Tor basics

- Tor experiences and challenges
- Announcements intermission
- Usability and security
- Usable security example areas

Outline

Tor basics

- Tor experiences and challenges
- Announcements intermission
- Usability and security
- Usable security example areas

Low-latency TCP applications

- Tor works by proxying TCP streams
 - (And DNS lookups)
- Focuses on achieving interactive latency
 - WWW, but potentially also chat, SSH, etc.
 - Anonymity tradeoffs compared to remailers

Client perspective

- Install Tor client running in background
- Configure browser to use Tor as proxy
 - Or complete Tor+Proxy+Browser bundle
- Browse web as normal, but a lot slower
 - Also, sometimes google.com is in Swedish
Entry/guard relays

- "Entry node": first relay on path
- Entry knows the client’s identity, so particularly sensitive
 - Many attacks possible if one adversary controls entry and exit
- Choose a small random set of “guards” as only entries to use
 - Rotate slowly or if necessary
- For repeat users, better than random each time

Exit relays

- Forwards traffic to/from non-Tor destination
- Focal point for anti-abuse policies
 - E.g., no exits will forward for port 25 (email sending)
- Can see plaintext traffic, so danger of sniffing, MITM, etc.

Centralized directory

- How to find relays in the first place?
- Straightforward current approach: central directory servers
- Relay information includes bandwidth, exit policies, public keys, etc.
- Replicated, but potential bottleneck for scalability and blocking

Outline

- Tor basics
- Tor experiences and challenges
- Announcements intermission
- Usability and security
- Usable security example areas

Anonymity loves company

- Diverse user pool needed for anonymity to be meaningful
 - Hypothetical Department of Defense Anonymity Network
- Tor aims to be helpful to a broad range of (sympathetic sounding) potential users

Who (arguably) needs Tor?

- Consumers concerned about web tracking
- Businesses doing research on the competition
- Citizens of countries with Internet censorship
- Reporters protecting their sources
- Law enforcement investigating targets
Tor and the US government
- Onion routing research started with the US Navy
- Academic research still supported by NSF
- Anti-censorship work supported by the State Department
 - Same branch as Voice of America
 - But also targeted by the NSA
 - Per Snowden, so far only limited success

Volunteer relays
- Tor relays are run basically by volunteers
 - Most are idealistic
 - A few have been less-ethical researchers, or GCHQ
- Never enough, or enough bandwidth
- P2P-style mandatory participation?
 - Unworkable/undesirable
- Various other kinds of incentives explored

Performance
- Increased latency from long paths
- Bandwidth limited by relays
- Currently 1-2 sec for 50KB, 5-10 sec for 1MB
- Historically worse for many periods
 - Flooding (guessed botnet) earlier this fall

Anti-censorship
- As a web proxy, Tor is useful for getting around blocking
- Unless Tor itself is blocked, as it often is
- Bridges are special less-public entry points
- Also, protocol obfuscation arms race (currently behind)

Hidden services
- Tor can be used by servers as well as clients
- Identified by cryptographic key, use special rendezvous protocol
- Servers often present easier attack surface

Undesirable users
- P2P filesharing
 - Discouraged by Tor developers, to little effect
- Terrorists
 - At least the NSA thinks so
- Illicit e-commerce
 - “Silk Road” in the news recently
Intersection attacks
Suppose you use Tor to update a pseudonymous blog, reveal you live in Minneapolis.
Comcast can tell who in the city was sending to Tor at the moment you post an entry.
- Anonymity set of 1000 → reasonable protection
- But if you keep posting, adversary can keep narrowing down the set

Exit sniffing
Easy mistake to make: log in to an HTTP web site over Tor.
A malicious exit node could now steal your password.
Another reason to always use HTTPS for logins.

Browser bundle JS attack
Tor’s Browser Bundle disables many features to stop tracking.
But, JavaScript defaults to on.
- Usability for non-expert users
- Finger printing via NoScript settings
Was incompatible with Firefox auto-updating.
Many Tor users de-anonymized in August by JS vulnerability patched in June.

Outline
Tor basics
Tor experiences and challenges
Announcements intermission
Usability and security
Usable security example areas

HW2 trailing slash mistake
First versions of the HW2 instructions gave the poke command like
```bash
curl http://CLIENT/1/
```
- Doesn’t work, gives 404 error.
- Should be: `curl http://CLIENT/1`.
- Note no trailing slash.

Exercises
Exercise set 2 was not actually finished Monday, but it is now.
Leftover papers will be in my office.
Exercise set 4 due Thursday night.

Outline

Tor basics
Tor experiences and challenges
Announcements intermission
Usability and security
Usable security example areas

Users are not ‘ideal components’

- Frustrates engineers: cannot give users instructions like a computer
 - Closest approximation: military
- Unrealistic expectations are bad for security

Most users are benign and sensible

- On the other hand, you can’t just treat users as adversaries
 - Some level of trust is inevitable
 - Your institution is not a prison
- Also need to take advantage of user common sense and expertise
 - A resource you can’t afford to pass up

Don’t blame users

- “User error” can be the end of a discussion
- This is a poor excuse
- Almost any “user error” could be avoidable with better systems and procedures

Users as rational

- Economic perspective: users have goals and pursue them
 - They’re just not necessarily aligned with security
- Ignoring a security practice can be rational if the rewards is greater than the risk

Perspectives from psychology

- Users become habituated to experiences and processes
 - Learn “skill” of clicking OK in dialog boxes
- Heuristic factors affect perception of risk
 - Level of control, salience of examples
- Social pressures can override security rules
 - “Social engineering” attacks
User attention is a resource

- Users have limited attention to devote to security
 - Exaggeration: treat as fixed
- If you waste attention on unimportant things, it won’t be available when you need it
- Fable of the boy who cried wolf

Research: ecological validity

- User behavior with respect to security is hard to study
- Experimental settings are not like real situations
- Subjects often:
 - Have little really at stake
 - Expect experimenters will protect them
 - Do what seems socially acceptable
 - Do what they think the experimenters want

Research: deception and ethics

- Have to be very careful about ethics of experiments with human subjects
 - Including because of institutional review systems
- When is it acceptable to deceive subjects?
 - Many security problems naturally include deception

Outline

- Tor basics
- Tor experiences and challenges
- Announcements intermission
- Usability and security
- Usable security example areas

Phishing

- Attacker sends email appearing to come from an institution you trust
- Links to web site where you type your password, etc.
- Spear phishing: individually targeted, can be much more effective

Phishing defenses

- Educate users to pay attention to X:
 - Spelling → copy from real emails
 - URL → homograph attacks
 - SSL “lock” icon → fake lock icon, or SSL-hosted attack
- Extended validation (green bar) certificates
- Phishing URL blacklists
SSL warnings: prevalence
- Browsers will warn on SSL certificate problems
- In the wild, most are false positives
 - foo.com vs. www.foo.com
 - Recently expired
 - Technical problems with validation
 - Self-signed certificates (HW2)
- Classic warning-fatigue danger

SSL warnings: effectiveness
- Early warnings fared very poorly in lab settings
- Recent browsers have a new generation of designs:
 - Harder to click through mindlessly
 - Persistent storage of exceptions
- Recent telemetry study: they work pretty well

Spam-advertised purchases
- “Replica” Rolex watches, herbal V@gr@, etc.
- This business is clearly unscrupulous; if I pay, will I get anything at all?
- Empirical answer: yes, almost always
 - Not a scam, a black market
 - Importance of credit-card bank relationships

Advance fee fraud
- “Why do Nigerian Scammers say they are from Nigeria?” (Herley, WEIS 2012)
- Short answer: false positives
 - Sending spam is cheap
 - But, luring victims is expensive
 - Scammer wants to minimize victims who respond but ultimately don’t pay

Trusted UI
- Tricky to ask users to make trust decisions based on UI appearance
 - Lock icon in browser, etc.
- Attacking code can draw lookalike indicators
 - Lock favicon
 - Picture-in-picture attack

Smartphone app permissions
- Smartphone OSes have more fine-grained per-application permissions
 - Access to GPS, microphone
 - Access to address book
 - Make calls
- Phone also has more tempting targets
- Users install more apps from small providers
<table>
<thead>
<tr>
<th>Permissions manifest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android approach: present listed of requested permissions at install time</td>
</tr>
<tr>
<td>Can be hard question to answer hypothetically</td>
</tr>
<tr>
<td>Users may have hard time understanding implications</td>
</tr>
<tr>
<td>User choices seem to put low value on privacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time-of-use checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>iOS approach: for narrower set of permissions, ask on each use</td>
</tr>
<tr>
<td>Proper context makes decisions clearer</td>
</tr>
<tr>
<td>But, have to avoid asking about common things</td>
</tr>
<tr>
<td>iOS app store is also more closely curated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trusted UI for privileged actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trusted UI works better when asking permission (e.g., Oakland'12)</td>
</tr>
<tr>
<td>Say, “take picture” button in phone app</td>
</tr>
<tr>
<td>Requested by app</td>
</tr>
<tr>
<td>Drawn and interpreted by OS</td>
</tr>
<tr>
<td>OS well positioned to be sure click is real</td>
</tr>
<tr>
<td>Little value to attacker in drawing fake button</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic voting: dangers and potential fixes</td>
</tr>
</tbody>
</table>