8271 discussion of: “*Hey, You, Get Off of My
Cloud: Exploring Information Leakage in
Third-Party Compute Clouds”

Stephen McCamant (Original paper: Thomas Ristenpart, Eran
Tromer, Hovav Shacham, and Stefan Savage)

University of Minnesota (Original paper: UC San Diego and MIT)

Old and new topics in security

) Paper type 1. new idea, never been
done before

® Main contribution is novelty
® Incentive to be first, maybe even a race

©) Paper type 2: improvement in an

already-busy area
® Contributions judged differentially
® Incentive to optimize

Cloud threats, old and new

) Old: your system’s regular vulnerabilities

©) New but understood: need to trust
cloud provider

) Focus here: attacks from cloud
neighbors

Case study: Amazon EC2

) Largest, highest-profile infrastructure
cloud provider

£) World-spanning data centers, instance
sizes $0.02-56.82 per hour

£) Many instance types use Xen to
multiplex one physical machine

Ethical/legal sidebar

©) Important for academic researchers to
do things “by the book”

) Ethical obligations may be greater or
less than legal ones

) Here: CFAA, EC2 user agreement

Placement and extraction

£) Placement. get an instance on the
same physical machine as the victim

) Extraction: given placement, get
confidential info

Network probing

) TCP traceroutes, port 80 and 443
scans, DNS resolution

) Instances have one name, but separate
public and internal IP addresses

Network mapping

©) Internal addresses reflect topology

) Disjoint by availability region, clustered
by instance type

) DomOs in an adjacent block

Network-based co-residence checks

©) DomO in traceroute (easiest)
©) Close IP addresses
) Smallest packet round-trip times

) All found to have “effectively zero” false
positives

Hard disk usage channel

£) Measure contention for hard disk (e.q.,
seek times) between VMs

) "No attempt to optimize” bandwidth:
0.0005 bits/sec (33 mins per bit)

©) Why so slow?

Covert channels and side channels

) "Covert channel”: generally send and
receiver cooperate

® One classification: storage channels,
timing channels

£) "Side channel”: “sender” is passive
victim
® Can again include timing, also error
messages, power usage, etc.

Observed placement locality

£) Sequential locality: new instance likely
to use same machine as old dead one

) Parallel locality: instances started close
in time more likely to share

) Non-locality: one account never given
two instances on same machine

Evaluating brute-force placement

) Chose 1686 victims
® Small instances in zone 3 with public web
servers
) Launched probe instances and checked
co-residence

® 510 probes: hit 127 victims
m 1785 probes: hit 141 victims, 8.4%

Using locality

) Idea: use parallel locality, try to start

probes soon after victim
® Perhaps can trigger victim start, such as if
it's based on demand

) About 40% coverage for 20 victims
and 20 probes

) Also demonstrated against demos of
commercial services

Cache: Prime+Trigger+-Probe

1. (Prime) Fill cache with my data

2. Busy loop until preempted (recognize
with TSC)

3. Measure time to re-read my data

) Must play tricks to defeat CPU
pre-fetch

) Differential coding to resist noise

Load and traffic estimation

) Check for co-residence using system
load as a covert channel

) Estimate traffic load on co-resident web
server

Keystroke timing attack (classic)

) Fine-grained keystroke timing can
reveal information about text typed
) Especially given per-user training

) Demonstrated in lab against passwords
typed over SSH, without breaking
crypto

® 50 speedup over exhaustive search

Keystrokes in Xen

£ Lab installation with CPU pinning,
otherwise idle; not real EC2
©) Threshold cache activity level
® More than idle, less than otherwise busy
£ 5% false neqgatives, 0.3 false positives
per second

©) Timing resolution 13ms, enough for prior
attacks

Countermeasures: limited

©) Randomize and isolate network
structure
® Timing measurements still possible
) Block or add noise to covert channels
® Hard, and how to know you have them all?
) Avoid locality in placement algorithm
® Reduces but does not eliminate attacks

Countermeasure: pay for isolation

©) Pay extra to have machines all to
yourself

©) Argument: fair cost upper-bounded by
cost of one physical machine
©) Not implemented
® Though compare: GovCloud

