
8271 discussion of: “Transparent
ROP Exploit Mitigation Using

Indirect Branch Tracing”
Stephen McCamant (Original paper: Vasilis Pappas, Michalis

Polychronakis, and Angelos D. Keromytis)

University of Minnesota (Original paper: Columbia University)

Outline

Background

LBR-based approach

Administrative break

kBouncer implementation

Limitations and counterattacks

Tradeoffs in binary-level protection

CFI (Monday): strong policy, easy to
state and reason about

But, challenging to make fast and practical

Today: easier to deploy, fast
mechanism

Challenge is to maximize defensive
coverage

Microsoft BlueHat contest

Contest for new ideas in
memory-safety defenses

Supply Windows prototype with license
to Microsoft

No more than 5% overhead, no
“application compatibility regressions”

Due date was April 1st 2012

BlueHat results

1st This paper’s project, won $200k

2nd ROPGuard [34], $50k, used in next
version of EMET

3rd $10k + MSDN subscription, also
anti-ROP

(No prize: CFI project led by Lenx Tao
Wei ! ASIACCS and Oakland papers)

Review: ROP

Create attacks by reusing small pieces
of existing code

Connected by returns or other indirect
jumps

Evolved from return-to-libc, Shacham
coined name and demonstrated Turing
completeness

ROP in the arms race

W�X (e.g. DEP) and ASLR widespread
but incomplete

Most attacks use ROP to circumvent
W�X

Defensive next step: do something
about ROP

Outline

Background

LBR-based approach

Administrative break

kBouncer implementation

Limitations and counterattacks

Last Branch Recording

Feature in recent Intel CPUs to record
last few branches

To and from addresses, in privileged
registers

Small fixed size (16) circular “stack”

Key feature added in Nehalem: filter by
type

Sensitive operations

Too expensive to check for attack
constantly

Intuition: attacks involve effect outside
subverted process

So, attack must add or change a
system call

Some particularly useful for attacks

System calls and library calls

System calls: exported from privileged
code

More OS-specific, especially for Windows

Library / API calls: higher-level interface
for use of applications

Includes C standard functions like printf,
other specific to Windows

Problem: at system calls, often LBR
filled by library code

In-process hooking

Add extra code to run at start of library
function

Offensive and defensive technique

Typical approach: overwrite first few
code bytes

Problem: in-process security checks
can be bypassed

Checkpointing approach

Use hook to check for ROP on library
entry point

If no ROP detected, store “checkpoint”
record

On system call, verify appropriate
checkpoint, then clear

Detection: returns not to call sites

Calls and returns don’t always match
correctly

E.g. longjmp, user-space threads, etc.

But, the target of a return is an
instruction directly after a call

Approach: check if each return address
is preceded by a call

Any return without call ! detect attack

Kinds of gadgets

Most convenient gadgets are short and
end in return
Gadgets ending in non-return jumps
(JOP) demonstrated in theory

But not common in current attacks

Long gadgets harder to program with

This paper’s definition: up to 20
instructions, need not be contiguous

Detection: chaining of gadgets

Hypothesis: ROP has longer chains of
shorter code segments than benign
code

Detect attack if at least 8 consecutive
LBR entries are all gadget-sized

Maximum observed in benign code: 5
before sensitive calls, 9 anywhere

Outline

Background

LBR-based approach

Administrative break

kBouncer implementation

Limitations and counterattacks

Upcoming topics

2/17 Smartphone security

2/24 Web application security

3/3 (Anti-)censorship

3/10 Tor

After spring break: rough ideas, will
finalize after finding more papers

Project meetings

Purpose: discuss project topics

Email me to set up

This Friday is the last day

Outline

Background

LBR-based approach

Administrative break

kBouncer implementation

Limitations and counterattacks

Windows 7 implementation

Gadget analysis performed in advance
online

Hooking layer for Windows API calls

Kernel module for LBR checks
System call checking prevented by
PatchGuard

Pin-based simulator

Simulate LBR in software using
dynamic translation

Implemented with Pin, a commonly-used
framework

Collect statistics on benign software,
used in design

Not fast enough to use as a practical
defense

Performance measurements

Microbenchmarks: slowest is reading
process code, worst-case 4.7 �s
API-heavy workload: Wine API test
suite

Average overhead 1% (5 �s/call),
worst-case 4%
Argue: would be unnoticeable for normal
apps

Off-the-shelf attacks

Adapted previously-published ROP
attacks

From blogs, Metasploit, etc.
To work: rolled back IE version, fixed one
out-of-date offset

Without kBouncer, all attacks succeed

With kBouncer, all attacks blocked

Outline

Background

LBR-based approach

Administrative break

kBouncer implementation

Limitations and counterattacks

API selection

Paper gives 52 currently protected
functions

Empirically, a blacklist this long is
usually found later to be missing entries

Protect all API calls? Paper argues
would be excessive

LBR size

LBR size is fixed in hardware
Might get bigger in subsequent chips

However, even in LBR size were
unlimited, might still want to limit
checks for performance

Problem: attackers don’t care about
performance; if limit is k, adversary uses
k+ 1

Is ROP still possible?

Thorough analysis: “part of future work”

6.4% of gadgets are call-preceded, (3%
of shorter 5-byte ones)
One automated system fails when
limited to 20% of gadgets

But human attackers can be more
creative

Gadget size

To stop chaining detection, find a few
large gadgets

Increasing detection length beyond 20
might bring false positives
Think about reusing larger chunks of
code, not just gadgets

E.g., subvert code that calls a sensitive
function

Attacks against host IDSes

C.f. “Automating Mimicry Attacks Using
Static Binary Analysis”, USENIX’05
Attacker has taken over binary, but
must conceal attack system calls
Key challenge: how to regain control
after system call with legitimate-looking
call stack
Short answer: overwrite indirect jump
pointers

