
8271 discussion of: "Zerocoin: Anonymous Distributed E-Cash from Bitcoin"

Stephen McCamant (Original paper: Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin) University of Minnesota (Original paper: Johns Hopkins)

Outline

Motivation

- Crypto background
- Zerocoin crypto
- Administrative break
- Application to Bitcoin

Problems of pseudonymity

Once you know one identity, can track forward or back


 E.g., Ron and Shamir '13 and DPR

 Analysis just from structure

 "10 richest people on Bitcoin"

 De-anonymize via other public info?

 Netflix prize data and IMDB

Idea: cryptographic mixing

- Get effect of laundry without trusted party
- Put a coin into mix, later withdraw one
 No one else can see linkage
- Use crypto to make possible without allowing cheating
 - Prove you inserted a coin without revealing which

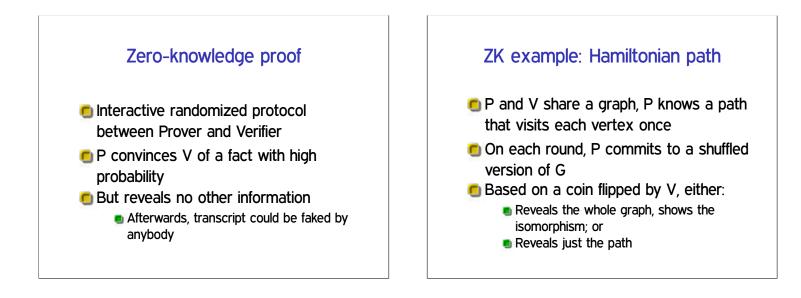
Outline

Motivation

Crypto background

Zerocoin crypto

Administrative break

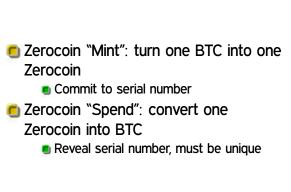

Application to Bitcoin

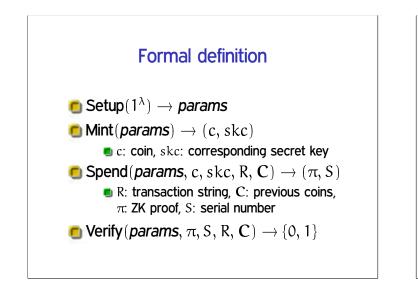
Cryptographic commitment

- Common building block: commit to value now, but don't reveal until later opening
- Compare to scratch-off lottery ticket

Two key properties:

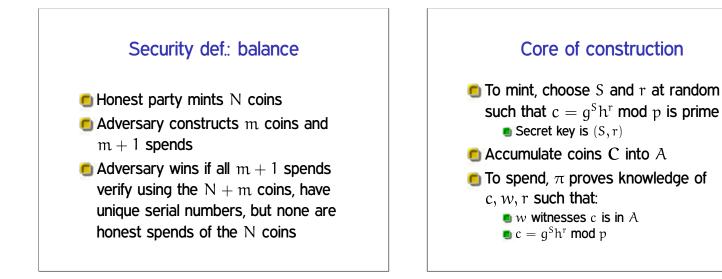
- Hiding: can't see value until opened
- Binding: can only open to one value
- One implementation: encrypt, open by revealing key

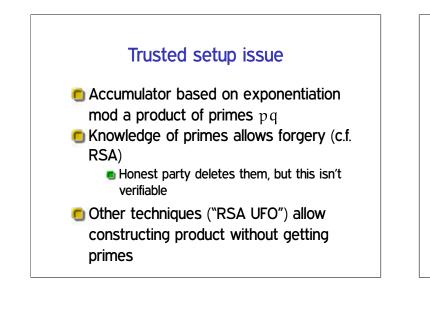

Non-interactive ZK: Fiat-Shamir Converts a ZK proof technique to a non-interactive signature


- Idea: replace V's random choices with the output of a hash function
 - Just as uncontrollable if the function is pseudo-random
- Security proof works only in Random Oracle Model

One-way accumulators

- Prove membership in set in constant space
- Based on function H with $H(H(x, y_1), y_2) = H(H(x, y_2), y_1),$ such as x^y mod N
- Think: represent set as product of primes: witness for p_i is product of all other members





Security def .: anonymity

- Honest party mints two valid coins c_0, c_1 , adversary picks C and R
- **IDENTIFY and SET UP:** Honest party picks $b \leftarrow \{0, 1\}$, spends c_b with R and $C \cup \{c_0, c_1\}$
- **Adversary tries to guess** b, should not do much better than 50-50.

Outline

Motivation

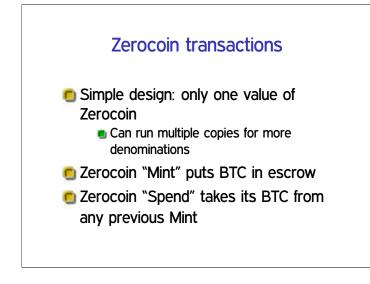
Crypto background

Zerocoin crypto

Administrative break

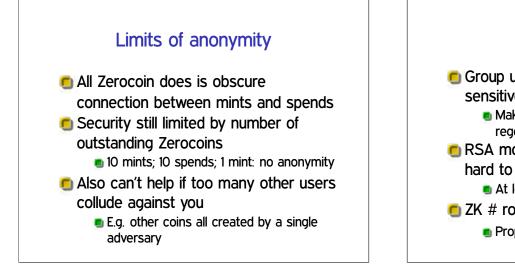
Application to Bitcoin

Presentation slides


- If you send them early, I can give suggestions
- Send final version for my grading use
- Decide whether you want them public, on Moodle, or forgotten

Outline

Motivation

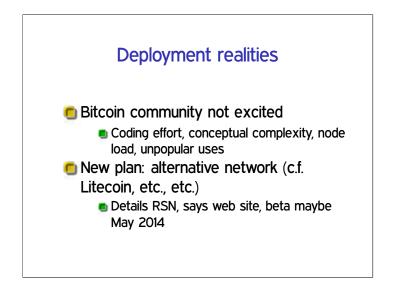

- Crypto background
- Zerocoin crypto
- Administrative break

Application to Bitcoin

New state required

- Accumulator computed incrementally
 Checkpointed in each block
- Nodes must maintain list of spent Zerocoin serial numbers
- Proofs might be kept outside the block chain

Parameter sizes


- Group used in commitments: size sensitive
 - Make 1024 bit, assume periodically regenerated
- RSA modulus used in accumulator: hard to regenerate, must last
 At least 3072 bits proposed
- ZK # rounds: just affect a single proof
 Proposed 2⁸⁰ security

Performance

- Not cheap, but can scale beyond then-current Bitcoin volumes
- 🖲 Proof is about 40KB
- Mint, spend, verify all less than 1 second
- Verification of blocks by nodes more problematic than by miners

Deployment: plans as of paper

- Integrate into the regular Bitcoin network
- Cleanest: add new operations in protocol, "flag day" upgrade
- Incremental alternative: build on current protocol
 - Zerocoin information is in comments
 - Signatures by a quorum of semi-trusted Zerocoin nodes

