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Abstract— Particle filtering (PF) is a popular nonlinear esti-
mation technique and has been widely used in a variety of appl
cations such as target tracking. Within the PF framework, ore
critical design choice that greatly affects the filter's peformance
is the selection of the proposal distribution from which patticles
are drawn. In this paper, we advocate the proposal distribuion
to be a Gaussian-mixture-based approximation of the postéor
probability density function (pdf) after taking into account
the most recent measurement. The novelty of our approach is
that each Gaussian in the mixture is determinedanalytically to
match the modes of the underlying unknown posterior pdf. As
a result, particles are sampled along themost probable regions
of the state space, hence reducing the probability of partie
depletion. We adapt this proposal distribution into a new PF
termed Analytically-Guided-Sampling (AGS)-PF, and applyit
to the particular problem of range-only target tracking. Both
Monte-Carlo simulation and real-world experimental results
validate the superior performance of the proposed AGS-PF ar
other state-of-the-art PF algorithms.

|. INTRODUCTION AND RELATED WORK

the weights of the particles decay quickly and lead to
particle depletion (i.e., only a few particles have sigaifit
weights) [3]. As a result, the very few surviving particles a
unable to appropriately represent the underlying posterio
pdf, which may cause filtenconsistency In general, in
order to converge to meaningful estimates, the standard PF
requires using a large number of particles, and thus has high
processing requirements. In cases where the posterior pdf
is closer than the prior to the measurement likelihood, then
using the likelihood, instead of the prior, as the proposal
distribution often improves performance [3]. Alternative

a Gaussian proposal distribution can be obtained by local
linearization [6], based on which the unscented PF (UPF) [9]
was introduced. The UPF employs the unscented Kalman
filter (UKF) or the extended Kalman filter (EKF) to generate
the proposal distribution that takes into account the tates
measurements, and thus better approximates the posterior
pdf. Similar ideas were also exploited in [10]-[12]. Howgve

_ Particle filtering has become an increasingly popular norwften due to the multimodal nature of the posterior pdf, the
linear estimation approach used in a wide range of aparticles sampled from the UKF/EKF posterior pdf do not

plications such as target tracking [1]-[5]. A particle filte necessarily capture all the true posterior modes, which may
(PF) seeks to approximate the posterior probability dgnsigegrade the UPF’s performance.
function (pdf) by a set of random samples (particles) and The closest to the work presented in this paper is the
updates its estimate recursively in time. Within the se¢jaén Gaussian sum PF (GSPF) [13] — which essentially is a bank
importance sampling (SIS) framework, one critical steis tof Gaussian PFs (GPFs) [14] — has been derived based on the
design an appropriatproposal distribution(or importance concept of the Gaussian sum filter (GSF) [15]. Specifically,
density), which is used to draw particles for the next timey assuming that the prior pdf can be represented as the sum
step. Clearly, from the Bayesian filtering perspective, thef Gaussian distributions, the GSPF updates each distibut
best choice of the proposal distribution is the posteridr pdising the particles that are sampled, for example, from the
itself, which, however, in general is intractable to evédua corresponding prior pdf and weighted by the measurement
analytically. In this paper, we focus on formally designindikelihood. However, the GSPF does not provide a measur-
a proposal distribution that better approximates the pioste able criterion about how many Gaussian distributions are
pdf so as to improve the PF’s performance. needed, and most importantly, where to choose them. These
Since, in general, it is also difficult to sample from thecritical issues are addressed in the Analytically-Guided-
optimal proposal distribution that minimizes the variancesampling (AGS)-PF introduced in this paper.
of the particles’ weights conditioned on the trajectory and In particular, the proposed AGS-PF efficiently utilizes
all available measurements [6], many, ofte hog choices the available computational resources by employing a small
of the proposal distribution are described in the literatur number of particles drawn from thmost probabléhypothe-
Typically, the prior pdf is used, which results in the stamda ses about the estimated state, i.e., the AGS-PF samples the
(bootstrap) PF weighted by the measurement likelihood [7fnost likely regions of the state space. The key idea behind
If, however, the prior is uninformative, the generatedipt$  our approach is to employ a Gaussian mixture to approxi-
may not be able to sample the state space sufficientinate the posterior pdf, where each Gaussian is determined
Specifically, when far from a mode of the posterior pdfanalytically and corresponds to a mode of the posterior pdf.
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Specifically, we first formulate and convert the nonlineastco
function of the maximum a posteriori (MAP) optimization

1Consistency is one of the primary criteria for evaluating prerformance
of an estimator. As defined in [8], an estimatoc@nsistentf the estimation
errors are zero-mean and have covariance smaller or equdletmne
calculated by the estimator.



problem for the current state infmlynomialform, and then It is well known that the curse of dimensionality can quickly
employ algebraic-geometry techniques [16] to analytjcallmake the particles too sparse to represent the posterior
compute all the modes of the posterior pdf. Subsequentlydf (i.e., particle depletion). In practice, it is common to
we use a Gaussian mixture as the proposal distributia@pproximate the proposal distributiafixo.x|z0.%), by fixing

to approximate the posterior distribution. Each Gaussiathe past trajectory.,—1 and only sampling the current state
component matches one mode of the posterior pdf, and is, i.e., usingm(xx|xo.x—1, 20.x). It has been proven in [6]
covariance is computed as the inverse of the Hessian matthat the optimal proposal distribution for the current state,
of the MAP problem. This analytically-determined proposalith respect to minimizing the variance of the particles’
distribution provides a better approximation to the paster weights, is in the form of a conditional pdf conditioned on
pdf, because it not only takes into account the currerthe past trajectory and all the measurements:
measurement but also matches all the modes of the poste- .
. . . Topt (xk |x0:k—17 ZO:k) - P(Xk|X0:k—1 5 ZO:k) (2)

rior pdf. Therefore, the particles drawn from this proposal

distribution sample the most probable regions of the state Based on (1) as well as the common assumptions that the
space. Simulation and experimental results demonstrate ttinotion model is a Markov process [see (18)] and that the
the AGS-PF significantly improves the performance in th&easurements are conditionally independent given thesstat
case of range-only target tracking. We stress that apart frolsee (20)], the (unnormalized) importance weight of

the particular application of range-only target trackirepted ~Particle is computed recursively as follows [4]:

here., the proposed analyncally—gu_lded samplm_g scheme is 0 p(xg]k|20:k) . p(ng]lxgj]_l)p(z/glxg])
applicable to a broad class of nonlinear estimation problem wj* = ——=—— 1 7] 3)
in robotics and computer vision that can be expressed in (or 7 (Xguk|20:8) T(Xp [Xgup—1> Z0:k)
converted into) polynomial form. To summarize, a generic PF is outlined in Algorithm 1.
1. ANALYTICALLY -GUIDED SAMPLING-BASED Algorithm 1 A generic patrticle filtering algorithm
PARTICLE FILTERING 1: loop

In this section, we present a novel analytically-guided?  Draw partlcle_s{xgj} _ﬁl ~ (X [Xo:k—1, Z0:k)
sampling scheme that consists of a Gaussian-mixture-basetl  Compute weights via (3), and normalize weights
proposal distribution whose modes are determined analyti4 ~ Résample particles based on weights
cally to match those of the posterior pdf. As a result, the5 €nd loop
new AGS-PF effectively focuses the available computationa
resources on the most probable regions of the state space. liin general, the optimal proposal distribution (2) is not
what follows, we begin with a brief overview of the genericavailable analytically or in a suitable form for efficient
PF, and then describe our novel sampling scheme which caampling, and one may choose (infinitely many) other pos-

readily be integrated into the PF framework. sible distributions to approximate it. As mentioned before
a common choice is to sample from the state-transition
A. Particle Filtering prior distribution (motion model), i.eq(xx|X0:x—1, 20:k) =

Og?(xk|xk_1). In this case the weight is simply proportional
to the measurement likelihoog(z;|xx) [see (3)]. However,

. . . U] 1M such a choice may easily lead to filter inconsistency (see
using aﬁet ng v%/elghted sTampIes (particlesyxg . }y=1. Sections IV and V). To address this issue, in the following,
where xj, = [xj - x;] denotes all the states up,e design an analytically-determined proposal distriuti

to tme-st_epk, and zo.y den(_)tes all the_ measurements_ Inby taking the current measurement into account as well as
the time interval0, k]. To this end, relying on sequential matching all the modes of the posterior pdf
importance resampling (SIR), the PF generally requiresethr '

sequential steps to update its estimate (see [3]-[5], afdl Analytically-Guided Sampling Scheme

Algorithm 1): Firstly, it draws particles for the next timeep Our choice of Gaussian-mixture-based proposal distribu-
from a proposal distributions (xo.x|20.1), Which is a critical  tion is motivated by the following Gaussian sum theorem
design choice. Secondly, it assigns a weight to each partiglsee Theorem 4.1 of [15], p.213):

in order to account for the fact that the proposal distritouti  Theorem 2.1:For a measurement model with additive

A PF seeks to approximate the posterior distribution
the entire state trajectory(xo.x|20.x), sequentially in time,

is usually different from the true posterior pdf. Lastly, itGaussian noise [e.g., see (20)], i.ex = h(xy) +

performs resampling to multiply (or discard) particlestwit ¢,, where v, ~ N(0,0%), and a prior pdf given

high (or low) weights. b - = S N (x: %D pl@) the
As mentioned before, one of the main challenges in PFs id PXklz00-1) = 2y 04 ( BTkl T bk

designing an appropriate proposal distribution. Even d¢mou posterior pdf p(xy|z0:x) approaches the Gaussian sum

. . . m L) pli) ; ;
numerous choices can be made, one typically requires thati—1 @V (xhkaka\k) uniformly in x; and z; as
the proposal distribution has the following form in order to

be amenable to recursive computation [4]: 2Th_roughc_)ut this paper, the subscrifjtj refers to_the e;timate of a
quantity at time-steg, after all measurements up to time-stgpave been

- 1 processedz is used to denote the estimate of a random variabl®,,, x »,
W(XO:I@|ZO:I@) - ﬂ—(xk|x0:k—1aZO:k)W(XO:k—l |ZO:/€—1) ( ) denotes an x n maitrix of zeros.
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Fig. 1. lllustration of the proposed analytically-detened proposal distri-
bution that uses a Gaussian mixture to approximate the jmstistribution.

The modes of the posterior pdf — which are computed analiyticaare

also used as the modes of the proposed proposal distribiNiote that for
visualization the plotted Gaussians of the mixture areescab that their
modes also coincide along y-axis with those of the posteritir

P;(f\)kq — 0, fori=1,...,m, where the mean, covariance
and weight are computed as follows:
20, =20+ K (2 - h&l_) (4)
(@) _ p@) () pp(O)p (9
Pk|k - Pk|k71 - K, 'H, Pk\kq ®)
i i )T i) (4 0T -
K -l Y (BOPO_HY +at) @)
H) =V h| ™
Xk =Xk k-1
/ a;f
&= =m0 (8)
>t @il
9)

i i) (i )T
B = N (zk;h(x;‘)k_l),Hé)P,(cl)k_lH,(c) + 022

Based on this theorem, under mild assumptions, the Gauss

approximated as follows:

P(Xk|20:k) 0.8 p(Zk|Xk)p(Xk|Zo:k71)

= Z &%) p(Zk |Xk)p(i) (Xk |ZO:k71)

= o ) (xxl20.)
~ Z Z o/iz./\/ (xk; )”(Ejfk), P](;ﬁg) (12)
i=1 6=1

It is important to point out that due to the nonlinearity of
the measurement model, for each Gaussian distributiorein th
prior mixture,p(i>(xk|z0;k,1), the corresponding posterior
pdf, p( (xx|20.1), very often is a multi-modal, rather than a
unimodal, distribution. To take this fact into account, Ir2)
we usen; Gaussian distributions to approximate th¢h
posterior pdf,p(*) (xy|z0.c), whose weightsp , are com-
puted based on (8) but with appropriate normalization, i.e.
o, = mo‘fjai -. Note thatn; is analytically determined
as the niimber of modes of thieh posterior pdf, rather than
arbitrarily chosen as in most Gaussian sum filters such as
the GSPF [13]. Here the index denotes theé-th Gaussian
'of the i-th posterior pdf. Thus, a mixture of = >°" | n;
Gaussian distributions is used to approximate the posterio
pdf, which is then used as the proposal distribution in the
proposed AGS-PF.

We now aim to analytically compute all the modé%‘}c),

(Vi =1,...,m andV¥{ = 1,...,n;), of the i-th posterior
pdf, p() (x| z0.1), i.€., to solve the following one-time-step
MAP problem analytically:

max p® (xxlz204) o P (%l z0k-1)p(2kxk)  (13)
Exploiting the Gaussianity of the measurement noise along
with the Gaussian approximation of théth element,
p@(xy|20.5_1), Of the approximate prior (11), the MAP
i¥dblem (13) is equivalent to the following nonlinear least

mixture can provide a good approximation to the postericgquares problem [17]:

pdf. Hence, we propose to use a Gaussian mixture as the
proposal distribution in the AGS-PF, while the novelty hisre
that we employ tools from algebraic geometry to analytjcall
determine the modes of the posterior pdf, which are then usg@,are we have employed the notatiial|2, 2 a? M a.

as the modes of the proposal distribution (see Fig. 1). Nt that for a broad class of nonlinear estimation problems

In particular, given that the prior pdf |n[_]the[|_]3F IS @P-arising in robotics and computer vision, we can transform or
proximated by a set of particles [see (100, w2 }321,  convert (14) into polynomial form and then solve for all the
we find a Gaussian mixture to approximate this distributiongcal minima (corresponding to all the modes) analytically
which can be achieved, e.g., by clustering the particles using algebraic geometry techniques [16].

into m groups and then fitting a Gaussian to each group.  gnce we analytically find all the mode%(i'@)
k|k?

NG ||2

1 1 9
§||Xk - Xk|k71 P;:\)k—l + §||2k - h(xk)Ho'i (14)

min
Xk

of thei,-th

M 0] i Gaussian component of the posterior pdf (proposal distribu
p(Xk|20:6-1) = Z wiL 0 (xp, — x5 (10)  tion), we compute the corresponding covariarﬁg‘f}c), from
j=1 the inversion of the Hessian matrix of (14) as follows:
e 2 p i D7 o (i) i) 7
=Y aN (& PL) (D) Pl = (P, + o B ) (15)
i=1

PO (e lzok-1) where the measurement JacobiH?j’f), is evaluated at the

> w}j]e and §(-) is the Dirac delta i,-th analytically-computed mode?;ki‘}c) [see (7)]. Based on
x/L egroup i the matrix inversion lemma [18], it is not difficult to see
function. Using Bayes’ rule and the above Gaussian mixtuithat (15) is precisely the standard EKF covariance update

approximation of the prior pdf (11), the posterior pdf can be&quation [8] [also see (5)].

where «; =



[1l. APPLICATION: RANGE-ONLY TARGET TRACKING B. Computing the Modes of the Proposal Distribution

In this section, we apply the AGS-PF presented in the pre- We now focus on solving (14) analytically in order to
vious section to the particular problem of range-only targeletermine all the modes of the posterior pdf. By observing
tracking, to illustrate in detail the key idea ahalytically that the range measurement depends only on the target

determining the proposal distribution. position [see (20)], we first decouple the target positign
and the remaining statels, in solving (14), so as to simplify
A. Problem Formulation the ensuing derivations.

Lemma 3.1:Minimizing (14) is equivalent to sequentially

Iving the following two problems:

1) Solving the following minimization problem with re-
spect to the target position only:

Consider a single sensor moving in a plane and estimati%%
the state (position, velocity, etc.) of a moving target, by
processing the available range measurements. In this work,
we study the case aflobal tracking, i.e., the position of . |
the target is expressed with respect to a fixed (global) frame . . (i) 2 2
of refe?ence, inpstead of a relatﬁmnsor—centeré?bne. \3Ve Fr 5”ka Py ||P§f$k‘k,1+§”Zk_h(pT’“)”Ui
hereafter assume that the tracking sensor’s position iZkno (21)
with high accuracy in the global frame of reference (e.g.,
from GPS). The target state at time-steps defined as a
vector of dimensior2NV, where N — 1 is the highest order
of the time derivative of the target position described by a

wherePgIZ,WH is the covariance matrix corresponding
to the target position, obtained by partitioning the co-

(@) (4)
variance matrix a2 Pooys Pp,dmll.

known stochastic motion model, and can include components Klk-1 7 Pfjﬁ)wH Pff()ik‘kil
such as position, velocity, and acceleration. 2) Using the_ﬁ-th optimal fca.rget position of (21)5%1,
xp = [r7, Y. T Yre QT VT ..]T (16) to determine the remaining states:
T i) _ 3(0) M7 () o (ie) (i)
= [p%c d%ﬂ 17) di\k - di\k—l _Eddk\k—l Edpk“%] (ka\k _ka\k—l)
(22)

wherepr, £ |21, ka}T is the target position, and7, =

[j:Tk g 7 G ]T denotes all the higher-order where the following part;c()glng of g(% information
time derivatives of the target position. In the followinget matrix is usedinf)I:I 2 Z_‘)”“"H ?SMI]-
target stochastic motion model and the sensor measurement k= Edpk‘kfl ad,

model are explained. Proof: See [17]. [ |

1) Motion model:We consider the case where the target We thus see from the above lemma that the size of
moves randomly but assume that the stochastic model dée nonlinear problem has dramatically decreased f2dn
scribing the motion of the target (e.g., constant acceaterat for (14) to a constant size of 2 for (21). Moreover, the
or constant velocity [8]) is known. In particular, the distz- analytical solution for the target position is independeht
time state propagation equation is generically given by thigs higher-order time derivatives, regardless of the sisth

following linear form: target motion model.
To solve (21) analytically, we first introduce a new variable
X = Pp—1Xp—1 + Gro1Wi—1 (18) pr = h(pz,). Then, (21) is equivalent to the following

constrainedminimization problen®

1 ORI
§||PTk _ka"“*HPS&M

where w,_; IS zero-mean white Gaussian noise with co
varianceQy_,. The state transition matrixp,_,, and the } _ 2 (23
process noise Jacobia@;_, that appear in the preceding pg:,mpk ,H+ 2”21C pk”"i (23)
expression depend on thg motion model use_d [8]. We will ¢ P = (x5, —21,)> + (ys, —yr)> , pe >0 (24)
make no further assumptions on these matrices other than . )
that their values are known. It is clear that this is a specidynich we solve by employing the method of Lagrange
case of a Markov model and can be written in a generdultipliers [19]. Specifically, without loss of generalityy
conditional pdf formx; ~ p(x|xx_1). assuminngﬁ,WH £ Diag(sy, s2), the Lagrangian func-
2) Measurement modeln this work, we are interested in tion is constructed as follows:

the case where a single sensor measures its distance to t S1 A1) 2, 52 (1) \2
.. . . LTy, i ka)\ == \Tr,—T +—= -
target. Statistically, such a measurement follows a cantit %( Tier YT p2 ) 2( 08 ) 2 n=d1,..)
df, zx ~ p(zk|xk), and its function is given by: (2 — pr)
P . p( k| k) 9 y + 20_2 +A (pi_(ISk_ITk)Q_(ySk_ka)Q) (25)
k

Rk = \/(ka - xsk)Q + (ka - ysk)2 + Uk (19)

h(x1) + v (20) Sitis important to note that similar derivations of the aniggl approach
for solving (14) in this case can be found in our previous wWirK]. For
completeness, we briefly describe this approach here.

[I>

where ps, £ [rs, ys.)” is the known sensor position .y . - _ _
expressed in the global frame of reference, anib the zero- e can always diagonaliz®pp, |, , by applying a 2D rotational

hite G . t . dit . transformation, which does not affect the distance measemés. Moreover,
mean white Gaussian measurement noise, and Its variancetsere temporarily omit the positivity constraint dnwhich will be used

0,3, i.e.,vp ~ N(0, 0,%). later for determining the feasible solutions.



where) is the Lagrange multiplier. Setting the derivatives oD. Range-only Target Tracking Using the AGS-PF

L(-) with respect to the four optimization variables to zero, \we now apply the AGS-PF to the range-only target
and performing simple algebraic manipulations, we obtainiracking problem. Note that since the analytically-deieed

. (4) proposal distribution derived in the previous section not

oL S1T —2X\xg .
— =0= a1, = Tih1 " (26) only takes into account the current measurement but also
Oxr S1 27 matches all the modes of the posterior pdf, it provides a
oL Sgyé—%k)‘kil - 2\ys, better approximation to the posterior pdf, and thus the AGS-
P 0= yn = 5 _ O\ (27)  PF is expected to perform better than the standard PF.

ayﬁT 2 Specifically, at time-stefi — 1, we cluster the particles
—=0=pp = ——5~ (28) into m groups, e.g., using the K-means algorithm [20].
0 P 1+ 202\ ; ; ; ;
apz k Here, m is a design choice selected based on the avail-

0= 0=pi— (s, —21.)2— (ys.—yr.)?  (29) able computational resources. We compute the sample
2 mean and covariance of theth group ¢( = 1,...,m),
A

We substitute (26)-(28) into (29) and multiply both sidesand approximate this group by a GaussiaN[?) =
of (29) with (1+207A)%(s1 — 2X)%(s2 — 2))%, to obtain a N (x,_1;%]”,,_,P{” | "), i =1,...,m. Then, based

o T ; . k—1k—1 .
fourth-orderunivariate polynomial in \:° on thelinear motion model (18), we propagate each Gaussian
1 to obtain the prior/\/(xk;fc,(jl)kfl, P,(j)kfl), as follows:
0=/f() =) aX 30) . < ()
; Xpfpo1 = Pr—1X 0 (32)
wherea;, i = 0, ..., 4, are the coefficients expressed in terms P,(f‘)k,l = ‘I’kflp;(ﬁl\qu’g—l +G1Qr1Gi_y (33)

of the known quantities;, s, 2, Uk'fzz,z‘k,l'@:rzk‘k,li Tsy»  When a new range measurement becomes available, we
andys, . Sincef () is quartic, we compute its roots in closedanalytically compute all the modes of the posterior pdf for
form [17]. each of them GaussiansV'(), by solving (14) (see Sec-
Although, in general, there exist 4 solutions foand thus tion 111-B). Once all the modes of the posterior pdf (and thus
4 solutions forz,, yr,, andpy, as they depend injectively the proposal distribution) are determined, we compute the
on X [see (26)-(28)], we only need to consider the pairgorresponding covariance based on (15) for each Gaussian
(z7,,yr,) that correspond to real solutions farand to a component of the proposal distribution. Finally, after thk
nonnegativep;, [see (24)]. Moreover, since some of theseGaussian components (modes and covariances) are specified,
solutions could be local maxima or saddle points, the seconge use them as a J)roposal distribution to draw particles,
order derivative test [19] is employed to identify the miaim xg]}ﬁf ~ N(Xk;ﬁkﬁt}g’Pl(ci\[k))’ where M, is the number
In fact, it was shown in [17] that there are at most 2 |003£f particles drawn from the,-th Gaussian. For simplicity,
minima for the problem (21), i.en; < 2. Finally, once s, is set equal to the number of the particles originating
we determine all the local minima for the target position, Wgrom thei-th group after clustering, i.eM;, = M;, though a
can compute the corresponding estimates for the high&rorgnore adaptive scheme (e.g., based on the particles’ wights
position derivatives via (22). may be used. In summary, the main steps of the AGS-PF
) ) o range-only target tracking are outlined in Algorithm 2.
C. Computing the Covariance of Each Gaussian in the

Mixture (Proposal Distribution) Algorithm 2 AGS-PF for range-only target tracking

In order to obtain the covariancP,,(:‘}g), of thei,-th Gaus- Require: Initialize particles by sampling from(xg)
sian component of the proposal distribution (15), we comput 1: loop
the measurement Jacobidﬂfj“, as follows [see (20)]: 2:  Cluster particles inton groups using K-means, and

fit a Gaussian to each group

(ig) )T

Ho) — (f’T@‘k*pSk 0 31) 3. Propagate each of thes Gaussians (means and co-
k 1657 —ps, 1x(2N-2) variances) to obtain the priors via (32) and (33)

_ 4. For each group, given a new measurement, analyti-
where the first block column oIH,(j’f) is the Jacobian cally determine the proposal distribution as a Gaussian
with respect to the target position, while the Jacobian with mixture (see Sections I1I-B and III-C)
respect to the higher-order derivatives of the target osit 5. Draw particles from the analytically-determined pro-
is 01 (2n—2) Since they are not involved in the measurement posal distribution (Gaussian mixture)
model [see (20)]. 6:  Compute weights via (3), prune particles, and normal-

ize weights
51t is important to note that if any of the denominators of (283) 7:  Resample particles based on weights
becomes zero while the corresponding numerator is nongeeotarget is 8 end |00p
located at infinity. Moreover the cost of (24) also becoméily and )
hence attains the global maximum, which is not interestmgis. On the
other hand, there exists the degenerate case where bothurterator and . . .
denominator of (26) or (27) become zero, which can be avadidiexigh an Note that in the case of range'only tracklng, we may find

appropriate coordinate transformation. multiple modes of the posterior pdf for each group at each




time step. Hence, the number of Gaussian components of TARGET END
the proposal distribution may be larger than the original ™ e
number of clusters. This can result in an unbounded growth
of particles over time in the worst case, since more and
more particles may be generated for each group in the
subsequent time steps. In order to keep the number of
particles constant and reduce the computational cost of the
AGS-PF, at every time step wauneout particles with low

weights (see Algorithm 2). As a result, the AGS-PF can aol
use substantiallfewerparticles while achieving significantly

y (m)
3]

better performance than the standard PF (see Sections IV 2 S~
and V). This is attributed to the fact that the particles draw ( )
from the analytically-determined proposal distributidratt or marcersmarr =
captures all the modes of the posterior pdf, affectively %0 w0 40 2 o 0 w0 w0 e

X (m)
Fig. 2. The trajectories of the target and sensor obtainam fone typical
realization of the 100 Monte-Carlo simulations.

sampled from thenost probableegions of the state space.

IV. SIMULATION RESULTS

A series of Monte-Carlo simulations were conducted under For the results presented in this section, we adopted a
various conditions, in order to validate the capability oero-acceleration motion model for the target [8]:
the propqsed AGS-PF to improve_tracking performance. x(t) = Fx(t) + Gw(?) (34)
The metrics used to evaluate the filter's performance are:
(i) the average root mean squared error (RMSE), and (ii) th&here

NEES is a criterion for evaluating the filter's consistency. T _ )
Specifically, it is known that the NEES of @&dimensional andw(t) = [w.(t) wy(#)]" is zero-mean, white Gaussian
Gaussian random variable follows\& distribution withd ~ Nnoise with covarianc& [w(t)w(r)" | = ¢L>d(t —7), where
degrees of freedom. Therefore, if an estimator is condisterg = 1 (ﬁf% andd(t — ) is the Dirac-delta function.
we expect that the average NEES for the target state wilh our implementation, we discretize this continuous-time
be close to2N for all k. The larger the deviations of the system model (34) with time stefit = 0.1 sec. The initial
NEES from these values, the worse the inconsistency of theie target state i, = [0 0 -5 5]T, while the initial
filter. By studying both metrics, we obtain a comprehensivestimate of the target state is randomly generated from a
picture of the performance of the filters under consideratio Gaussian pdf, N (x¢, Pgjo), where Py = 100I4 is the

In this test, we performed 100 Monte-Carlo simulationsnitial covariance of the state estimate. Similarly to [17]
and compared three different PFs. During each Montg21], we chose a circular sensor trajectory with perfectly
Carlo run, all filters process the same data to ensure kaown sensor positions for the simulations. Fig. 2 shows the
fair comparison: (i) the standard (bootstrap) PF with00 trajectories of the target and sensor in one typical retidina
particles, which uses the prior as the proposal distriloutiio  of the Monte-Carlo simulations. The standard deviation of
draw particles from and employs the systematic resamplinge distance-measurement noise was equal ¥00.5 m.
strategy [7]; (ii) the GSPF [13] using the same number of Fig. 3 shows the Monte-Carlo results of the three PFs. It
particles as the standard PF amd= 10 Gaussians to rep- is clear that the standard PF provides inaccurate estimates
resent the underlying distributions, which are initiatizZey = which are diverging from the ground truth and become in-
clustering the initial particles inten groups and then fitting consistent. As explained before, the poor NEES performance
a Gaussian to each group; and (iii) the proposed AGS-R¥ the standard PF is primarily due to the ill conditioning of
with 500 particles, which uses the analytically-determinedhe covariances computed from particles whose weights are
proposal distribution as well as systematic resamplinghén small or particles that do not span all directions of theestat
AGS-PF, at each time step, we clustered the particles ingpace. As expected, the GSPF performs more accurately than
m = 10 groups, equal to the number of Gaussians used the standard PF. Most importantly, the AGS-PF performs
the GSPF. Note that in order to validate the effectiveness bktter than both the standard PF and the GSPF, in terms of
the analytically-determined proposal distribution enygld accuracy (RMSE) and consistency (NEES). This is attributed
by the AGS-PF, significantly fewer particles were usedo the analytically-determined proposal distribution ebhi
in the AGS-PF, as compared to the standard PF and theatches all the modes of the posterior pdf while taking into
GSPF. Despite this fact, as shown below, the AGS-PF attaiascount the most recent measurements.
substantially better performance than both the standard PFFinally, using the same simulation setup as described
and the GSPF. above, we compared the computational requirements of the

normalized (state) estimation error squared (NEES) [8thBo xr(t) 0010 0 0

metrics are computed by averaging over all Monte-Carlo runs _ yr(®) F 0 0 0 1 G 0 0

for each time step. The average RMSE provides us with ax( )= )| {0 0 0 O]~ |1 0

concise metric of the accuracy of a given filter, while the yr(t) 0 0 0O 0 1
(
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TABLE | . . .
motion model withg = 0.05 (F—;)Qi was used to describe
COMPUTATIONAL COST VS. ESTIMATION ACCURACY . . .y sec Hz
this motion [see (34)], while the sensor robot moved on a
Vel. Est. Err. (m/sec) circle. Fig. 4(a) shows the experimental setup, and Fig) 4(b
depicts the trajectories of the target and the sensor.

Runtime (sec) Pos. Est. Err. (m)

Std-PF 0.2273 92.3522 9.1060
GSPF 0.1801 51.4123 6.5045 In this experiment, the initial estimate of the target state

AGS-PF 0.1813 10.3799 2.5885 was set tokgp = [2.5940 1.7374 0.0003 —0.0001}T
with covarianceP, = I,. Relative distance measurements

were produced synthetically using the differences in the tr

proposed AGS-PF and its competitors by measuring the CR@sitions of the target and the sensor, as these were recorde
running time for a complete update of all filters. Our Matlatpy the overhead camera, with the addition of noise. For the
implementations running on a Core i7 CPU of 2.67 GHzesults shown in this section, the distance measurememnés we
required an average execution time for each filter shown igorrupted by zero-mean white Gaussian noise, with standard
Table I. These results were obtained by averaging the CRdgviationo = 0.1 m. The same three PFs as in the previous
runtime over all Monte-Carlo simulations and over all timesimulation were implemented, and the comparative results
steps. As compared to the standard PF and the GSPF, tfgained from this single-run experiment are presented in
proposed AGS-PF is not only computationally more effiFig. 5. From the experimental results, it becomes clear that
cient by using fewer particles but also achieves signiflgantthe proposed AGS-PF outperforms the standard PF and the
better tracking performance [see Fig. 3(a), and Table IFSPF, in terms of both accuracy (RMSE) and consistency
Specifically, as compared to the standard PF and the GSENEES), which agrees with the simulation results presented
the AGS-PF attains on average 89% and 80% reduction in the previous section.

position estimation error, 71% and 60% reduction in velocit
estimation error, while at 20% lower and same order of VI. CONCLUSIONS ANDFUTURE WORK

computational cost, respectively. In this paper, we have introduced a new AGS-PF, which

uses a Gaussian mixture as the proposal distribution, where
V. EXPERIMENTAL RESULTS each Gaussian corresponds to one of the analytically-
In this section, we present a real-world experiment corcomputed modes of the posterior pdf. Using such proposal
ducted in a controlled environment to further validate thelistribution, the AGS-PF draws its particles within the mos
proposed AGS-PF. During the test, two Pioneer-1ll robotgrobable regions of the state space. As a result, as compared
one acting as the target and the other serving as the sendorthe standard PF, the AGS-PF attains better performance
moved in a rectangular area of 4 s12 m, within which the while requiring fewer computational resources. We applied
positions of the robots were tracked by an overhead camethis algorithm to range-only target tracking, although the
For this purpose, rectangular tracking patterns were neslintproposed methodology is applicable to a broad class of
on top of the robots and the vision system was calibrated problems which can be transformed into polynomial form.
order to provide ground-truth measurements of the robotSimulation and experimental results have demonstrated tha
poses in a global coordinate frame. The standard deviatidine proposed approach significantly outperforms the standa
of the noise in these measurements was approximately ®% and the GSPF, in terms of accuracy, consistency and
deg for orientation and 0.01 m, along each axis, for positiorfficiency. In the future work, we plan to extend the proposed
The target robot drove along a straight line at a consta®GS-PF to target tracking in 3D and investigate further

velocity of v = 0.1 m/sec, and thus a zero-accelerationmprovements for reducing the number of particles.
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