
8271 discussion of cloud computing security
(combined)

Stephen McCamant

University of Minnesota

Outline

Get Off of My Cloud

Administrative discussions

Multi-Cloud Oblivious Storage

Old and new topics in security

Paper type 1: new idea, never been
done before

Main contribution is novelty
Incentive to be first, maybe even a race

Paper type 2: improvement in an
already-busy area

Contributions judged differentially
Incentive to optimize

Cloud threats, old and new

Old: your system’s regular vulnerabilities

New but understood: need to trust
cloud provider

Focus here: attacks from cloud
neighbors

Case study: Amazon EC2

Largest, highest-profile infrastructure
cloud provider

World-spanning data centers, instance
sizes $0.02-$6.82 per hour

Many instance types use Xen to
multiplex one physical machine

Ethical/legal sidebar

Important for academic researchers to
do things “by the book”

Ethical obligations may be greater or
less than legal ones

Here: CFAA, EC2 user agreement



Placement and extraction

Placement: get an instance on the
same physical machine as the victim

Extraction: given placement, get
confidential info

Network probing

TCP traceroutes, port 80 and 443
scans, DNS resolution

Instances have one name, but separate
public and internal IP addresses

Network mapping

Internal addresses reflect topology

Disjoint by availability region, clustered
by instance type

Dom0s in an adjacent block

Network-based co-residence checks

Dom0 in traceroute (easiest)

Close IP addresses

Smallest packet round-trip times

All found to have “effectively zero” false
positives

Hard disk usage channel

Measure contention for hard disk (e.g.,
seek times) between VMs

“No attempt to optimize” bandwidth:
0.0005 bits/sec (33 mins per bit)

Why so slow?

Covert channels and side channels

“Covert channel”: generally send and
receiver cooperate

One classification: storage channels,
timing channels

“Side channel”: “sender” is passive
victim

Can again include timing, also error
messages, power usage, etc.



Observed placement locality

Sequential locality: new instance likely
to use same machine as old dead one

Parallel locality: instances started close
in time more likely to share

Non-locality: one account never given
two instances on same machine

Evaluating brute-force placement

Chose 1686 victims
Small instances in zone 3 with public web
servers

Launched probe instances and checked
co-residence

510 probes: hit 127 victims
1785 probes: hit 141 victims, 8.4%

Using locality

Idea: use parallel locality, try to start
probes soon after victim

Perhaps can trigger victim start, such as if
it’s based on demand

About 40% coverage for 20 victims
and 20 probes

Also demonstrated against demos of
commercial services

Cache: Prime+Trigger+Probe

1. (Prime) Fill cache with my data

2. Busy loop until preempted (recognize
with TSC)

3. Measure time to re-read my data

Must play tricks to defeat CPU
pre-fetch

Differential coding to resist noise

Load and traffic estimation

Check for co-residence using system
load as a covert channel

Estimate traffic load on co-resident web
server

Keystroke timing attack (classic)

Fine-grained keystroke timing can
reveal information about text typed

Especially given per-user training

Demonstrated in lab against passwords
typed over SSH, without breaking
crypto

50� speedup over exhaustive search



Keystrokes in Xen

Lab installation with CPU pinning,
otherwise idle; not real EC2
Threshold cache activity level

More than idle, less than otherwise busy

5% false negatives, 0.3 false positives
per second

Timing resolution 13ms, enough for prior
attacks

Countermeasures: limited

Randomize and isolate network
structure

Timing measurements still possible

Block or add noise to covert channels
Hard, and how to know you have them all?

Avoid locality in placement algorithm
Reduces but does not eliminate attacks

Countermeasure: pay for isolation

Pay extra to have machines all to
yourself

Argument: fair cost upper-bounded by
cost of one physical machine
Not implemented

Though compare: GovCloud

Outline

Get Off of My Cloud

Administrative discussions

Multi-Cloud Oblivious Storage

Next week: Bitcoin

For Monday: double-spending attacks

For Wednesday: real anonymity with
Zerocoin

Choosing presentation topics

I still need to post more papers

Is volunteering viable?

Possible alternative: lottery plus trading



Choosing project topics

Start looking for groups and topics now

Meet with me next week or week after

Proposals due February 28th (less than
one month)

Outline

Get Off of My Cloud

Administrative discussions

Multi-Cloud Oblivious Storage

Motivation: hide access patterns

Information is leaked by what you
access when

Consider encrypted email, medical info,
etc.

Goal here: conceal location, read vs.
write

What’s revealed by plain encryption?

Imagine we encrypt every disk block
with function E

Adversary can still see patterns of
locations

If b1 = b2, E(b1) = E(b2)

Using probabilistic encryption

Probabilistic encryption: randomized,
returns different ciphertext each time

Standard in public key, theory, and with
modes of operation

To conceal read vs. write, always
replace block with new encryption

Straw man 1: access every block

For each virtual access (read or write),
access (read and write) every physical
block

Secure, but impractical



Straw man 2: shuffle all blocks

Use pseudo-random permutation to
shuffle all block locations
Secure if you never access a block
more than once

But leaks on any repeated operations
Can’t have, e.g., read after write

Goldreich square-root construction

First semi-practical idea (STOC 1987)

Cache of
p
m locations accessed each

time, plus shuffled copy

Dummy accesses for consistency

Reshuffle after
p
m operations

G&O hierarchical idea

Split into levels of exponentially
increasing size

Write back in smallest level, then
reshuffle into larger

Various kinds of hashing can be used

Polylog amortized cost for O(1) client
storage

But still pretty impractical

The client bandwidth constraint

In many storage outsourcing
applications, major constraint is client’s
network bandwidth
Client has significant local storage

Not enough for all data
But enough for an index (order of one
word per block)

Multi-cloud approach

Cloud-to-cloud bandwidth more than
client-to-cloud

Use multiple (e.g. 2) clouds

Require: not all clouds are malicious

Major savings, especially on client
bandwidth

Threat models in protocols

(Fully) honest: follows the protocol
exactly

Malicious: can do anything (worst case)

Semi-honest, AKA honest-but-curious:
follows protocol, but may try to learn
secrets from seen data



SSS partitioning

Divide data into
p
m partitions of sizep

m

Client keeps location index and
p
m

blocks of cache

Improves worst-case and constant
factors, but still needs log

p
m (e.g.,

10�) accesses to read

Splitting between clouds

Make expensive operations
cloud-to-cloud
Do operation in one cloud to hide from
the other

“Non-colluding” confidentiality assumption

Write: oblivious shuffling

Figure source: taken from the paper

Read: oblivious selection

Figure source: taken from the paper

Homomorphic checksum

Linear checksum allows computation on
encrypted blocks

Note: not secure after an adversary has
seen examples!

Combined with PRF (imagine: MAC) and
authenticated encryption

Experimental deployment

Amazon EC2 (AWS) with SSDs

Microsoft Azure, lacking SSDs

Up to 5 servers (max out client
bandwidth)

$3.10 per hour plus $2.50 per GB for
one server



Bottleneck analysis

Client bandwidth 2.6�
Compare 2� for read and write

In practice: Azure’s non-SSD disk
speeds
Assuming SSDs, double throughput up
to 6MB/s

Based on cloud-to-cloud bandwidth
bottleneck, 30-60MB/s


