
CSci 5271
Introduction to Computer Security

Day 23: Usability and security
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Denial of service and the network

Usability and security

Announcements intermission

Usable security example areas

Bonus: anonymity overlays

DoS against network services

Common example: keep legitimate
users from viewing a web site

Easy case: pre-forked server supports
100 simultaneous connections

Fill them with very very slow downloads

Tiny bit of queueing theory

Mathematical theory of waiting in line

Simple case: random arrival, sequential
fixed-time service, “M/D/1”

M: memoryless arrival process
D: deterministic service process
1: one server

Simple queue analysis

Arrival rate > service rate: queue
grows without bound

Arrival rate < service rate: finite
expected queue length
Arrival rate = service rate:

Queue still grows without bound!

Simple queue analysis

Arrival rate > service rate: queue
grows without bound

Arrival rate < service rate: finite
expected queue length

Arrival rate = service rate:

Queue still grows without bound!



Simple queue analysis

Arrival rate > service rate: queue
grows without bound

Arrival rate < service rate: finite
expected queue length
Arrival rate = service rate:

Queue still grows without bound!

Simple queue analysis

Arrival rate > service rate: queue
grows without bound

Arrival rate < service rate: finite
expected queue length
Arrival rate = service rate:

Queue still grows without bound!

SYN flooding

SYN is first of three packets to set up
new connection

Traditional implementation allocates
space for control data

However much you allow, attacker fills
with unfinished connections

Early limits were very low (10-100)

SYN cookies

Change server behavior to stateless
approach
Embed small amount of needed
information in fields that will be echoed
in third packet

MAC-like construction

Other disadvantages, so usual
implementations used only under attack

DoS against network links

Try to use all available bandwidth,
crowd out real traffic

Brute force but still potentially effective

Baseline attacker power measured by
packet sending rate

Traffic multipliers

Third party networks (not attacker or
victim)

One input packet causes n output
packets

Commonly, victim’s address is forged
source, multiple replies

Misuse of debugging features



“Smurf” broadcast ping

ICMP echo request with forged source

Sent to a network broadcast address

Every recipient sends reply

Now mostly fixed by disabling this
feature

Distributed DoS

Many attacker machines, one victim

Easy if you own a botnet

Impractical to stop bots one-by-one

May prefer legitimate-looking traffic
over weird attacks

Main consideration is difficulty to filter

Outline

Denial of service and the network

Usability and security

Announcements intermission

Usable security example areas

Bonus: anonymity overlays

Users are not ‘ideal components’

Frustrates engineers: cannot give users
instructions like a computer

Closest approximation: military

Unrealistic expectations are bad for
security

Most users are benign and sensible

On the other hand, you can’t just treat
users as adversaries

Some level of trust is inevitable
Your institution is not a prison

Also need to take advantage of user
common sense and expertise

A resource you can’t afford to pass up

Don’t blame users

“User error” can be the end of a
discussion

This is a poor excuse

Almost any “user error” could be
avoidable with better systems and
procedures



Users as rational

Economic perspective: users have
goals and pursue them

They’re just not necessarily aligned with
security

Ignoring a security practice can be
rational if the rewards is greater than
the risk

Perspectives from psychology

Users become habituated to
experiences and processes

Learn “skill” of clicking OK in dialog boxes

Heuristic factors affect perception of
risk

Level of control, salience of examples

Social pressures can override security
rules

“Social engineering” attacks

User attention is a resource

Users have limited attention to devote
to security

Exaggeration: treat as fixed

If you waste attention on unimportant
things, it won’t be available when you
need it

Fable of the boy who cried wolf

Research: ecological validity

User behavior with respect to security
is hard to study

Experimental settings are not like real
situations
Subjects often:

Have little really at stake
Expect experimenters will protect them
Do what seems socially acceptable
Do what they think the experimenters
want

Research: deception and ethics

Have to be very careful about ethics of
experiments with human subjects

Enforced by institutional review systems

When is it acceptable to deceive
subjects?

Many security problems naturally include
deception

Outline

Denial of service and the network

Usability and security

Announcements intermission

Usable security example areas

Bonus: anonymity overlays



Upcoming due dates

Tonight and tomorrow night: Ex. 4, HA2

Next week: nothing (only one lecture)

After Thanksgiving: 3rd progress
report, presentations

Reminder: VMs are not backed up

Because of their size, hands-on
assignment VMs are on non-backed-up
local disks

Hard disk failure occasionally happens,
might destroy your VM

Keep another copy of your important
data elsewhere

Outline

Denial of service and the network

Usability and security

Announcements intermission

Usable security example areas

Bonus: anonymity overlays

Email encryption

Technology became available with PGP
in the early 90s

Classic depressing study: “Why Johnny
can’t encrypt: a usability evaluation of
PGP 5.0” (USENIX Security 1999)

Still an open “challenge problem”

Also some other non-UI difficulties:
adoption, govt. policy

Phishing

Attacker sends email appearing to
come from an institution you trust

Links to web site where you type your
password, etc.

Spear phishing: individually targeted,
can be much more effective

Phishing defenses

Educate users to pay attention to X:
Spelling ! copy from real emails
URL ! homograph attacks
SSL “lock” icon ! fake lock icon, or
SSL-hosted attack

Extended validation (green bar)
certificates

Phishing URL blacklists



SSL warnings: prevalence

Browsers will warn on SSL certificate
problems
In the wild, most are false positives

foo.com vs. www.foo.com
Recently expired
Technical problems with validation
Self-signed certificates (HA2)

Classic warning-fatigue danger

Older SSL warning

SSL warnings: effectiveness

Early warnings fared very poorly in lab
settings
Recent browsers have a new
generation of designs:

Harder to click through mindlessly
Persistent storage of exceptions

Recent telemetry study: they work
pretty well

Modern Firefox warning

Modern Firefox warning (2) Modern Firefox warning (3)



Spam-advertised purchases

“Replica” Rolex watches, herbal
V!@gr@, etc.

This business is clearly unscrupulous; if
I pay, will I get anything at all?
Empirical answer: yes, almost always

Not a scam, a black market
Importance of credit-card bank
relationships

Advance fee fraud

“Why do Nigerian Scammers say they
are from Nigeria?” (Herley, WEIS 2012)
Short answer: false positives

Sending spam is cheap
But, luring victims is expensive
Scammer wants to minimize victims who
respond but ultimately don’t pay

Trusted UI

Tricky to ask users to make trust
decisions based on UI appearance

Lock icon in browser, etc.

Attacking code can draw lookalike
indicators

Lock favicon
Picture-in-picture attack

Smartphone app permissions

Smartphone OSes have more
fine-grained per-application permissions

Access to GPS, microphone
Access to address book
Make calls

Phone also has more tempting targets

Users install more apps from small
providers

Permissions manifest

Android approach: present listed of
requested permissions at install time
Can be hard question to answer
hypothetically

Users may have hard time understanding
implications

User choices seem to put low value on
privacy

Time-of-use checks

iOS approach: for narrower set of
permissions, ask on each use

Proper context makes decisions clearer

But, have to avoid asking about
common things

iOS app store is also more closely
curated



Trusted UI for privileged actions

Trusted UI works better when asking
permission (e.g., Oakland’12)
Say, “take picture” button in phone app

Requested by app
Drawn and interpreted by OS
OS well positioned to be sure click is real

Little value to attacker in drawing fake
button

Outline

Denial of service and the network

Usability and security

Announcements intermission

Usable security example areas

Bonus: anonymity overlays

Traffic analysis

What can you learn from encrypted
data? A lot

Content size, timing

Who’s talking to who
! countermeasure: anonymity

Anonymous remailers

Anonymizing intermediaries for email
First cuts had single points of failure

Mix and forward messages after
receiving a sufficiently-large batch

Chain together mixes with multiple
layers of encryption

Fancy systems didn’t get critical mass
of users

Tor: an overlay network

Tor (originally from “the onion router”)
https://www.torproject.org/

An anonymous network built on top of
the non-anonymous Internet

Designed to support a wide variety of
anonymity use cases

Low-latency TCP applications

Tor works by proxying TCP streams
(And DNS lookups)

Focuses on achieving interactive
latency

WWW, but potentially also chat, SSH, etc.
Anonymity tradeoffs compared to
remailers



Tor Onion routing

Stream from sender to D forwarded
via A, B, and C

One Tor circuit made of four TCP hops

Encrypt packets (512-byte “cells”) as
EA(B; EB(C; EC(D;P)))

TLS-like hybrid encryption with
“telescoping” path setup

Client perspective

Install Tor client running in background

Configure browser to use Tor as proxy
Or complete Tor+Proxy+Browser bundle

Browse web as normal, but a lot slower
Also, sometimes google.com is in
Swedish

Anonymity loves company

Diverse user pool needed for
anonymity to be meaningful

Hypothetical Department of Defense
Anonymity Network

Tor aims to be helpful to a broad range
of (sympathetic sounding) potential
users

Anti-censorship

As a web proxy, Tor is useful for
getting around blocking

Unless Tor itself is blocked, as it often is

Bridges are special less-public entry
points

Also, protocol obfuscation arms race
(currently behind)

Hidden services

Tor can be used by servers as well as
clients

Identified by cryptographic key, use
special rendezvous protocol

Servers often present easier attack
surface

Intersection attacks

Suppose you use Tor to update a
pseudonymous blog, reveal you live in
Minneapolis
Comcast can tell who in the city was
sending to Tor at the moment you post
an entry

Anonymity set of 1000 ! reasonable
protection

But if you keep posting, adversary can
keep narrowing down the set



Exit sniffing

Easy mistake to make: log in to an
HTTP web site over Tor

A malicious exit node could now steal
your password

Another reason to always use HTTPS
for logins

Browser bundle JS attack

Tor’s Browser Bundle disables many
features try to stop tracking
But, JavaScript defaults to on

Usability for non-expert users
Fingerprinting via NoScript settings

Was incompatible with Firefox
auto-updating
Many Tor users de-anonymized in
August’13 by JS vulnerability patched in
June’13


