8271 discussion of: "Double Spending Fast Payments in Bitcoin"

Stephen McCamant (Original paper: Ghassan O. Karame, Elli Androulaki, and Srdjan Čapkun) University of Minnesota (Original paper: NEC Labs and ETH Zurich)

Outline

Bitcoin background

Double spends and fast payments

Administrative reminders

Bitcoin addresses

- Address is basically a public/private signing key pair
 - Randomized naming, collision unlikely
- At any moment, balance is a perhaps fraction number of bitcoins (BTC)
- Anyone one can send to an address, private key needed to spend

Global transaction log

- Basic transaction: Take x_1 from a_1, x_2 from a_2, \ldots , put y_1 in a'_1, y_2 in a'_2, \ldots Of course require $\sum_i x_i = \sum_j y_j$
- Keep one big list of all transactions ever
- Check all balances in addresses taken from are sufficient

Bitcoin network

- Use peer-to-peer network to distribute transaction log
- Roughly similar to BitTorrent, etc. for old data
- Once a client is in sync, only updates need to be sent
- New transactions sent broadcast

Consistency and double-spending

- If all clients always saw the same log, double-spending would be impossible
- But how to ensure consistency, if multiple clients update at once?
- Symmetric situation: me and "me" in Australia both try to spend the same \$100 at the same time

Bitcoin blocks

- Group ~10 minutes of latest transactions into one "block"
- Use a proof of work so creating a block is very hard
- All clients race, winning block propagates

Bitcoin blockchains

- Each block contains a pointer to the previous one
- Clients prefer the longest chain they know
- E.g., inconsistency usually resolved by next block

Regulating difficulty

- Difficulty of the proof-of-work is adjusted to target the 10 minute block frequency
- Recomputed over two-week (2016 block) average
- Network adjusts to amount of computing power available

Bitcoin mining

- Where do bitcoins come from originally?
- Fixed number created per block, assigned by the client that made it
- Incentive to compete in the block generation race
- Called mining by analogy with gold

Enforcing consistency

- Structure of network very resistant to protocol change
 - Inertia of everybody else's code
- Changes unpopular among miners will not stick
- Minor crisis in March 2013: details of database lock allocation cause half of network to reject large block

Reception vs. confirmation Reception: transaction propagated through P2P network Average about 3 seconds Confirmation: transaction incorporated in block chain Average 10 minutes per block Conservative 6 confirmations: 1 hour, mail-order speed

Basic double-spend attack

- 🖲 Attacker A, victim (e.g., vendor) V
- Two transactions TR_V and TR_A spend the same coins
- Attacker wins if TR_V accepted by vendor, but TR_A ends up in block chain
- Send TR_V to vendor, "helpers" introduce TR_A elsewhere

CM: network observers

- Recruit extra nodes to listen for double spends
- In experiments with 5 observers, all double-spends were seen within a few seconds
- Authors recommend at least 3 observers, arguably expensive

CM: forwarding double-spends

- Authors propose: always forward transactions that appear to be double spends
 - But do not use for block generation
- Affects only detection, not attack success
- Possible problems: load, DoS
- Not deployed as far as I know

Outline

Bitcoin background

Double spends and fast payments

Administrative reminders

Last call for Zerocoin

If anyone besides me wants to present the "Zerocoin" paper for Wednesday, now is your last chance to volunteer

Topic popularity survey

- By Tuesday night, email me your list of the topic areas from the web page, sorted by order of your interest
- Mentioning specific papers is optional