652 seconds over a 
distance of approximately 43 km are represented in this section 
as an example. During the first 30 seconds GPS was available 
for initialization. The LF navigates with MSC-KF from second 
30 to 652. The HF-LF updates were available intermittently, 
from second 30 to [04, 260 to 334, 432 to 546 and 635 to 652, 
respectively. 
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Figure 5 Orientation Errors Using MSC-KF and HF-to-LF 
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Figure 6 Position Errors Using MSC-KF and HF-to-LF 

Position Updates 

The MSC-KF attains accurate relative orientation between 
successive images, and the HF-to-LF position updates provide 
global position information that is utilized to bound the 
position error growth of the MSC-KF. An added benefit of the 
HF-to-LF position updates is that they also provide sufficient 
information to bound the yaw uncertainty, which continually 
increases when employing the MSC-KF alone. The position 
and attitude accuracy results of MSC-KF compared against 
MSC-KF with HF-to-LF position-only constraints are listed in 
TABLE I. The average roll and pitch uncertainties are 1.12 and 
1.27 deg 3a, respectively, while the average yaw uncertainty is 
1.74 deg 3a. The average position uncertainties along the least 
accurate axis is 83.73 m 3a, excluding the camera shutoff 
period. In comparison to both of the previous methods, the 
position uncertainty along the z-axis is 105 m 3a or lower for 

the majority of the trajectory, with the exception of the portion 
between [530, 600] sec when the LF is changing altitudes. 

TABLE I SUMMARY OF RESULTS, MSC-KF VS. MSC-KF WITH 

HF-TO-LF POSITION-ONLY UPDATES 

MSC-KF w. HF-to-LF 

updates 

Orientation RMSE roll 0.39 (deg) 

Orientation RMSE pitch 0.60 (deg) 

Orientation RMSE yaw 0.69 (deg) 

Orientation Avg. 3a roll 1.12 (deg) 

Orientation A vg. 3a pitch 1.27 (deg) 

Orientation A vg. 3a yaw 1.74 (deg) 

Position RMSE x-axis 27.61 (m) 

Position RMSE y-axis 23.84 (m) 

Position RMSE z-axis 37.22 (m) 

Position Avg. 3a x-axis 83.73 (m) 

Position Avg. 3a y-axis 68.82 (m) 

Position A vg. 3a z-axis 80.51 (m) 

The results presented in this section are based on MSC-KF 
incorporating position correction computed with the 6-DOF 
HF-LF updates, where a single LF images is matched against 
multiple HF images. It is considered a loosely coupled 
approach. Loosely-coupled methods have the advantage that 
they simplify the filtering equations as well as the outlier­
rejection process. However, they may introduce challenges 
when trying to process measurements across multiple time­
steps (e.g., when creating a synthetic aperture using HF images 
recorded from different viewing directions). In contrast, 
tightly-coupled approaches seek to utilize the raw 
measurements (LF and HF camera observations to features 
matches across multiple images) directly in the filter while at 
the same time taking advantage of the DTED information. 
Tightly-coupled methods typically provide the flexibility 
required for dealing with measurements from different time 
instants. However, some potential drawbacks exist, which 
include increased complexity and the necessity to estimate 
additional parameters in the filter state vector (e.g., the 3D 
coordinates of each measured point). Tight coupling approach 
of HF-LF update is currently being explored. 
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