
CSci 8980-1, Program Analysis for Security
Day 1: Introduction and Logistics

Stephen McCamant

University of Minnesota

Introductions

Outline

Big-Picture Introduction

Course Logistics

Topics Overview

Program Analysis. . .

Programs that operate on other
programs

. . . for Security

There is an adversary

There is a bad outcome to avoid

Static analysis

Examine the program itself without
executing it

Over-approximate behavior



Dynamic analysis

Examine particular program executions

Under-approximate behavior

Harder to classify

Model checking

Symbolic execution

False positives and false negatives

False positive: claim something that’s
not really there

AKA false alarm, type I error

False negative: miss something that is
really is there

AKA type II error

Theoretical limits of program analysis

Every analysis that attempts to check an
aspect of program behavior must
sometimes either (Rice):

Give a false positive,

Give a false negative, or

Fail to terminate

More analysis terms

Sound vs. complete

Weak vs. strong

Conservative vs. precise

May vs. must

Binaries and source code

Source code has various advantages

But it may not be available



Malware and adversarial software

Malicious software

What does it mean if the bad guys
know the weaknesses of our analysis?

PL and security perspectives

“Programming languages” cares about:
Interesting analysis techniques
Program correctness
Formalism

“Security” cares about:
Stopping real attacks
Robustness against adversaries
Applicability to real systems

Outline

Big-Picture Introduction

Course Logistics

Topics Overview

Instructor information

Stephen McCamant

Office: 4-225E Keller

Office hours: Tuesday afternoons TBA,
Wednesdays 10-11am

Email: mccamant@cs.umn.edu

Course goals

Learn about program analysis
techniques

Learn about security applications

Learn what makes for interesting
research

Evaluation components

10% Reading questions

10% Class attendance and participation

10% In-class paper presentation

20% Hands-on assignments

50% Research project



Readings

Linked from the course web page

Average of two 10-page papers per
class

Most either public or UMN-licensed

Take notes while reading

Bring a copy (to refer to) to class

Also: optional and historical

Reading questions

Goal: make sure you read and
understand the papers

One general question per paper

Average one extra question per class

General questions

What interesting new thing did you
learn?
What question is raised but not
answered?
Do you disagree with a claim?
Is something important left out or
ambiguous?
In hindsight, what would you do
differently?

Submission logistics

Email or Moodle? Email

Due the day before
6pm, midnight, or 6am? midnight

Late: 50% credit; after 2:30pm: 0

Class participation

The goal of a seminar is discussion, not
lecture

I expect everyone to contribute

Aim is not to show off knowledge
An interesting question > a
straightforward answer

In-class presentation

One per student, scheduled in advance
(about one per week)

Can also promote an optional or
chosen-by-you relevant paper

Prepare 25 minutes of slides, but
expect questions



Hands-on assignments

Experience actually using these tools

Done individually

Mix of using tools, implementation, and
questions

Symbolic execution, binary rewriting,
decision procedures

Research project

Idea: microcosm of research
experience

Formulate a question, answer it,
convince others of your results

Preferred group size of 2

Project topics

Program analysis for security, or
another application of a related analysis
technique

Can use one of our papers as a
starting point

But, must make your own novel
contribution

Project goals

Innovative

Scholarly
Put in context of related work

Appropriately evaluated
Able to convince a skeptic

Well presented

Project results

Report: about 10 pages, in the format of
a conference paper

In-class presentation: 25 minutes

Collaboration and cheating

Principle: learn from each other, but
don’t substitute another’s
understanding for your own

Cardinal sin: taking ideas without
acknowledgment



Course web site

Department web site under
csci8980-pas

Also linked from my home page
~mccamant

Outline

Big-Picture Introduction

Course Logistics

Topics Overview

Core techniques

Before spring break: more in depth on
techniques with many applications and
variations

Dynamic taint analysis

Track at runtime how a program uses
confidential or untrusted data

Symbolic execution

Perform logical reasoning about related
executions along a single execution path,
and explore which such paths are possible

Information flow analysis

Track whether information from one point
can affect data at another
Quantitative information flow: measure how
much information can flow as a number of
bits



SFI and Native Client

Rewrite untrusted code at the instruction
level to enforce isolation

CFI and program hardening

Rewrite buggy code to neutralize potential
vulnerabilities

Further topics

After spring break: quicker looks at
smaller or less central techniques and
problem areas

We’ll need to choose a subset of the
following

Test generation

Create tests that reveal vulnerabilities (e.g.,
better “fuzzing”)

Policy inference

Automatically determine what should be
protected or how

Side-channel attacks

Attacks that go outside the usual
abstractions, such as by using hardware to
subvert software protections



Side-channel defenses

Stopping outside-the-box attacks

Dealing with bugs at scale

Can we ever deal with all the bugs in real
systems?

Specs and verification

Can we do better if we actually have a
machine representation of what a program
should do?

Reverse engineering

Can we recover higher-level information
given just a binary?

Differential privacy

Tool support for provably protecting
statistical disclosures with noise

Programming cryptography

Deriving secure multi-party protocols from a
naive implementation



Program obfuscation

Transforming programs so you can’t learn
much by looking at them

ROP and shellcode

Techniques for bad guys to get their attacks
to run under defensive constraints, such as
return-oriented programming

Web applications

Security for sever-side and client-side web
software

Smartphone applications

Security in new mobile platforms such as
iOS and Android


