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Abstract— In order to fuse camera and odometer measure-
ments, we first need to estimate their relative transformation
through the so-called odometer-camera extrinsic calibration.
In this paper, we present a two-step analytical least-squares
solution for the extrinsic odometer-camera calibration that
(i) is not iterative and finds the least-squares optimal solution
without any initialization, and (ii) does not require any special
hardware or the presence of known landmarks in the scene.
Specifically, in the first step, we estimate a subset of the 3D
relative rotation parameters by analytically minimizing a least-
squares cost function. We then back-substitute these estimates
in the measurement constraints, and determine the rest of the
3D transformation parameters by analytically minimizing a
second least-squares cost function. Simulation and experimental
results are presented that validate the efficiency and accuracy
of the proposed algorithm.

I. INTRODUCTION

Cameras are widely used in robotics due to their small
size, low energy expenditure, and ability to provide rich in-
formation about the robots’ surroundings. Through captured
images, we can observe and track landmarks (feature points)
in consecutive images, from which, we may determine the
camera’s motion. Nevertheless, cameras have several practi-
cal limitations. First, if we cannot track a sufficient number
of features in a scene during the camera motion, it may not
be possible to estimate the transformation between camera
poses. Second, even if we can accurately track enough points
in two consecutive images, the translation between the two
corresponding camera poses can only be determined up to
scale. Finally, in the presence of noise, if the baseline of the
camera motion is too short, the computed translation between
camera poses may be very inaccurate.

Odometers are the other widely used sensors for robot
localization in 2D. By integrating the encoder measure-
ments from the odometer, we can determine the rotation
and translation between robot poses. In contrast to camera
observations, odometry measurements are usually accurate
over short periods of time. Their open loop integration (i.e.,
dead-reckoning) over long periods of time, however, leads to
unbounded growth in the localization uncertainty.

Combining measurements of cameras and odometers is
a common approach for compensating for their individual
limitations. Optimally fusing the measurements of these
two sensors, however, requires accurate odometer-camera

The authors are with the Department of Computer Science & En-
gineering, University of Minnesota, Minneapolis, MN 55455, USA
{chaguo|faraz|stergios}@cs.umn.edu

This work was supported by the University of Minnesota through the
Digital Technology Center (DTC), and the National Science Foundation
(IIS-0811946).

extrinsic calibration. In the absence of accurate calibration,
the estimates of the robot’s motion will be biased, or may
even diverge. Several approaches exist in the literature for
performing odometer-camera calibration. In [1], a closed-
form solution is proposed for the minimal problem of the
odometer-camera extrinsic calibration. However, this ap-
proach is very sensitive to noise, and it cannot handle more
measurements than the minimum required. One work-around
is to refine the solution of the minimal problem with iterative
minimization of a nonlinear least-squares cost function.
Iterative techniques, however, do not provide any guarantee
of optimality, and in the absence of an accurate initial
estimate, they may not find the correct solution. Analytical
least-squares solutions that can handle arbitrary number of
measurements are proposed in [2] and [3]. Unfortunately,
these approaches either require measurements from known
landmarks [2], or only obtain the three degrees of freedom
(d.o.f.) of the odometer-camera transformation in 2D [3].

In this paper, we present an analytical least-squares solu-
tion for determining the 3D (5 d.o.f.) transformation between
a camera and an odometer that are rigidly connected. The
proposed method does not require any known landmarks,
and it is guaranteed to find the optimal estimate in a least-
squares sense, without any initialization. Specifically, we first
estimate the motion of the camera from unknown landmarks
that are tracked across consecutive images. By fusing these
estimates with the odometry measurements, we compute the
three d.o.f. of the rotation, and two d.o.f. of the translation
between the odometer and the camera. Finally, we prove that
the third d.o.f. of the camera-odometer translation is unob-
servable, and cannot be computed from the measurements.

II. RELATED WORK

A straightforward approach to solve the odometer-camera
calibration problem would be to use hand-eye calibration
methods [4], [5]. However, since these techniques require
the sensors to rotate around at least two different axes, they
cannot be directly applied to a robot moving in 2D whose
rotation is constrained around a single axis (i.e., the axis
perpendicular to the robot’s plane of motion). To address
this issue, Chang and Aggarwal present an adaptation of
the hand-eye calibration that relaxes this requirement [1].
In their method, the odometer-camera calibration problem
is solved in two steps. In the first step, two d.o.f. in the
odometer-camera rotation are determined using images from
two consecutive camera poses, as well as the odometry
measurements. In the second step, the third d.o.f. of the
odometer-camera rotation and two d.o.f. of the odometer-
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camera translation are determined using bearing measure-
ments of one unknown landmark from three camera poses
along with the corresponding odometry measurements. The
third d.o.f. of the odometer-camera translation, which is
perpendicular to the plane of the robot’s motion, is shown
to be unobservable. While this method works perfectly in
the absence of noise, in practice it may yield inaccurate
estimates. Additionally, this method cannot exploit additional
measurements, if more than the minimal requirement (3
camera poses and 1 landmark) exist.

In the presence of noise, the Extended Kalman Filter
(EKF) is commonly used for performing odometer-camera
extrinsic calibration [6], [7]. In [6], the state vector of
an EKF tracking the robot’s motion in 2D is augmented
with the odometer-camera extrinsic transformation (three out
of five d.o.f.). By processing the odometer measurements
and the images of one visual landmark, the EKF estimates
the extrinsic transformation between the two sensors. In
[7], Martinelli et al. present the observability analysis for
the odometer-camera calibration problem, as well as the
conditions under which it is possible to accurately estimate
the odometer-camera transformation. The main drawbacks
of the EKF-based approaches are that they are iterative, they
provide no guarantee of optimality, and their performance
strongly depends on the accuracy of the initial estimate.
One can initialize these iterative methods with the analytical
solution of [1]. In this case, however, the EKF inherits the
inaccuracy of the initial estimates, and may converge to a
local minimum far from the optimal solution.

In contrast to the EKF-based methods, other approaches
seek to find a closed-form least-squares solution that directly
accounts for the noise in the measurements. In [2], the second
step of the approach proposed in [1] is extended to exploit
additional measurements in a least-squares framework that is
solved analytically. Moreover, the intrinsic odometer param-
eters, such as the wheel radius, are estimated simultaneously.
The main drawback of this approach is that it requires
measurements of known landmarks. Furthermore, the first
step of this method is the same as [1], which ignores the
measurement noise and cannot exploit more than two images.

In [3], an analytical least-squares solution for the extrinsic
calibration of a laser scanner with respect to an odometer
is presented. This method employs laser-scan matching to
estimate the motion of the laser scanner, and it can be
adapted to cameras, if known landmarks are available for
estimating the camera’s motion. Additionally, it is assumed
that the orientation of the extroceptive sensor with respect
to the odometer is already known, except for the yaw
component. This, in effect, limits the applicability of this
calibration method to estimating only 3 d.o.f. of the unknown
transformation.

To address these drawbacks, in this work we propose
a new method that, similar to [1] and [2], estimates the
unknown transformation in two steps. However, in contrast
to both [1] and [2], in the first step, we explicitly consider
the effect of noise and analytically minimize a least-squares
cost function to estimate two d.o.f. of the relative orientation.

Fig. 1. The geometric relation between the camera’s frame of reference,
{C}, and the odometer’s frame of reference, {R}, from time-step i to i+1.

In the second step, we analytically minimize another least-
squares cost function to estimate the remaining d.o.f. of
the relative orientation as well as two d.o.f. of the relative
translation. Both these least-squares problems can handle
any number of measurements, and since they are solved
analytically, they need no initialization. Additionally, in
contrast to [2], our proposed method does not require known
landmarks, and instead, exploits unknown features to track
the motion of the camera. To the best of our knowledge, our
method is the first approach that, without observing known
landmarks, obtains an analytical least-squares solution for all
observable d.o.f. of the 3D odometer-camera transformation.

III. PROBLEM FORMULATION

Consider a robot moving in 2D equipped with an odometer
whose frame of reference coincides with the robot’s frame of
reference, and a camera that is rigidly attached on the robot.
Additionally, let us assume that the camera and the odometer
have already been intrinsically calibrated. Furthermore, the
camera observes landmarks whose global positions are not
known, but they can be tracked across consecutive images.
Our objective is to estimate the fixed, but otherwise un-
known, transformation between the two sensors solely based
on their measurements.

We denote the position and the orientation of the robot at
time-step i relative to time-step i+ 1 by the vector Ri+1pRi
and the unit quaternion Ri+1

Ri
q, respectively1 (see Fig. 1), and

compute them by integrating the odometry measurements.
We assume the robot’s motion is constrained on the xy
plane, and thus Ri+1

Ri
q represents a rotation around the z

axis. Similarly, the position and the orientation of the camera
at time-step i relative to time-step i + 1 are represented
by Ci+1pCi , u Ci+1 p̄Ci and Ci+1

Ci
q, respectively. Here we

define the unknown scale u equal to ||C1pC0
||2 (i.e., the

length of the camera’s first translation), and assume that
C1 p̄C0 has unit norm. We then estimate u along with the
odometer-camera transformation. Additionally, we assume

1Throughout this paper, Ax denotes the expression of a vector x with
respect to frame {A}, ABq is the unit quaternion representing the orientation
of frame {B} with respect to frame {A}, and R(ABq) is the corresponding
rotation matrix rotating vectors from frame {B} to frame {A}. The n×n
identity matrix is denoted by In.
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that sufficient overlap exists between each pair of consecutive
images and compute the camera motion such that Ci+1pCi =
u Ci+1 p̄Ci holds for all i. Note that in this case Ci+1 p̄Ci
may not be unit-norm for i 6= 0. We employ the 5-point
algorithm [8], [9] followed by bundle adjustment to estimate
the camera’s motion from the tracked visual features.

In the absence of noise, we can express the relationship
between the camera’s and the robot’s poses as:

Ri+1
Ri

q⊗ R

Cq = R

Cq⊗
Ci+1
Ci

q (1)(
R(

Ri+1
Ri

q)− I3

)
RpC = uR(RCq)Ci+1 p̄Ci −

Ri+1pRi (2)

for i = 0, . . . ,m. In these equations, RpC and R
Cq represent

the 6 d.o.f. odometer-camera transformation, and ⊗ denotes
quaternion multiplication which is defined as [10]:

q1 ⊗ q2 , L(q1)q2 = R(q2)q1 (3)

where

L(q) ,

[
q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

]
R(q) ,

[
q4 q3 −q2 q1
−q3 q4 q1 q2
q2 −q1 q4 q3
−q1 −q2 −q3 q4

]
In practice, the measured robot and camera poses are per-
turbed by noises. We express the noisy measurements for
translation vectors as p̂ = p+ p̃ where p̃ denotes the noise,
and for unit quaternions as q̂ = q ⊗ δq−1 where δq ≈
[ 12δθ 1]T represents the error quaternion [10]. Substituting
the noisy measurements in (1) and (2) yields:

Ri+1
Ri

q̂⊗ δqRi ⊗
R

Cq = R

Cq⊗
Ci+1
Ci

q̂⊗ δqCi (4)(
R(

Ri+1
Ri

q̂)R(δqRi)− I3

)
RpC =

uR(RCq)
(
Ci+1 ̂̄pCi − Ci+1 ˜̄pCi

)
−
(
Ri+1 p̂Ri −

Ri+1 p̃Ri
)

(5)

Using (3) in (4), we obtain:

R(δqRi)
Ri+1
Ri

q̂⊗ R

Cq−R(δqCi)
R

Cq⊗
Ci+1
Ci

q̂ = 0 (6)

Employing the definition of the error quaternion, we express

R(δq) ≈ I3 +
1

2
B(δθ), B(δθ) ,

[
0 δθ3 −δθ2 δθ1
−δθ3 0 δθ1 δθ2
δθ2 −δθ1 0 δθ3
−δθ1 −δθ2 −δθ3 0

]
Subsequently, (6) can be written as:
Ri+1
Ri

q̂⊗ R

Cq−RC q⊗ Ci+1
Ci

q̂ =

1

2
B(δθCi)

R

Cq⊗
Ci+1
Ci

q̂− 1

2
B(δθRi)

Ri+1
Ri

q̂⊗ R

Cq , ηi (7)

Note that ηi, i = 0, . . . ,m, are the residuals due to the mea-
surement noise. To find the best estimate for the odometer-
camera rotation, we have to minimize these residuals by
solving the following optimization problem:

R

Cq
∗ = argmin

R
Cq

m∑
i=0

||ηi||
2
2 (8)

Once R
Cq
∗ is computed, we back-substitute it in (5), and

formulate a least-squares problem to estimate the remaining
unknowns. Also, we approximate R(δqRi) ≈ I3−bδθRi ×c,

where bδθ×c is the skew-symmetric matrix, to obtain:(
R(

Ri+1
Ri

q̂)− I3

)
RpC − uR(RCq

∗)Ci+1 ̂̄pCi + Ri+1 p̂Ri

= R(
Ri+1
Ri

q̂)bδθRi ×c
RpC − uR(RCq

∗)Ci+1 ˜̄pCi + Ri+1 p̃Ri

, εi (9)

where εi, i = 0, . . . ,m, are the residuals due to the
measurement noise. To estimate the remaining unknowns,
we have to minimize these residuals by solving the following
optimization problem:

Rp∗C , u
∗ = argmin

RpC ,u

m∑
i=0

||εi||22 (10)

IV. ALGORITHM DESCRIPTION

In our proposed method, we estimate the odometer-camera
transformation (RpC ,

R
Cq) and the scale u in two steps. In

the first step, we solve the algebraic least-squares problem
in (8), and obtain two d.o.f. of the relative odometer-camera
orientation. Moreover, we show that the third d.o.f. of the
relative orientation cannot be obtained when solving the min-
imization problem in (8), due to the 2D-constrained motion
of the robot. In the second step, we solve (10) to estimate the
remaining d.o.f. of the relative orientation R

Cq along with the
scale u, and two d.o.f. of the relative translation RpC . Finally,
we prove that one d.o.f. of RpC (the one perpendicular to
the robot’s motion plane) is unobservable, and cannot be
estimated from the camera and odometer measurements.

A. Solving for the 2 d.o.f. of Orientation

We start by decomposing the unknown unit quaternion
RqC into three unit quaternions, corresponding to Z-Y-Z
Euler angles α, β, γ as:

R

Cq = qZ(α)⊗ qY (β)⊗ qZ(γ) (11)

where qZ(α) =
[
0 0 s(α/2) c(α/2)

]T
, qY (β) =[

0 s(β/2) 0 c(β/2)
]T

, s stands for sin, and c stands
for cos. The quaternion qZ(γ) is defined similar to qZ(α).
Then the term ηi in (8) can be expressed as:

ηi =
Ri+1
Ri

q̂⊗ qZ(α)⊗ qY (β)⊗ qZ(γ)

− qZ(α)⊗ qY (β)⊗ qZ(γ)⊗ Ci+1
Ci

q̂ (12)

Since both Ri+1
Ri

q and qZ(α) represent rotations around the
z axis, they can commute to yield:

ηi =qZ(α)⊗Ri+1
Ri

q̂⊗ qY (β)⊗ qZ(γ)

− qZ(α)⊗ qY (β)⊗ qZ(γ)⊗ Ci+1
Ci

q̂ (13)

Employing (3), (13) can be written as:

ηi = L(qZ(α))
(
Ri+1
Ri

q̂⊗ qYZ − qYZ ⊗
Ci+1
Ci

q̂
)

(14)

where

qYZ , qY (β)⊗ qZ(γ) =


s(β/2)s(γ/2)
s(β/2)c(γ/2)
c(β/2)s(γ/2)
c(β/2)c(γ/2)

 (15)
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Since L(qZ(α)) is always an orthonormal matrix for any α,
it can be factored out from (14). Therefore, the optimization
problem in (8) can be expressed as:

R

Cq
∗ = argmin

R
Cq

m∑
i=0

||η′i||
2
2 (16)

η′i ,
Ri+1
Ri

q̂⊗ qYZ − qYZ ⊗
Ci+1
Ci

q̂

The absence of α in the above optimization problem
implies that, in contrast to the general hand-eye calibration
problem, not all d.o.f. of the unknown rotation R

Cq can be
obtained solely based on (16). This is not an unexpected
result, since according to the observability analysis of the
hand-eye calibration [11], rotations around at least two non-
parallel axes are required in order to estimate all three d.o.f.
of R

Cq. In the current problem, however, the robot (and the
camera) are restricted to move on a 2D plane, and hence
they can rotate around only one axis.

By employing (3), we can write the optimization problem
in (16) as:

R

Cq
∗ = argmin

R
Cq

m∑
i=0

∣∣∣∣∣∣(L(
Ri+1
Ri

q̂)−R(
Ci+1
Ci

q̂)
)
qYZ

∣∣∣∣∣∣2
2

(17)

Moreover, we can express (17) in a matrix form as:

q∗YZ = argmin
qYZ

||MqYZ ||2 , M ,

L(
Rm+1
Rm

q̂)−R(
Cm+1
Cm

q̂)
...

L(R1
R0
q̂)−R(C1

C0
q̂)


(18)

In order to solve this optimization problem, let us first
investigate the rank of each block row of M, which can be
expressed as:

L(
Ri+1
Ri

q̂)−R(
Ci+1
Ci

q̂) =
c(
φi
2 )−c(φ

′
i
2 ) −s(φi2 )−s(φ

′
i
2 )kZ s(

φ′i
2 )kY −s(φ

′
i
2 )kX

s(
φ′i
2 )kZ+s(

φi
2 ) c(

φi
2 )−c(φ

′
i
2 ) −s(φ

′
i
2 )kX −s(φ

′
i
2 )kY

−s(φ
′
i
2 )kY s(

φ′i
2 )kX c(

φi
2 )−c(φ

′
i
2 ) s(

φi
2 )−s(φ

′
i
2 )kZ

s(
φ′i
2 )kX s(

φ′i
2 )kY s(

φ′i
2 )kZ−s(

φi
2 ) c(

φi
2 )−c(φ

′
i
2 )


where φi denotes the angle of rotation between con-
secutive robot poses (corresponding to Ri+1

Ri
q), and

(φ′i,
[
kX , kY , kZ

]
T ) denote the angle and axis of rotation

between consecutive camera poses (corresponding to Ci+1
Ci

q).
Note that since the camera and the robot are rigidly con-
nected, in the absence of noise, φi and φ′i are the same, and[
kX , kY , kZ

]
T is fixed over time. In this case we have:

L(
Ri+1
Ri

q̂)−R(
Ci+1
Ci

q̂) = s(
φi
2

)

[
0 −1−kZ kY −kX

kZ+1 0 −kX −kY
−kY kX 0 1−kZ
kX kY −1+kZ 0

]
Using Gaussian elimination, it is easy to show that this

matrix has rank two 2. Moreover, the rank of matrix M is also
two since block rows of M differ only by s(φi2 ). Therefore,
the solution of (18) lies in the two-dimensional null space
of the matrix L(

Ri+1
Ri

q̂) − R(
Ci+1
Ci

q̂). A unique solution for

2The two vectors spanning the null space of M are[
kZ − 1 0 −kX −kY

]T and
[
kX kY 1 + kZ 0

]T
.

the unknown unit quaternion (up to a sign ambiguity) can
be obtained by enforcing the following two constrains:

qYZ1qYZ4 = qYZ2qYZ3 , ||qYZ ||2 = 1 (19)

where qYZj denotes the jth element of qYZ and the former
constraint is implied by the definition of qYZ (see (15)).

In the presence of noise, M may not be rank deficient. In
this situation, we compute the minimizer of (18) by enforcing
(19) on a linear combination of the two eigenvectors of
MTM that correspond to its two smallest eigenvalues.
Specifically, if we assume that t1 and t2 are the eigenvectors
corresponding to the smallest eigenvalues of MTM, we can
choose q∗YZ = at1 + bt2. Then, the solution to (18) can be
obtained by computing a and b using the constraints in (19).

B. Solving for the Remaining Unknowns

Once q∗YZ is computed, we backsubstitute it in (9) to
obtain:

εi = Ni
RpC − uRZ(α)R(q∗YZ)Ci+1 ̂̄pCi + Ri+1 p̂Ri (20)

where

Ni , R(
Ri+1
Ri

q)− I3 =

cosφi − 1 − sinφi 0
sinφi cosφi − 1 0
0 0 0


In the absence of noise, all the terms in the third row

of (20) are zero for any time-step i. This is not, however,
the case in practise. If we treat q∗YZ as a known parameter,
we have implicitly assumed that the third nonzero element
in (20) is only due to the measurement noise in Ci+1 ̂̄pCi .
We can eliminate the component of noise causing this effect
by projecting Ci+1 ̂̄pCi to the plane that is perpendicular to
the vector defined by the third row of matrix R(q∗YZ). This
projection guarantees that the third row of (20) is always
equal to zero. Clearly, this technique is an approximation,
since the uncertainty in the estimated q∗YZ also contributes
to the perturbation in (20). Our simulation results, however,
have shown that this measurement projection improves the
accuracy of the estimates for both α and RpC .

Note that based on (20), the third element of RpC is
multiplied by zeros. Therefore, it does not affect the cost
function in (20), and it cannot be estimated from the
given measurements. This is not unexpected because if we
change the height of the 2D plane of the robot motion
while keeping the camera motion plane fixed, all the mea-
surements received by the odometer and the camera (i.e.,
Ci+1 ̂̄pCi , Ci+1

Ci
q̂, Ri+1 p̂Ri , and Ri+1

Ri
q̂) remain unaffected.

Thus, the translation between the odometer and the camera
in the z direction is unobservable, and we can remove the
third row in (20) to obtain:

ε′i =

[
cosφi − 1 − sinφi

sinφi cosφi − 1

] [
pX
pY

]
− u

[
cosα − sinα
sinα cosα

] [
pi1
pi2

]
+ Ri+1 p̂′Ri (21)

In (21),
[
pX pY

]
T denotes the first two elements of RpC

corresponding to the translation between the camera and the
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odometer in the xy plane,
[
pi1 pi2

]
T denotes the first two

elements of the vector R(q∗YZ)Ci+1 ̂̄pCi , and Ri+1 p̂′Ri denotes
the first two elements of the vector Ri+1 p̂Ri . It is easy to show
that (21) can be written as:

ε′i =

[
cosφi − 1 − sinφi

sinφi cosφi − 1

]
︸ ︷︷ ︸

Ji

[
pX
pY

]

− u
[
pi1 −pi2
pi2 pi1

]
︸ ︷︷ ︸

Ki

[
cosα
sinα

]
+ Ri+1pRi

′︸ ︷︷ ︸
ti

(22)

where Ji, Ki and ti are all known quantities. Then, we
can express the optimization problem (10) in the following
compact form:

m∗ = argmin
m

||Gm + w||22 (23)

where

G ,


Jm Km

Jm−1 Km−1

...
...

J0 K0

 , m ,

 pX
pY

u cosα
u sinα

 , w ,


tm

tm−1

...
t0


The solution m∗ to the optimization problem in (23)

can be obtained using linear least squares, from which the
estimates for pX , pY , u, and α can be easily extracted.

C. Iterative Refinement

Once the five d.o.f. of the odometer-camera transformation
and the scale are computed, we may refine the estimates by
iteratively minimizing the following weighted batch least-
squares cost function:

Rp∗C ,
Rq∗C , u

∗ = argminRpC ,RCq,u

∑m
i=1 (Ci +Di) (24)

Ci ,
∣∣∣∣∣∣(R(

Ri+1
Ri

q̂)− I)RpC − uR(RCq)Ci+1 ̂̄pCi + Ri+1 p̂Ri

∣∣∣∣∣∣2
Wi1

Di ,
∣∣∣∣∣∣Ri+1
Ri

q̂⊗RC q−RC q⊗Ci+1
Ci

q̂
∣∣∣∣∣∣2
Wi2

where ||x||2W , xTW−1x, and Wi1 and Wi2 are the
covariance matrices of the corresponding measurement resid-
uals. For detailed information on how to minimize this cost
function, and a discussion on how to address the gauge
freedom in Di, we refer the interested reader to [12].

V. SIMULATION RESULTS

In order to validate the proposed algorithm, we have
performed a number of simulations. In each simulation, 1000
Monte Carlo trials are carried out, with the robot’s initial
pose set to coincide with the global frame. The robot’s
consecutive translations Ri+1pRi , i = 1 . . . N , are generated
randomly from a normal distribution with zero mean and
0.2 m standard deviation along the x and y axes of the global
frame. The angles φi of the consecutive robot’s rotations,
R(

Ri+1
Ri

q), are generated from a uniform random distribution
U [−π/2, π/2]. The noise in the robot’s translation measure-
ments is generated using a normal distribution with standard
deviation proportional to the length of the robot’s motion,

TABLE I
PERCENTAGE OF DIVERGENCE IN SIMULATIONS

GT-B ALS-B ALSP-B CM-B
Divergence 1.09% 1.09% 1.09% 1.54%

while the rotation measurements’ standard deviations vary
between 0 to 0.4 radian are used.

We randomly generated each element of the relative
odometer-camera translation, RpC , using the uniform dis-
tribution U [−0.1, 0.1] m. The angle of the odometer-camera
rotation is generated randomly using a uniform distribution in
the interval [−π, π], while each element of the rotation axis
is generated randomly using a normal distribution with zero
mean and 0.1 m standard deviation. Based on the generated
camera-odometer transformation, RCq and RpC , as well as the
robot motions, Ri+1

Ri
q and Ri+1pRi , we employ (1) and (2) to

compute the true consecutive camera transformations Ci+1
Ci

q
and Ci+1pCi . We then randomly generate 12 3D landmarks
at each time-step and project them on the image plane of the
cameras at two consecutive time-steps using the true camera
configuration. In order to simulate the noise of a real camera,
we add a zero-mean Gaussian noise with standard deviations
between 0−1 mm (equivalent to 0−2 pixels on a camera with
focal length of 400 pixels) to the projection of the landmarks
on the image plane. In our simulations, we use the 8-point
algorithm [13] followed by bundle adjustment to compute
the transformation between consecutive camera poses3.

We hereafter denote the results for each of the imple-
mented methods using the following abbreviations:

• ALSP: The proposed algorithm of Section IV.
• ALS: The proposed algorithm of Section IV without

projection of Ci+1 ̂̄pCi (see Section IV-B).
• CM: The closed-form solution to the minimal problem,

as proposed by Chang et al. [1].
• X-B: The solution to the weighted batch least-squares

problem (see Section IV-C) initialized by the results
of method X, where X is any of the above-mentioned
approaches.

• GT-B: The solution to the weighted batch least-squares
problem initialized by the ground truth values.

Note that the method of Chang et al. (CM), does not
use all the available measurements. Specifically, in the first
step of CM, we only need one robot motion, along with
the camera’s rotation estimation. In the second step of CM,
measurements of one landmark and two robot motions are
required. Consequently, we have several choices for the
subset of the measurements that can be used to estimate the
unknowns. Hence, we employ the RANSAC algorithm to
select the best subset of the measurements for running CM.

3Note that in practical situations when outliers in the landmark matches
may exist, the 5-point algorithm followed by RANSAC should be the
method of choice. However, in our controlled simulation, we do not
have outliers, and thus using the 8-point algorithm, which has better
numerical stability (since it does not require solving polynomial equations),
is preferred.
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Fig. 2. The RMSE of the estimated odometer-camera transformation versus: (a) The standard deviation (SD) of the noise in the robot’s rotation measurement;
(b) The SD of the noise in the robot’s translation measurement relative to the length of its motion; (c) The SD of the noise in the image; (d) The number
of robot motions.

The Root Mean Square Error (RMSE) of the odometer-
camera transformation computed by the aforementioned
methods using various noise levels and number of motions
is shown in Fig. 2. To compute the error in R

Cq̂, we first
determine the error quaternion, δq = R

Cq̂
−1 ⊗ R

Cq, and then
compute the tilt angle error δθ from δq ≈ [ 12δθ 1]T .

The key findings from the simulation are the following:
First, the ALSP and the ALS yield significantly more accu-
rate estimates than CM. This is not unexpected, since the CM
only uses a subset of the measurements (selected through
RANSAC), while the ALSP and the ALS exploit all the
available measurements. The more interesting observation is
that while the ALSP-B and the ALS-B result in accuracies
that are almost indistinguishable from that of the GT-B,
the CM-B consistently results in inferior accuracy, due to
cases where the iterative estimator becomes trapped in local
minima. Finally, note the slightly higher accuracy of the
ALSP compared to the ALS, particularly in higher noise
scenarios, which justifies its application in practice.

Throughout our simulations, we observed that the true
calibration parameters are usually located within the 3σ
bounds of the computed estimates. This, however, was not

the case in some instances of the simulations with high
measurement noise levels. The percentages of these diver-
gences are reported in Table I. As evident from this table,
even if we initialize the batch least-squares algorithm with
the ground truth, the final estimate may not converge to the
correct solution. This can be explained by noting that in high
measurement noise regimes, the true calibration parameters
may not be located in the convergence basin of the weighted
batch least-squares cost function. It is clear from these results
that the ALSP-B and the ALS-B diverge as often as the GT-
B, while the CM-B leads to almost 50% more divergences.

VI. EXPERIMENTAL RESULTS

In order to demonstrate the validity of our algorithm in
practice, we have conducted several experiments using a Pi-
oneer III robot equipped with a camera and an odometer, both
of which have already been intrinsically calibrated. The robot
and the camera are rigidly connected and the transformation
between them does not change during the experiment. The
resolution of the captured images is 752×480 pixels and the
images are received at a rate of 5Hz.

In our experiments, the robot moves around in a
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TABLE II
ESTIMATION OF ODOMETER-CAMERA ROTATION FROM FOUR INDEPENDENT EXPERIMENTS (EULER ANGLE PARAMETRIZATION IN DEGREES)

# of Motions ALSP ALSP-B CM CM-B
1 20 [1.7;−87.1; 90.0] [1.7;−86.5; 90.0]± [1.7; 3.4; 1.7] [1.1;−87.7; 90.0] [1.1;−86.5; 93.4]± [1.7; 3.4; 1.7]
2 40 [2.9;−87.7; 89.4] [1.1;−87.7; 99.7]± [1.1; 2.3; 1.1] [3.4;−89.4; 90.5] [1.1;−87.7; 99.7]± [1.1; 2.3; 1.1]
3 26 [0.0;−87.1; 90.0] [0.0;−87.1; 83.7]± [2.9; 5.2; 2.9] [0.0;−87.7; 90.0] [0.0;−87.1; 83.7]± [2.9; 5.2; 2.9]
4 23 [0.0;−86.5; 90.5] [3.4;−88.8; 87.1]± [1.7; 2.3; 1.7] [3.4;−85.9; 90.5] [2.3;−94.5; 20.6]± [1.7; 2.9; 1.7]

TABLE III
ESTIMATION OF ODOMETER-CAMERA RELATIVE TRANSLATION FROM FOUR INDEPENDENT EXPERIMENTS (XY PLANE COMPONENTS IN cm)

# of Motions ALSP ALSP-B CM CM-B
1 20 [10.89; 1.98] [9.64; 1.96]± [1.63; 1.71] [9.65; 0.05] [9.63; 1.95]± [1.63; 1.71]
2 40 [10.58; 0.99] [8.98; 1.87]± [1.89; 1.91] [8.11; 0.01] [8.98; 1.87]± [1.89; 1.91]
3 26 [8.21; 0.39] [8.99; 0.38]± [1.76; 1.78] [8.25;−0.08] [9.00; 0.38]± [1.76; 1.78]
4 23 [9.22; 0.91] [8.81; 3.31]± [2.26; 2.32] [7.34; 3.20] [23.31; 5.02]± [2.46; 2.48]

10m×10m room. Once images are captured, we first extract
SIFT features, which are then used in the 5-point algorithm
along with RANSAC to compute an initial estimate for the
transformation between the camera poses. We then employ
a batch least-squares method to refine these estimates. The
transformation between the robot poses are computed by
integrating the odometry measurements. The camera and
odometer data are captured by the same computer with time
stamps, and synchronized according to the system time.

The estimates of the relative odometer-camera transfor-
mation by ALSP, ALSP-B, CM, CM-B, as well as the
3σ bounds from four independent experiments are provided
in Tables II and III. Since we do not have the ground
truth of the relative odometer-camera transformation, we are
unable to verify the calibration result accurately. However,
the estimated calibration parameters, are consistent with the
manually measured rotation of [0◦ −90◦ 90◦]T , and the
translation of [9 1.5]T cm. In the first three experiments,
although the estimates of our proposed method and Chang’s
method are slightly different, they converge to similar val-
ues after applying batch least-squares refinement. However,
in the fourth experiment the batch least-squares algorithm
initialized by Chang’s method converges to a value far from
all other estimates, while the batch least-squares algorithm
initialized by our method obtains a result consistent with the
first three experiments.

VII. CONCLUSION

In this paper, we presented a new analytical method for
the extrinsic calibration of odometer-camera pairs that does
not require any special hardware or known landmarks. In
particular, we first formulate a least-squares problem to es-
timate a subset of the odometer-camera rotation parameters.
Once computed, these parameters are used to formulate a
second least-squares problem for estimating the remaining
unknown parameters of the odometer-camera transformation.
We presented methods to solve both least-squares problems
analytically without requiring any iterations or initialization.
Finally, we provided extensive simulation and experimental
results that confirm the validity of the proposed approach.

Currently, we are investigating the possibility of analyt-
ically estimating the intrinsic parameters of the odometer
as well as the odometer-camera extrinsic calibration in a
least-squares framework, without observations of known
landmarks.
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