
CSci 5271
Introduction to Computer Security
Day 3: Low-level vulnerabilities

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Vulnerabilities in OS interaction

Low-level view of memory

HA1 logistics, etc.

Basic memory-safety problems

Where overflows come from

More problems

Race conditions

Two actions in parallel; result depends
on which happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger
requirement

Unsafe design (mktemp(3)): function to
return unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between
steps 1 and 2

Just get lucky, or use tricks to slow
you down

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Avoid by instead using:
f* functions that operate on fds
*at functions that use an fd in place of
the CWD

Directory traversal with ..

Program argument specifies file with
directory files

What about
files/../../../../etc/passwd?

Environment variables

Can influence behavior in unexpected
ways

PATH

LD LIBRARY PATH

IFS

. . .

Also umask, resource limits, current
directory

IFS and why it’s a problem

In Unix, splitting a command line into
words is the shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default
space, tab, newline) is configurable

Exploit system("/bin/uname")

Outline

Vulnerabilities in OS interaction

Low-level view of memory

HA1 logistics, etc.

Basic memory-safety problems

Where overflows come from

More problems

Overall layout (Linux 32-bit)

Detail: static code and data Detail: heap

Detail: initial stack Example stack frame

Outline

Vulnerabilities in OS interaction

Low-level view of memory

HA1 logistics, etc.

Basic memory-safety problems

Where overflows come from

More problems

HA1 materials posted

Instructions PDF: slightly updated

BCLPR source code and Makefile

VM instructions web page

Discussion forum and submissions on
Moodle

Getting your virtual machines

Ubuntu 12.04 server, hosted on CSE
Labs

One VM per group (up to 3 students)

For allocation, send group list to Yang

Choose group early, well before Friday
deadline

Sequence of exploits

Week 1 (9/12): backdoor, 10 points

Week 2 (9/19): easier, 20 points

Week 3 (9/26): harder, 30 points

Week 4 (10/3): harder, 30 points
Plus, design suggestions (10 points)

Week 5 (10/10): hardest, 5 � n

extra credit

Types of vulnerabilities

OS interaction/logic errors

Memory safety errors
E.g., exploit with control-flow hijacking

Among first 3 weeks, must have one of
each kind

Part of challenge: automation

Must represent your attack as an
exploit script
Must be fully automatic

No user interaction
Works reliably, within 60 seconds

Must work on a clean VM

Use test-exploit script

Still coming soon

Research project pre-proposal due
next Wednesday

Notes about web site

Please report bugs if you notice them
(e.g., stale link to 2013)

Slides and readings at the bottom of
the schedule page

Outline

Vulnerabilities in OS interaction

Low-level view of memory

HA1 logistics, etc.

Basic memory-safety problems

Where overflows come from

More problems

Stack frame overflow

Overwriting adjacent objects

Forward or backward on stack
Other local variables, arguments

Fields within a structure

Global variables

Other heap objects

Overwriting metadata

On stack:
Return address
Saved registers, incl. frame pointer

On heap:
Size and location of adjacent blocks

Double free

Passing the same pointer value to
free more than once

More dangerous the more other heap
operations occur in between

Use after free

AKA use of a dangling pointer

Could overwrite heap metadata

Or, access data with confused type

Outline

Vulnerabilities in OS interaction

Low-level view of memory

HA1 logistics, etc.

Basic memory-safety problems

Where overflows come from

More problems

Library funcs: unusable

gets writes unlimited data into supplied
buffer

No way to use safely (unless stdin
trusted)

Finally removed in C11 standard

Library funcs: dangerous

Big three unchecked string functions
strcpy(dest, src)

strcat(dest, src)

sprintf(buf, fmt, ...)

Must know lengths in advance to use
safely (complicated for sprintf)

Similar pattern in other funcs returning
a string

Library funcs: bounded

Just add “n”:
strncpy(dest, src, n)

strncat(dest, src, n)

snprintf(buf, size, fmt, ...)

Tricky points:
Buffer size vs. max characters to write
Failing to terminate
strncpy zero-fill

More library attempts

OpenBSD strlcpy, strlcat
Easier to use safely than “n” versions
Non-standard, but widely copied

Microsoft-pushed strcpy s, etc.
Now standardized in C11, but not in glibc
Runtime checks that abort

Compute size and use memcpy

C++ std::string, glib, etc.

Still a problem: truncation

Unexpectedly dropping characters from
the end of strings may still be a
vulnerability

E.g., if attacker pads paths with
/////// or /./././.

Avoiding length limits is best, if
implemented correctly

Off-by-one bugs

strlen does not include the terminator

Comparison with < vs. <=

Length vs. last index

x++ vs. ++x

Even more buffer/size mistakes

Inconsistent code changes (use
sizeof)

Misuse of sizeof (e.g., on pointer)

Bytes vs. wide chars (UCS-2) vs.
multibyte chars (UTF-8)

OS length limits (or lack thereof)

Other array problems

Missing/wrong bounds check
One unsigned comparison suffices
Two signed comparisons needed

Beware of clever loops
Premature optimization

Outline

Vulnerabilities in OS interaction

Low-level view of memory

HA1 logistics, etc.

Basic memory-safety problems

Where overflows come from

More problems

Integer overflow

Fixed size result 6= math result

Sum of two positive ints negative or
less than addend

Also multiplication, left shift, etc.

Negation of most-negative value

(low + high)/2

Integer overflow example

int n = read_int();

obj *p = malloc(n * sizeof(obj));

for (i = 0; i < n; i++)

p[i] = read_obj();

Signed and unsigned

Unsigned gives more range for, e.g.,
size t

At machine level, many but not all
operations are the same

Most important difference: ordering

In C, signed overflow is undefined
behavior

Mixing integer sizes

Complicated rules for implicit
conversions

Also includes signed vs. unsigned

Generally, convert before operation:
E.g., 1ULL << 63

Sign-extend vs. zero-extend
char c = 0xff; (int)c

Null pointers

Vanilla null dereference is usually
non-exploitable (just a DoS)

But not if there could be an offset (e.g.,
field of struct)

And not in the kernel if an untrusted
user has allocated the zero page

Undefined behavior

C standard “undefined behavior”:
anything could happen

Can be unexpectedly bad for security

Most common problem: compiler
optimizes assuming undefined behavior
cannot happen

Linux kernel example

struct sock *sk = tun->sk;

// ...

if (!tun)

return POLLERR;

// more uses of tun and sk

Format strings

printf format strings are a little
interpreter

printf(msg) with untrusted msg lets
the attacker program it
Allows:

Dumping stack contents
Denial of service
Arbitrary memory modifications!

Next time

Exploitation techniques for these
vulnerabilities

