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Abstract— Particle filtering (PF) is a popular nonlinear esti-
mation technique and has been widely used in a variety of appli-
cations such as target tracking. Within the PF framework, one
critical design choice that greatly affects the filter’s performance
is the selection of the proposal distribution from which particles
are drawn. In this paper, we advocate the proposal distribution
to be a Gaussian-mixture-based approximation of the posterior
probability density function (pdf) after taking into accou nt
the most recent measurement. The novelty of our approach is
that each Gaussian in the mixture is determinedanalytically to
match the modes of the underlying unknown posterior pdf. As
a result, particles are sampled along themost probable regions
of the state space, hence reducing the probability of particle
depletion. We adapt this proposal distribution into a new PF,
termed Analytically-Guided-Sampling (AGS)-PF, and apply it
to the particular problem of range-only target tracking. Both
Monte-Carlo simulation and real-world experimental results
validate the superior performance of the proposed AGS-PF over
other state-of-the-art PF algorithms.

I. I NTRODUCTION AND RELATED WORK

Particle filtering has become an increasingly popular non-
linear estimation approach used in a wide range of ap-
plications such as target tracking [1]–[5]. A particle filter
(PF) seeks to approximate the posterior probability density
function (pdf) by a set of random samples (particles) and
updates its estimate recursively in time. Within the sequential
importance sampling (SIS) framework, one critical step is to
design an appropriateproposal distribution(or importance
density), which is used to draw particles for the next time
step. Clearly, from the Bayesian filtering perspective, the
best choice of the proposal distribution is the posterior pdf
itself, which, however, in general is intractable to evaluate
analytically. In this paper, we focus on formally designing
a proposal distribution that better approximates the posterior
pdf so as to improve the PF’s performance.

Since, in general, it is also difficult to sample from the
optimal proposal distribution that minimizes the variances
of the particles’ weights conditioned on the trajectory and
all available measurements [6], many, oftenad hoc, choices
of the proposal distribution are described in the literature.
Typically, the prior pdf is used, which results in the standard
(bootstrap) PF weighted by the measurement likelihood [7].
If, however, the prior is uninformative, the generated particles
may not be able to sample the state space sufficiently.
Specifically, when far from a mode of the posterior pdf,
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the weights of the particles decay quickly and lead to
particle depletion (i.e., only a few particles have significant
weights) [3]. As a result, the very few surviving particles are
unable to appropriately represent the underlying posterior
pdf, which may cause filterinconsistency.1 In general, in
order to converge to meaningful estimates, the standard PF
requires using a large number of particles, and thus has high
processing requirements. In cases where the posterior pdf
is closer than the prior to the measurement likelihood, then
using the likelihood, instead of the prior, as the proposal
distribution often improves performance [3]. Alternatively,
a Gaussian proposal distribution can be obtained by local
linearization [6], based on which the unscented PF (UPF) [9]
was introduced. The UPF employs the unscented Kalman
filter (UKF) or the extended Kalman filter (EKF) to generate
the proposal distribution that takes into account the latest
measurements, and thus better approximates the posterior
pdf. Similar ideas were also exploited in [10]–[12]. However,
often due to the multimodal nature of the posterior pdf, the
particles sampled from the UKF/EKF posterior pdf do not
necessarily capture all the true posterior modes, which may
degrade the UPF’s performance.

The closest to the work presented in this paper is the
Gaussian sum PF (GSPF) [13] – which essentially is a bank
of Gaussian PFs (GPFs) [14] – has been derived based on the
concept of the Gaussian sum filter (GSF) [15]. Specifically,
by assuming that the prior pdf can be represented as the sum
of Gaussian distributions, the GSPF updates each distribution
using the particles that are sampled, for example, from the
corresponding prior pdf and weighted by the measurement
likelihood. However, the GSPF does not provide a measur-
able criterion about how many Gaussian distributions are
needed, and most importantly, where to choose them. These
critical issues are addressed in the Analytically-Guided-
Sampling (AGS)-PF introduced in this paper.

In particular, the proposed AGS-PF efficiently utilizes
the available computational resources by employing a small
number of particles drawn from themost probablehypothe-
ses about the estimated state, i.e., the AGS-PF samples the
most likely regions of the state space. The key idea behind
our approach is to employ a Gaussian mixture to approxi-
mate the posterior pdf, where each Gaussian is determined
analyticallyand corresponds to a mode of the posterior pdf.
Specifically, we first formulate and convert the nonlinear cost
function of the maximum a posteriori (MAP) optimization

1Consistency is one of the primary criteria for evaluating the performance
of an estimator. As defined in [8], an estimator isconsistentif the estimation
errors are zero-mean and have covariance smaller or equal tothe one
calculated by the estimator.



problem for the current state intopolynomialform, and then
employ algebraic-geometry techniques [16] to analytically
compute all the modes of the posterior pdf. Subsequently,
we use a Gaussian mixture as the proposal distribution
to approximate the posterior distribution. Each Gaussian
component matches one mode of the posterior pdf, and its
covariance is computed as the inverse of the Hessian matrix
of the MAP problem. This analytically-determined proposal
distribution provides a better approximation to the posterior
pdf, because it not only takes into account the current
measurement but also matches all the modes of the poste-
rior pdf. Therefore, the particles drawn from this proposal
distribution sample the most probable regions of the state
space. Simulation and experimental results demonstrate that
the AGS-PF significantly improves the performance in the
case of range-only target tracking. We stress that apart from
the particular application of range-only target tracking treated
here, the proposed analytically-guided sampling scheme is
applicable to a broad class of nonlinear estimation problems
in robotics and computer vision that can be expressed in (or
converted into) polynomial form.

II. A NALYTICALLY -GUIDED SAMPLING-BASED

PARTICLE FILTERING

In this section, we present a novel analytically-guided
sampling scheme that consists of a Gaussian-mixture-based
proposal distribution whose modes are determined analyti-
cally to match those of the posterior pdf. As a result, the
new AGS-PF effectively focuses the available computational
resources on the most probable regions of the state space. In
what follows, we begin with a brief overview of the generic
PF, and then describe our novel sampling scheme which can
readily be integrated into the PF framework.

A. Particle Filtering

A PF seeks to approximate the posterior distribution of
the entire state trajectory,p(x0:k|z0:k), sequentially in time,
using a set ofM weighted samples (particles),{x[j]

0:k}
M
j=1,

where xT
0:k ,

[
xT
0 · · · xT

k

]
denotes all the states up

to time-stepk, and z0:k denotes all the measurements in
the time interval[0, k]. To this end, relying on sequential
importance resampling (SIR), the PF generally requires three
sequential steps to update its estimate (see [3]–[5], and
Algorithm 1): Firstly, it draws particles for the next time step
from a proposal distribution,π(x0:k|z0:k), which is a critical
design choice. Secondly, it assigns a weight to each particle
in order to account for the fact that the proposal distribution
is usually different from the true posterior pdf. Lastly, it
performs resampling to multiply (or discard) particles with
high (or low) weights.

As mentioned before, one of the main challenges in PFs is
designing an appropriate proposal distribution. Even though
numerous choices can be made, one typically requires that
the proposal distribution has the following form in order to
be amenable to recursive computation [4]:

π(x0:k|z0:k) = π(xk|x0:k−1, z0:k)π(x0:k−1|z0:k−1) (1)

It is well known that the curse of dimensionality can quickly
make the particles too sparse to represent the posterior
pdf (i.e., particle depletion). In practice, it is common to
approximate the proposal distributionπ(x0:k|z0:k), by fixing
the past trajectoryx0:k−1 and only sampling the current state
xk, i.e., usingπ(xk|x0:k−1, z0:k). It has been proven in [6]
that theoptimal proposal distribution for the current state,
with respect to minimizing the variance of the particles’
weights, is in the form of a conditional pdf conditioned on
the past trajectory and all the measurements:

πopt(xk|x0:k−1, z0:k) = p(xk|x0:k−1, z0:k) (2)

Based on (1) as well as the common assumptions that the
motion model is a Markov process [see (18)] and that the
measurements are conditionally independent given the states
[see (20)], the (unnormalized) importance weight of thej-th
particle is computed recursively as follows [4]:

w
[j]
k =

p(x
[j]
0:k|z0:k)

π(x
[j]
0:k|z0:k)

∝ w
[j]
k−1

p(x
[j]
k |x

[j]
k−1)p(zk|x

[j]
k )

π(x
[j]
k |x

[j]
0:k−1, z0:k)

(3)

To summarize, a generic PF is outlined in Algorithm 1.

Algorithm 1 A generic particle filtering algorithm
1: loop
2: Draw particles{x[j]

k }Mj=1 ∼ π(xk|x0:k−1, z0:k)
3: Compute weights via (3), and normalize weights
4: Resample particles based on weights
5: end loop

In general, the optimal proposal distribution (2) is not
available analytically or in a suitable form for efficient
sampling, and one may choose (infinitely many) other pos-
sible distributions to approximate it. As mentioned before,
a common choice is to sample from the state-transition
prior distribution (motion model), i.e.,π(xk|x0:k−1, z0:k) =
p(xk|xk−1). In this case the weight is simply proportional
to the measurement likelihood,p(zk|xk) [see (3)]. However,
such a choice may easily lead to filter inconsistency (see
Sections IV and V). To address this issue, in the following,
we design an analytically-determined proposal distribution
by taking the current measurement into account as well as
matching all the modes of the posterior pdf.

B. Analytically-Guided Sampling Scheme

Our choice of Gaussian-mixture-based proposal distribu-
tion is motivated by the following Gaussian sum theorem
(see Theorem 4.1 of [15], p.214):2

Theorem 2.1:For a measurement model with additive
Gaussian noise [e.g., see (20)], i.e.,zk = h(xk) +
vk, where vk ∼ N (0, σ2

k), and a prior pdf given

by p(xk|z0:k−1) =
∑m

i=1 αiN
(

xk; x̂
(i)
k|k−1,P

(i)
k|k−1

)

, the

posterior pdf p(xk|z0:k) approaches the Gaussian sum
∑m

i=1 α
′
iN

(

xk; x̂
(i)
k|k,P

(i)
k|k

)

uniformly in xk and zk as

2Throughout this paper, the subscriptℓ|j refers to the estimate of a
quantity at time-stepℓ, after all measurements up to time-stepj have been
processed.̂x is used to denote the estimate of a random variablex. 0m×n

denotes am× n matrix of zeros.
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Fig. 1. Illustration of the proposed analytically-determined proposal distri-
bution that uses a Gaussian mixture to approximate the posterior distribution.
The modes of the posterior pdf – which are computed analytically – are
also used as the modes of the proposed proposal distribution. Note that for
visualization the plotted Gaussians of the mixture are scaled so that their
modes also coincide along y-axis with those of the posteriorpdf.

P
(i)
k|k−1 → 0, for i = 1, . . . ,m, where the mean, covariance,

and weight are computed as follows:

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k

(

zk − h(x̂
(i)
k|k−1)

)

(4)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k H

(i)
k P

(i)
k|k−1 (5)

K
(i)
k = P

(i)
k|k−1H

(i)T

k

(

H
(i)
k P

(i)
k|k−1H

(i)T

k + σ2
k

)−1

(6)

H
(i)
k = ∇xk

h
∣
∣
∣
xk=x̂

(i)

k|k−1

(7)

α′
i =

αiβi
∑m

i=1 αiβi

(8)

βi = N
(

zk;h(x̂
(i)
k|k−1),H

(i)
k P

(i)
k|k−1H

(i)T

k + σ2
k

)

(9)
Based on this theorem, under mild assumptions, the Gaussian
mixture can provide a good approximation to the posterior
pdf. Hence, we propose to use a Gaussian mixture as the
proposal distribution in the AGS-PF, while the novelty hereis
that we employ tools from algebraic geometry to analytically
determine the modes of the posterior pdf, which are then used
as the modes of the proposal distribution (see Fig. 1).

In particular, given that the prior pdf in the PF is ap-
proximated by a set of particles [see (10)],{x

[j]
k⊖, w

[j]
k⊖}

M
j=1,

we find a Gaussian mixture to approximate this distribution,
which can be achieved, e.g., by clustering theM particles
into m groups and then fitting a Gaussian to each group.

p(xk|z0:k−1) ≃
M∑

j=1

w
[j]
k⊖δ(xk − x

[j]
k⊖) (10)

≃
m∑

i=1

αi N
(

xk; x̂
(i)
k|k−1,P

(i)
k|k−1

)

︸ ︷︷ ︸

p(i)(xk|z0:k−1)

(11)

where αi =
∑

x
[j]
k⊖∈group i

w
[j]
k⊖, and δ(·) is the Dirac delta

function. Using Bayes’ rule and the above Gaussian mixture
approximation of the prior pdf (11), the posterior pdf can be

approximated as follows:

p(xk|z0:k) ∝ p(zk|xk)p(xk|z0:k−1)

≃
m∑

i=1

αi p(zk|xk)p
(i)(xk|z0:k−1)

︸ ︷︷ ︸

∝ p(i)(xk|z0:k)

≃
m∑

i=1

ni∑

ℓ=1

α′
iℓ
N

(

xk; x̂
(iℓ)
k|k ,P

(iℓ)
k|k

)

(12)

It is important to point out that due to the nonlinearity of
the measurement model, for each Gaussian distribution in the
prior mixture, p(i)(xk|z0:k−1), the corresponding posterior
pdf, p(i)(xk|z0:k), very often is a multi-modal, rather than a
unimodal, distribution. To take this fact into account, in (12)
we useni Gaussian distributions to approximate thei-th
posterior pdf,p(i)(xk|z0:k), whose weights,α′

iℓ
, are com-

puted based on (8) but with appropriate normalization, i.e.,
α′
iℓ

= αiβi∑
m
i=1 niαiβi

. Note thatni is analytically determined
as the number of modes of thei-th posterior pdf, rather than
arbitrarily chosen as in most Gaussian sum filters such as
the GSPF [13]. Here the indexiℓ denotes theℓ-th Gaussian
of the i-th posterior pdf. Thus, a mixture ofn =

∑m
i=1 ni

Gaussian distributions is used to approximate the posterior
pdf, which is then used as the proposal distribution in the
proposed AGS-PF.

We now aim to analytically compute all the modes,x̂
(iℓ)
k|k ,

(∀i = 1, . . . ,m and ∀ℓ = 1, . . . , ni), of the i-th posterior
pdf, p(i)(xk|z0:k), i.e., to solve the following one-time-step
MAP problem analytically:

max
xk

p(i)(xk|z0:k) ∝ p(i)(xk|z0:k−1)p(zk|xk) (13)

Exploiting the Gaussianity of the measurement noise along
with the Gaussian approximation of thei-th element,
p(i)(xk|z0:k−1), of the approximate prior (11), the MAP
problem (13) is equivalent to the following nonlinear least-
squares problem [17]:

min
xk

1

2
||xk − x̂

(i)
k|k−1||

2

P
(i)

k|k−1

+
1

2
||zk − h(xk)||

2
σ2
k

(14)

where we have employed the notation||a||2M , aTM−1a.
Note that for a broad class of nonlinear estimation problems
arising in robotics and computer vision, we can transform or
convert (14) into polynomial form and then solve for all the
local minima (corresponding to all the modes) analytically
using algebraic geometry techniques [16].

Once we analytically find all the modes,x̂
(iℓ)
k|k , of theiℓ-th

Gaussian component of the posterior pdf (proposal distribu-
tion), we compute the corresponding covariance,P

(iℓ)
k|k , from

the inversion of the Hessian matrix of (14) as follows:

P
(iℓ)
k|k =

(

P
(i)−1

k|k−1 + σ−2
k H

(iℓ)
T

k H
(iℓ)
k

)−1

(15)

where the measurement Jacobian,H
(iℓ)
k , is evaluated at the

iℓ-th analytically-computed mode,̂x(iℓ)
k|k [see (7)]. Based on

the matrix inversion lemma [18], it is not difficult to see
that (15) is precisely the standard EKF covariance update
equation [8] [also see (5)].



III. A PPLICATION: RANGE-ONLY TARGET TRACKING

In this section, we apply the AGS-PF presented in the pre-
vious section to the particular problem of range-only target
tracking, to illustrate in detail the key idea ofanalytically
determining the proposal distribution.

A. Problem Formulation

Consider a single sensor moving in a plane and estimating
the state (position, velocity, etc.) of a moving target, by
processing the available range measurements. In this work,
we study the case ofglobal tracking, i.e., the position of
the target is expressed with respect to a fixed (global) frame
of reference, instead of a relativesensor-centeredone. We
hereafter assume that the tracking sensor’s position is known
with high accuracy in the global frame of reference (e.g.,
from GPS). The target state at time-stepk is defined as a
vector of dimension2N , whereN − 1 is the highest order
of the time derivative of the target position described by a
known stochastic motion model, and can include components
such as position, velocity, and acceleration.

xk =
[
xTk

yTk
ẋTk

ẏTk
ẍTk

ÿTk
· · ·

]T
(16)

=
[
pT
Tk

dT
Tk

]T
(17)

wherepTk
,

[
xTk

yTk

]T
is the target position, anddTk

,
[
ẋTk

ẏTk
ẍTk

ÿTk
· · ·

]T
denotes all the higher-order

time derivatives of the target position. In the following, the
target stochastic motion model and the sensor measurement
model are explained.

1) Motion model:We consider the case where the target
moves randomly but assume that the stochastic model de-
scribing the motion of the target (e.g., constant acceleration
or constant velocity [8]) is known. In particular, the discrete-
time state propagation equation is generically given by the
following linear form:

xk = Φk−1xk−1 +Gk−1wk−1 (18)

wherewk−1 is zero-mean white Gaussian noise with co-
varianceQk−1. The state transition matrix,Φk−1, and the
process noise Jacobian,Gk−1, that appear in the preceding
expression depend on the motion model used [8]. We will
make no further assumptions on these matrices other than
that their values are known. It is clear that this is a special
case of a Markov model and can be written in a general
conditional pdf form,xk ∼ p(xk|xk−1).

2) Measurement model:In this work, we are interested in
the case where a single sensor measures its distance to the
target. Statistically, such a measurement follows a conditional
pdf, zk ∼ p(zk|xk), and its function is given by:

zk =
√

(xTk
− xSk

)2 + (yTk
− ySk

)2 + vk (19)

, h(xk) + vk (20)

where pSk
, [xSk

ySk
]T is the known sensor position

expressed in the global frame of reference, andvk is the zero-
mean white Gaussian measurement noise, and its variance is
σ2
k, i.e., vk ∼ N (0, σ2

k).

B. Computing the Modes of the Proposal Distribution

We now focus on solving (14) analytically in order to
determine all the modes of the posterior pdf. By observing
that the range measurement depends only on the target
position [see (20)], we first decouple the target positionpTk

and the remaining statesdTk
in solving (14), so as to simplify

the ensuing derivations.
Lemma 3.1:Minimizing (14) is equivalent to sequentially

solving the following two problems:
1) Solving the following minimization problem with re-

spect to the target position only:

min
pTk

1

2
||pTk

−p̂
(i)
Tk|k−1

||2
P

(i)
ppk|k−1

+
1

2
||zk−h(pTk

)||2σ2
k

(21)

whereP(i)
ppk|k−1

is the covariance matrix corresponding
to the target position, obtained by partitioning the co-

variance matrix as:P(i)
k|k−1 ,

[

P
(i)
ppk|k−1

P
(i)
pdk|k−1

P
(i)
dpk|k−1

P
(i)
ddk|k−1

]

.

2) Using theℓ-th optimal target position of (21),̂p(iℓ)
Tk|k

,
to determine the remaining states:

d̂
(iℓ)
Tk|k

= d̂
(i)
Tk|k−1

−Σ
(i)−1

ddk|k−1
Σ

(i)
dpk|k−1

(p̂
(iℓ)
Tk|k

−p̂
(i)
Tk|k−1

)

(22)

where the following partitioning of the information

matrix is used:P(i)−1

k|k−1 ,

[

Σ
(i)
ppk|k−1

Σ
(i)
pdk|k−1

Σ
(i)
dpk|k−1

Σ
(i)
ddk|k−1

]

.

Proof: See [17].
We thus see from the above lemma that the size of

the nonlinear problem has dramatically decreased from2N
for (14) to a constant size of 2 for (21). Moreover, the
analytical solution for the target position is independentof
its higher-order time derivatives, regardless of the stochastic
target motion model.

To solve (21) analytically, we first introduce a new variable
ρk = h(pTk

). Then, (21) is equivalent to the following
constrainedminimization problem:3

min
pTk

, ρk

1

2
||pTk

− p̂
(i)
Tk|k−1

||2
P

(i)
ppk|k−1

+
1

2
||zk − ρk||

2
σ2
k

(23)

s.t. ρ2k = (xSk
−xTk

)2 + (ySk
−yTk

)2 , ρk ≥ 0 (24)

which we solve by employing the method of Lagrange
multipliers [19]. Specifically, without loss of generality, by
assumingP(i)−1

ppk|k−1
, Diag(s1, s2), the Lagrangian func-

tion is constructed as follows:4

L(xTk
, yTk

, ρk, λ)=
s1

2
(xTk

−x̂
(i)
Tk|k−1

)2+
s2

2
(yTk

−ŷ
(i)
Tk|k−1

)2

+
(zk − ρk)

2

2σ2
k

+ λ
(
ρ2k−(xSk

−xTk
)2−(ySk

−yTk
)2
)

(25)

3It is important to note that similar derivations of the analytical approach
for solving (14) in this case can be found in our previous work[17]. For
completeness, we briefly describe this approach here.

4We can always diagonalizeP(i)−1

ppk|k−1
by applying a 2D rotational

transformation, which does not affect the distance measurements. Moreover,
we here temporarily omit the positivity constraint ond, which will be used
later for determining the feasible solutions.



whereλ is the Lagrange multiplier. Setting the derivatives of
L(·) with respect to the four optimization variables to zero,
and performing simple algebraic manipulations, we obtain:

∂L

∂xT

= 0 ⇒ xTk
=

s1x̂
(i)
Tk|k−1

− 2λxSk

s1 − 2λ
(26)

∂L

∂yT
= 0 ⇒ yTk

=
s2ŷ

(i)
Tk|k−1

− 2λySk

s2 − 2λ
(27)

∂L

∂ρk
= 0 ⇒ ρk =

zk

1 + 2σ2
kλ

(28)

∂L

∂λ
= 0 ⇒ 0 = ρ2k−(xSk

−xTk
)2−(ySk

−yTk
)2 (29)

We substitute (26)-(28) into (29) and multiply both sides
of (29) with (1 + 2σ2

kλ)
2(s1 − 2λ)2(s2 − 2λ)2, to obtain a

fourth-orderunivariatepolynomial inλ:5

0 = f(λ) =

4∑

i=0

aiλ
i (30)

whereai, i = 0, . . . , 4, are the coefficients expressed in terms
of the known quantitiess1, s2, zk, σk, x̂(i)

Tk|k−1
, ŷ(i)Tk|k−1

, xSk
,

andySk
. Sincef(λ) is quartic, we compute its roots in closed

form [17].
Although, in general, there exist 4 solutions forλ and thus

4 solutions forxTk
, yTk

andρk, as they depend injectively
on λ [see (26)-(28)], we only need to consider the pairs
(xTk

, yTk
) that correspond to real solutions forλ and to a

nonnegativeρk [see (24)]. Moreover, since some of these
solutions could be local maxima or saddle points, the second-
order derivative test [19] is employed to identify the minima.
In fact, it was shown in [17] that there are at most 2 local
minima for the problem (21), i.e.,ni ≤ 2. Finally, once
we determine all the local minima for the target position, we
can compute the corresponding estimates for the higher-order
position derivatives via (22).

C. Computing the Covariance of Each Gaussian in the
Mixture (Proposal Distribution)

In order to obtain the covariance,P(iℓ)
k|k , of theiℓ-th Gaus-

sian component of the proposal distribution (15), we compute
the measurement Jacobian,H

(iℓ)
k , as follows [see (20)]:

H
(iℓ)
k =

[

(p̂
(iℓ)

Tk|k
−pSk

)T

||p̂
(iℓ)

Tk|k
−pSk

||
01×(2N−2)

]

(31)

where the first block column ofH(iℓ)
k is the Jacobian

with respect to the target position, while the Jacobian with
respect to the higher-order derivatives of the target position
is 01×(2N−2) since they are not involved in the measurement
model [see (20)].

5It is important to note that if any of the denominators of (26)-(28)
becomes zero while the corresponding numerator is nonzero,the target is
located at infinity. Moreover the cost of (24) also becomes infinity and
hence attains the global maximum, which is not interesting to us. On the
other hand, there exists the degenerate case where both the numerator and
denominator of (26) or (27) become zero, which can be avoidedthrough an
appropriate coordinate transformation.

D. Range-only Target Tracking Using the AGS-PF

We now apply the AGS-PF to the range-only target
tracking problem. Note that since the analytically-determined
proposal distribution derived in the previous section not
only takes into account the current measurement but also
matches all the modes of the posterior pdf, it provides a
better approximation to the posterior pdf, and thus the AGS-
PF is expected to perform better than the standard PF.

Specifically, at time-stepk − 1, we cluster the particles
into m groups, e.g., using the K-means algorithm [20].
Here, m is a design choice selected based on the avail-
able computational resources. We compute the sample
mean and covariance of thei-th group (i = 1, . . . ,m),
and approximate this group by a Gaussian,N (i) ,

N (xk−1; x̂
(i)
k−1|k−1,P

(i)
k−1|k−1), i = 1, . . . ,m. Then, based

on thelinear motion model (18), we propagate each Gaussian
to obtain the prior,N (xk; x̂

(i)
k|k−1,P

(i)
k|k−1), as follows:

x̂
(i)
k|k−1 = Φk−1x̂

(i)
k−1|k−1 (32)

P
(i)
k|k−1 = Φk−1P

(i)
k−1|k−1Φ

T
k−1 +Gk−1Qk−1G

T
k−1 (33)

When a new range measurement becomes available, we
analytically compute all the modes of the posterior pdf for
each of them GaussiansN (i), by solving (14) (see Sec-
tion III-B). Once all the modes of the posterior pdf (and thus
the proposal distribution) are determined, we compute the
corresponding covariance based on (15) for each Gaussian
component of the proposal distribution. Finally, after allthe
Gaussian components (modes and covariances) are specified,
we use them as a proposal distribution to draw particles,
{x

[j]
k }Miℓ

j=1 ∼ N (xk; x̂
(iℓ)
k|k ,P

(iℓ)
k|k ), whereMiℓ is the number

of particles drawn from theiℓ-th Gaussian. For simplicity,
Miℓ is set equal to the number of the particles originating
from thei-th group after clustering, i.e.,Miℓ = Mi, though a
more adaptive scheme (e.g., based on the particles’ weights)
may be used. In summary, the main steps of the AGS-PF
range-only target tracking are outlined in Algorithm 2.

Algorithm 2 AGS-PF for range-only target tracking

Require: Initialize particles by sampling fromp(x0)
1: loop
2: Cluster particles intom groups using K-means, and

fit a Gaussian to each group
3: Propagate each of them Gaussians (means and co-

variances) to obtain the priors via (32) and (33)
4: For each group, given a new measurement, analyti-

cally determine the proposal distribution as a Gaussian
mixture (see Sections III-B and III-C)

5: Draw particles from the analytically-determined pro-
posal distribution (Gaussian mixture)

6: Compute weights via (3), prune particles, and normal-
ize weights

7: Resample particles based on weights
8: end loop

Note that in the case of range-only tracking, we may find
multiple modes of the posterior pdf for each group at each



time step. Hence, the number of Gaussian components of
the proposal distribution may be larger than the original
number of clusters. This can result in an unbounded growth
of particles over time in the worst case, since more and
more particles may be generated for each group in the
subsequent time steps. In order to keep the number of
particles constant and reduce the computational cost of the
AGS-PF, at every time step wepruneout particles with low
weights (see Algorithm 2). As a result, the AGS-PF can
use substantiallyfewerparticles while achieving significantly
better performance than the standard PF (see Sections IV
and V). This is attributed to the fact that the particles drawn
from the analytically-determined proposal distribution that
captures all the modes of the posterior pdf, areeffectively
sampled from themost probableregions of the state space.

IV. SIMULATION RESULTS

A series of Monte-Carlo simulations were conducted under
various conditions, in order to validate the capability of
the proposed AGS-PF to improve tracking performance.
The metrics used to evaluate the filter’s performance are:
(i) the average root mean squared error (RMSE), and (ii) the
normalized (state) estimation error squared (NEES) [8]. Both
metrics are computed by averaging over all Monte-Carlo runs
for each time step. The average RMSE provides us with a
concise metric of the accuracy of a given filter, while the
NEES is a criterion for evaluating the filter’s consistency.
Specifically, it is known that the NEES of ad-dimensional
Gaussian random variable follows aχ2 distribution with d

degrees of freedom. Therefore, if an estimator is consistent,
we expect that the average NEES for the target state will
be close to2N for all k. The larger the deviations of the
NEES from these values, the worse the inconsistency of the
filter. By studying both metrics, we obtain a comprehensive
picture of the performance of the filters under consideration.

In this test, we performed 100 Monte-Carlo simulations
and compared three different PFs. During each Monte-
Carlo run, all filters process the same data to ensure a
fair comparison: (i) the standard (bootstrap) PF with1000

particles, which uses the prior as the proposal distribution to
draw particles from and employs the systematic resampling
strategy [7]; (ii) the GSPF [13] using the same number of
particles as the standard PF andm = 10 Gaussians to rep-
resent the underlying distributions, which are initialized by
clustering the initial particles intom groups and then fitting
a Gaussian to each group; and (iii) the proposed AGS-PF
with 500 particles, which uses the analytically-determined
proposal distribution as well as systematic resampling. Inthe
AGS-PF, at each time step, we clustered the particles into
m = 10 groups, equal to the number of Gaussians used in
the GSPF. Note that in order to validate the effectiveness of
the analytically-determined proposal distribution employed
by the AGS-PF, significantly fewer particles were used
in the AGS-PF, as compared to the standard PF and the
GSPF. Despite this fact, as shown below, the AGS-PF attains
substantially better performance than both the standard PF
and the GSPF.
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Fig. 2. The trajectories of the target and sensor obtained from one typical
realization of the 100 Monte-Carlo simulations.

For the results presented in this section, we adopted a
zero-acceleration motion model for the target [8]:

ẋ(t) = Fx(t) +Gw(t) (34)

where

x(t) =







xT (t)
yT (t)
ẋT (t)
ẏT (t)






, F =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






, G =







0 0
0 0
1 0
0 1







andw(t) =
[
wx(t) wy(t)

]T
is zero-mean, white Gaussian

noise with covarianceE
[
w(t)w(τ)T

]
= qI2δ(t− τ), where

q = 1
(

m
sec2

)2 1
Hz , andδ(t − τ) is the Dirac-delta function.

In our implementation, we discretize this continuous-time
system model (34) with time step∆t = 0.1 sec. The initial
true target state isx0 =

[
0 0 −5 5

]T
, while the initial

estimate of the target state is randomly generated from a
Gaussian pdf,N (x0,P0|0), where P0|0 = 100I4 is the
initial covariance of the state estimate. Similarly to [17],
[21], we chose a circular sensor trajectory with perfectly
known sensor positions for the simulations. Fig. 2 shows the
trajectories of the target and sensor in one typical realization
of the Monte-Carlo simulations. The standard deviation of
the distance-measurement noise was equal toσ = 0.5 m.

Fig. 3 shows the Monte-Carlo results of the three PFs. It
is clear that the standard PF provides inaccurate estimates
which are diverging from the ground truth and become in-
consistent. As explained before, the poor NEES performance
of the standard PF is primarily due to the ill conditioning of
the covariances computed from particles whose weights are
small or particles that do not span all directions of the state
space. As expected, the GSPF performs more accurately than
the standard PF. Most importantly, the AGS-PF performs
better than both the standard PF and the GSPF, in terms of
accuracy (RMSE) and consistency (NEES). This is attributed
to the analytically-determined proposal distribution which
matches all the modes of the posterior pdf while taking into
account the most recent measurements.

Finally, using the same simulation setup as described
above, we compared the computational requirements of the
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Fig. 3. Monte-Carlo simulation results: The proposed AGS-PF algorithm performs substantially better than its competitors, in terms of both accuracy
(RMSE) and consistency (NEES). Note that for clarity of presentation, only the portions of the NEES lines that are withina certain threshold are plotted.

TABLE I

COMPUTATIONAL COST VS. ESTIMATION ACCURACY

Runtime (sec) Pos. Est. Err. (m) Vel. Est. Err. (m/sec)

Std-PF 0.2273 92.3522 9.1060

GSPF 0.1801 51.4123 6.5045

AGS-PF 0.1813 10.3799 2.5885

proposed AGS-PF and its competitors by measuring the CPU
running time for a complete update of all filters. Our Matlab
implementations running on a Core i7 CPU of 2.67 GHz
required an average execution time for each filter shown in
Table I. These results were obtained by averaging the CPU
runtime over all Monte-Carlo simulations and over all time
steps. As compared to the standard PF and the GSPF, the
proposed AGS-PF is not only computationally more effi-
cient by using fewer particles but also achieves significantly
better tracking performance [see Fig. 3(a), and Table I].
Specifically, as compared to the standard PF and the GSPF,
the AGS-PF attains on average 89% and 80% reduction in
position estimation error, 71% and 60% reduction in velocity
estimation error, while at 20% lower and same order of
computational cost, respectively.

V. EXPERIMENTAL RESULTS

In this section, we present a real-world experiment con-
ducted in a controlled environment to further validate the
proposed AGS-PF. During the test, two Pioneer-III robots,
one acting as the target and the other serving as the sensor,
moved in a rectangular area of 4 m× 2 m, within which the
positions of the robots were tracked by an overhead camera.
For this purpose, rectangular tracking patterns were mounted
on top of the robots and the vision system was calibrated in
order to provide ground-truth measurements of the robots’
poses in a global coordinate frame. The standard deviation
of the noise in these measurements was approximately 0.5
deg for orientation and 0.01 m, along each axis, for position.
The target robot drove along a straight line at a constant
velocity of v = 0.1 m/sec, and thus a zero-acceleration

motion model withq = 0.05
(

m
sec2

)2 1
Hz was used to describe

this motion [see (34)], while the sensor robot moved on a
circle. Fig. 4(a) shows the experimental setup, and Fig. 4(b)
depicts the trajectories of the target and the sensor.

In this experiment, the initial estimate of the target state
was set tox̂0|0 =

[
2.5940 1.7374 0.0003 −0.0001

]T

with covarianceP0|0 = I4. Relative distance measurements
were produced synthetically using the differences in the true
positions of the target and the sensor, as these were recorded
by the overhead camera, with the addition of noise. For the
results shown in this section, the distance measurements were
corrupted by zero-mean white Gaussian noise, with standard
deviationσ = 0.1 m. The same three PFs as in the previous
simulation were implemented, and the comparative results
obtained from this single-run experiment are presented in
Fig. 5. From the experimental results, it becomes clear that
the proposed AGS-PF outperforms the standard PF and the
GSPF, in terms of both accuracy (RMSE) and consistency
(NEES), which agrees with the simulation results presented
in the previous section.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have introduced a new AGS-PF, which
uses a Gaussian mixture as the proposal distribution, where
each Gaussian corresponds to one of the analytically-
computed modes of the posterior pdf. Using such proposal
distribution, the AGS-PF draws its particles within the most
probable regions of the state space. As a result, as compared
to the standard PF, the AGS-PF attains better performance
while requiring fewer computational resources. We applied
this algorithm to range-only target tracking, although the
proposed methodology is applicable to a broad class of
problems which can be transformed into polynomial form.
Simulation and experimental results have demonstrated that
the proposed approach significantly outperforms the standard
PF and the GSPF, in terms of accuracy, consistency and
efficiency. In the future work, we plan to extend the proposed
AGS-PF to target tracking in 3D and investigate further
improvements for reducing the number of particles.
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Fig. 4. Experimental setup: (a) Calibrated image of two Pioneer III robots (one acts as the target while the other is the sensor) with tracking patterns
mounted on top of them. (b) Trajectories of the two robots (target and sensor) that move inside a 4 m× 2 m arena during the indoor experiment.
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Fig. 5. Experimental results: The proposed AGS-PF algorithm performs better than its competitors, in terms of both accuracy (RMSE) and consistency
(NEES). Note that for clarity of presentation, only the portions of the NEES lines that are within a certain threshold areplotted.
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