
CSci 5271
Introduction to Computer Security

Day 4: Low-level attacks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Non-buffer problems

Classic code injection attacks

Announcements intermission

Shellcode and other targets

Exploiting other vulnerabilities

Integer overflow

Fixed size result 6= math result

Sum of two positive ints negative or
less than addend

Also multiplication, left shift, etc.

Negation of most-negative value

(low + high)/2

Integer overflow example

int n = read_int();

obj *p = malloc(n * sizeof(obj));

for (i = 0; i < n; i++)

p[i] = read_obj();

Signed and unsigned

Unsigned gives more range for, e.g.,
size t

At machine level, many but not all
operations are the same

Most important difference: ordering

In C, signed overflow is undefined
behavior

Mixing integer sizes

Complicated rules for implicit
conversions

Also includes signed vs. unsigned

Generally, convert before operation:
E.g., 1ULL << 63

Sign-extend vs. zero-extend
char c = 0xff; (int)c



Null pointers

Vanilla null dereference is usually
non-exploitable (just a DoS)

But not if there could be an offset (e.g.,
field of struct)

And not in the kernel if an untrusted
user has allocated the zero page

Undefined behavior

C standard “undefined behavior”:
anything could happen

Can be unexpectedly bad for security

Most common problem: compiler
optimizes assuming undefined behavior
cannot happen

Linux kernel example

struct sock *sk = tun->sk;

// ...

if (!tun)

return POLLERR;

// more uses of tun and sk

Format strings

printf format strings are a little
interpreter

printf(msg) with untrusted msg lets
the attacker program it
Allows:

Dumping stack contents
Denial of service
Arbitrary memory modifications!

Outline

Non-buffer problems

Classic code injection attacks

Announcements intermission

Shellcode and other targets

Exploiting other vulnerabilities

Overwriting the return address



Collateral damage Collateral damage

Stop the program from crashing early

‘Overwrite’ with same value, or another
legal one

Minimize time between overwrite and
use

Other code injection targets

Function pointers
Local, global, on heap

longjmp buffers

GOT (PLT) / import tables

Exception handlers

Indirect overwrites

Change a data pointer used to access
a code pointer

Easiest if there are few other uses

Common examples
Frame pointer
C++ object vtable pointer

Non-sequential writes

E.g. missing bounds check, corrupted
pointer

Can be more flexible and targeted

More likely needs an absolute location

May have less control of value written

Unexpected-size writes

Attacks don’t need to obey normal
conventions

Overwrite one byte within a pointer

Use mis-aligned word writes to isolate
a byte



Outline

Non-buffer problems

Classic code injection attacks

Announcements intermission

Shellcode and other targets

Exploiting other vulnerabilities

Project meeting scheduling

Will pick a half-hour meeting slot, use
for three different meetings

List of about 75 slots on the web page

Choose ordered list in pre-proposal,
length inverse to popularity

HA1 first attack

First attack due tomorrow (Friday) night

Most groups have gotten their VM
assignments

Suggested first exploit: back door

Moodle or email to staff available for
questions

Outline

Non-buffer problems

Classic code injection attacks

Announcements intermission

Shellcode and other targets

Exploiting other vulnerabilities

Basic definition

Shellcode: attacker supplied instructions
implementing malicious functionality

Name comes from example of starting
a shell

Often requires attention to
machine-language encoding

Classic execve /bin/sh

execve(fname, argv, envp)

system call

Specialized syscall calling conventions

Omit unneeded arguments

Doable in under 25 bytes for Linux/x86



Avoiding zero bytes

Common requirement for shellcode in C
string

Analogy: broken 0 key on keyboard

May occur in other parts of encoding
as well

More restrictions

No newlines

Only printable characters

Only alphanumeric characters

“English Shellcode” (CCS’09)

Transformations

Fold case, escapes, Latin1 to Unicode,
etc.

Invariant: unchanged by transformation

Pre-image: becomes shellcode only
after transformation

Multi-stage approach

Initially executable portion unpacks rest
from another format

Improves efficiency in restricted
environments

But self-modifying code has pitfalls

NOP sleds

Goal: make the shellcode an easier
target to hit
Long sequence of no-op instructions,
real shellcode at the end

x86: 0x90 0x90 0x90 0x90 0x90
. . . shellcode

Where to put shellcode?

In overflowed buffer, if big enough

Anywhere else you can get it
Nice to have: predictable location

Convenient choice of Unix local
exploits:



Where to put shellcode?

Environment variables

Code reuse

If can’t get your own shellcode, use
existing code
Classic example: system
implementation in C library

“Return to libc” attack

More variations on this later

Outline

Non-buffer problems

Classic code injection attacks

Announcements intermission

Shellcode and other targets

Exploiting other vulnerabilities

Non-control data overwrite

Overwrite other security-sensitive data

No change to program control flow

Set user ID to 0, set permissions to all,
etc.

Heap meta-data

Boundary tags similar to doubly-linked
list

Overwritten on heap overflow

Arbitrary write triggered on free

Simple version stopped by sanity
checks

Heap meta-data



Use after free

Write to new object overwrites old, or
vice-versa

Key issue is what heap object is
reused for

Influence by controlling other heap
operations

Integer overflows

Easiest to use: overflow in small (8-,
16-bit) value, or only overflowed value
used
2GB write in 100 byte buffer

Find some other way to make it stop

Arbitrary single overwrite
Use math to figure out overflowing value

Null pointer dereference

Add offset to make a predictable
pointer

On Windows, interesting address start low

Allocate data on the zero page
Most common in user-space to kernel
attacks
Read more dangerous than a write

Format string attack

Attacker-controlled format: little
interpreter
Step one: add extra integer specifiers,
dump stack

Already useful for information disclosure

Format string attack layout Format string attack layout



Format string attack: overwrite

%n specifier: store number of chars
written so far to pointer arg

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with
padding

On x86, use unaligned stores to create
pointer

Next time

Defenses and counter-attacks


