CSci 5271
Introduction to Computer Security
Day 24: Electronic voting
Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
- Usability and security (cont’d)
- Elections and their security
- Announcements intermission
- System security of electronic voting
- Exercise sets 2 and 3 debrief
- Cryptography for voting

Trusted UI
- Tricky to ask users to make trust decisions based on UI appearance
 - Lock icon in browser, etc.
- Attacking code can draw lookalike indicators
 - Lock favicon
 - Picture-in-picture attack

Smartphone app permissions
- Smartphone OSes have more fine-grained per-application permissions
 - Access to GPS, microphone
 - Access to address book
 - Make calls
- Phone also has more tempting targets
- Users install more apps from small providers

Permissions manifest
- Android approach: present listed of requested permissions at install time
- Can be hard question to answer hypothetically
 - Users may have hard time understanding implications
- User choices seem to put low value on privacy

Time-of-use checks
- iOS approach: for narrower set of permissions, ask on each use
- Proper context makes decisions clearer
- But, have to avoid asking about common things
- iOS app store is also more closely curated
Trusted UI for privileged actions

- Trusted UI works better when asking permission (e.g., Oakland'12)
- Say, “take picture” button in phone app
 - Requested by app
 - Drawn and interpreted by OS
 - OS well positioned to be sure click is real
- Little value to attacker in drawing fake button

Outline

- Usability and security (cont’d)
- Elections and their security
- Announcements intermission
- System security of electronic voting
- Exercise sets 2 and 3 debrief
- Cryptography for voting

Elections as a challenge problem

- Elections require a tricky balance of openness and secrecy
- Important to society as a whole
 - But not a big market
- Computer security experts react to proposals that seem insecure

History of (US) election mechanisms

- For first century or so, no secrecy
 - Secret ballot adopted in late 1800s
- Punch card ballots allowed machine counting
 - Common by 1960s, as with computers
 - Still common in 2000, decline thereafter
- How to add more technology and still have high security?

Election integrity

- Tabulation should reflect actual votes
 - No valid votes removed
 - No fake votes inserted
- Best: attacker can’t change votes
- Easier: attacker can’t change votes without getting caught

Secrecy, vote buying and coercion

- Alice’s vote can’t be matched with her name (unlinkable anonymity)
- Alice can’t prove to Bob who she voted for (receipt-free)
- Best we can do to discourage:
 - Bob pays Alice $50 for voting for Charlie
 - Bob fires Alice if she doesn’t vote for Charlie
Election verifiability
- We can check later that the votes were tabulated correctly
- Alice, that her vote was correctly cast
- Anyone, that the counting was accurate
- In paper systems, “manual recount” is a privileged operation

Politics and elections
- In a stable democracy, most candidates will be “pro-election”
- But, details differ based on political realities
- “Voting should be easy and convenient”
 - Especially for people likely to vote for me
- “No one should vote who isn’t eligible”
 - Especially if they’d vote for my opponent

Errors and Florida
- Detectable mistakes:
 - Overvote: multiple votes in one race
 - Undervote: no vote in a race, also often intentional
- Undetectable mistakes: vote for wrong candidate
- 2000 presidential election in Florida illustrated all these, “wake-up call”

Precinct-count optical scan
- Good current paper system, used here in MN
- Voter fills in bubbles with pen
- Ballot scanned in voter’s presence
 - Can reject on overvote
- Paper ballot retained for auditing

Vote by mail
- By mail universal in Oregon and Washington
 - Many other states have lenient absentee systems
 - Some people are legitimately absent
- Security perspective: makes buying/coercion easy
 - Doesn’t appear to currently be a big problem

Vote by web?
- An obvious next step
- But, further multiplies the threats
- No widespread use in US yet
- Unusual adversarial test in D.C. thoroughly compromised by U. Michigan team
DRE (touchscreen) voting
- "Direct-recording electronic": basically just a computer that presents and counts votes
- In US, touchscreen is predominant interface
 - Cheaper machines may just have buttons
- Simple, but centralizes trust in the machine

Adding an audit trail
- VVPAT: voter-verified paper audit trail
- DRE machine prints a paper receipt that the voter looks at
- Goal is to get the independence and verifiability of a paper marking system

Outline
- Usability and security (cont’d)
- Elections and their security
- Announcements intermission
- System security of electronic voting
- Exercise sets 2 and 3 debrief
- Cryptography for voting

HW2 due Tuesday/Sunday
- 11:55pm tomorrow for 10 points extra credit, recommended
- Otherwise, 11:55pm Sunday
- Connecting your browser is a mini-exercise on firewalls and proxies

Project meetings and presentations
- Presentations run next two weeks
 - Will post random schedule, allow swaps
 - Plan 12 minutes plus 3 minutes of questions
- Final progress meetings next week
 - Mini-update by email if you'd like
 - Last progress report still due Monday 12/2

Exercise set 5
- Last exercise set covers privacy systems, voting
- Relatively shorter than previous ones
- Posted just now, due Thursday 12/5
Outline

Usability and security (cont'd)
Elections and their security
Announcements intermission
System security of electronic voting
Exercise sets 2 and 3 debrief
Cryptography for voting

Trusted client problem

- Everything the voter knows is mediated by the machine
 - (For Internet or DRE without VVPAT)
- Must trust machine to present and record accurately
- A lot can go wrong
 - Especially if the machine has a whole desktop OS inside
 - Or a bunch of poorly audited custom code

Should we use DRE at all?

- One answer: no, that's a bad design
- More pragmatic: maybe we can make this work
 - DREs have advantages in cost, disability access
 - If we implemented them well, they should be OK
 - Challenge: evaluating them in advance

US equipment market

- Voting machines are low volume, pretty expensive
- But jurisdictions are cost-conscious
- Makes are mostly small companies
 - One was temporarily owned by the larger Diebold
- Big market pressures: regulations, ease of administration

Security ecosystem

- Voting fraud appears to be very rare
 - Few elections worth stealing
 - Important ones are watched closely
 - Stiff penalties deter in-US attackers
- Downside: No feedback from real attacks
- Main mechanism is certification, with its limitations

Diebold case study

- Major manufacturer in early 2000s
 - During a post-2000 purchasing boom
 - Since sold and renamed
- Thoroughly targeted by independent researchers
 - Impolitic statement, blood in the water
- Later state-authorized audits found comprehensive problems
 - Your reading: from California
Physical security

- Locked case; cheap lock as in hotel mini-bar
- Device displays management menu on detected malfunction
 - Can be triggered in booth by unspecified use of paperclip
- Tamper-evident seals? Not a strong protection

Buffer overflows, etc.

- Format string vulnerability
 - "Page %d of %d"
- Was this audited?

```c
TCHAR name;
_stprintf(&name,
_T("\Storage Card\%s"),
findData.cFileName);
```

Web-like vulnerabilities

In management workstation software:

- SQL injection
- Authentication logic encoded only in enabled/disabled UI elements
 - E.g., buttons grayed out if not administrator
 - Not quite as obviously wrong as in web context
 - But still exploitable with existing tools

OpenSSL mistakes

- Good news: they used OpenSSL
- Bad news: old, buggy version
- Insufficient entropy in seeding PRNG
 - Good interface from desktop Windows missing in WinCE
- Every device ships with same certificate and password

Election definitions

- Integrity "protected" by unkeyed, non-crypto checksum
- Can change bounding boxes for buttons
 - Without changing checksum!
- Can modify candidate names used in final report
 - E.g. to fix misspelling; security implication mentioned in comment

Secrecy problems

- Limited, since the DRE doesn’t see registration information
- But, records timestamp and order of voting
- Could be correlated with hidden camera or corrupted poll worker
Voting machine viruses

- Two-way data flow between voting and office machines
- Hijacking vuln’s in software on both sides
- Can write virus to propagate between machines
- Leverage small amount of physical access

Subtle ways to steal votes

- Change a few votes your way, revert if the voter notices
 - Compare: flip coin to split lunch
- Control the chute for where VVPAT receipts go
- Exchange votes between provisional and regular voters

Outline

- Usability and security (cont’d)
- Elections and their security
- Announcements intermission
- System security of electronic voting
- Exercise sets 2 and 3 debrief
- Cryptography for voting

Invariants for buffer overflows

- How to ensure complex code is safe?
- Understand the logic, where it’s possibly broken
- Should lead to a minimal fix
- My example had an extra bug

EER, reference monitor

- Fuzzy checking for passwords?
 - Less symmetry that for biometrics, bad side effects
- Reference monitor without HW support?
 - Inspiration from HW setup

alice-read and alice-write

- Both tools are missing half the needed checks
- One solution: drop privileges
- Another solution: design so only half privileges needed
TCP congestion control

- Congestion control is a voluntary mechanism
- Forge reset packets to misbehaving hosts?
 - Used in reality for other sorts of misbehavior
- Blacklist misbehaving addresses
 - Can be misused by a dishonest adversary

Bad MACs

- Pre-authenticate by sending MAC of zeros
- Related to problem of CBC-MAC on varying lengths
- CTR-Encrypt hash appended to the end
 - Encryption doesn't protect integrity
 - Especially stream-cipher style modes
Protocol droids

- $A \rightarrow C: N_A, MAC_K(N_A)$
- $C \rightarrow A, MAC_K(MAC_K(N_A))$
- Problem 1: freshness
- Problem 2: oracle perspective

Hashing and signing

- Problems with letting yourself do random things
 - General policy on security definitions
 - Problems in particular applications
- Effort to find a good/bad collision?
 - Generally-applicable extension of birthday attack

Outline

- Usability and security (cont'd)
- Elections and their security
- Announcements intermission
- System security of electronic voting
- Exercise sets 2 and 3 debrief
- Cryptography for voting

End-to-end integrity and verification

- Tabulation cannot be 100% public
- But how can we still have confidence in it?
- Cryptography to the rescue, maybe
 - Techniques from privacy systems, others
 - Adoption requires to be very usable

Commitment to values

- Two phases: commit, later open
 - Another analogy to a use of envelopes
- Binding property: can only commit to a single value
- Hiding property: value not revealed until opened
- Trivia: either binding or hiding, but not both, can be perfect
 - Information-theoretic, like a one-time pad

Randomized auditing

- How can I prove what’s in the envelope without opening it?
- n envelopes, you pick one and open the rest
 - Chance $1/n$ of successful cheating
- Better protection with repetition
Election mix-nets
- Independent election authorities similar to remailers or Tor nodes
- Onion-encrypt ballot, each authority shuffles and decrypts
- Extra twist: prove no ballots added or removed, without revealing permutation
 - Instance of "zero-knowledge proof"
- Privacy preserved as long as at least one authority is honest

Pattern voting attack
- Widely applicable against techniques that reveal whole (anonymized) ballots
- Even a single race, if choices have enough entropy
 - 3-choice IRV with 35 candidates: 15 bits
- Buyer says: vote first for Bob, then 2nd and 3rd for Kenny and Xavier
 - Chosen so ballot is unique

Fun tricks with paper: visual crypto
- Want to avoid trusted client, but voters can't do computations by hand
- Analogues to crypto primitives using physical objects
- One-time pad using transparencies:
 ![transparencies]

Scantegrity II
- Designed as end-to-end add-on to optical scan system
- Fun with paper 2: invisible ink
- Single trusted shuffle
 - Checked by random audits of commitments

Next time
- Electronic cash and Bitcoin