
CSci 5271
Introduction to Computer Security
Day 20: Firewalls, NATs, and IDSes

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

XSS: HTML/JS injection (A3)

Another use of injection template

Attacker supplies HTML containing
JavaScript (or occasionally CSS)
OWASP’s most prevalent weakness

A category unto itself
Easy to commit in any dynamic page
construction

No string-free solution

For server-side XSS, no way to avoid
string concatenation
Web page will be sent as text in the
end

Research topic: ways to change this?

XSS especially hard kind of injection

Danger: complex language embedding

JS and CSS are complex languages in
their own
Can appear in various places with
HTML

But totally different parsing rules

Example: "..." used for HTML
attributes and JS strings

What happens when attribute contains
JS?

Danger: forgiving parsers

History: handwritten HTML, browser
competition

Many syntax mistakes given “likely”
interpretations

Handling of incorrect syntax was not
standardized

Sanitization: plain text only

Easiest case: no tags intended, insert
at document text level

Escape HTML special characters with
entities like < for <

OWASP recommendation:
& < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in
a web page you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

In some applications, want to allow
benign markup like

But, even benign tags can have JS
attributes
Handling well essentially requires an
HTML parser

But with an adversarial-oriented design

Don’t blacklist

Browser capabilities continue to evolve

Attempts to list all bad constructs
inevitably incomplete

Even worse for XSS than other
injection attacks

Filter failure: one pass delete

Simple idea: remove all occurrences of
<script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta>

tag, or some browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

Put this on something the user will be
tempted to click on

There are more than 100 handlers like
this recognized by various browsers

Use good libraries

Coding your own defenses will never
work

Take advantage of known good
implementations
Best case: already built into your
framework

Disappointingly rare

Content Security Policy

New HTTP header, W3C candidate
recommendation
Lets site opt-in to stricter treatment of
embedded content, such as:

No inline JS, only loaded from separate
URLs
Disable JS eval et al.

Has an interesting violation-reporting
mode

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

HTTP header injection

Untrusted data included in response
headers

Can include CRLF and new headers, or
premature end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from
headers, extension, and content-based
guessing

Latter two for � 1% server errors

Many sites host “untrusted” images
and media
Inconsistencies in guessing lead to kind
of XSS

E.g., “chimera” PNG-HTML document

Cross-site request forgery (A8)

Certain web form on bank.com used to
wire money
Link or script on evil.com loads it
with certain parameters

Linking is exception to same-origin

If I’m logged in, money sent
automatically
Confused deputy, cookies are ambient
authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects (A10)

Common for one page to redirect
clients to another
Target should be validated

With authentication check if appropriate

Open redirect: target supplied in
parameter with no checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

Upcoming assignments

Exercise set 4 posted late last week,
due 11/21

A week from this Thursday

HW2 almost ready

Note: more readings this week

More details on how to set up firewalls

Burglar alarms and “mimicry” attack on
IDSes

Containing high-speed worms

Virus evolution in 2012

Use bookmarklet for on-campus
download links

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

Site perspective (A6)

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry
Data Security Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that
more sites need to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website
! backend credit card info

Adjusting client behavior

HTTPS and password fields are basic
hints
Consider disabling autocomplete

Usability tradeoff, save users from
themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to
site goals

Such as in tracking for advertisements

Browser makers can find themselves in
the middle

Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than
the one in the URL bar

For fun, check where your cookies are
coming from

Various levels of cooperation

Web bugs are typically 1x1 images used
only for tracking

Cookies arms race

Privacy-sensitive users like to block
and/or delete cookies

Sites have various reasons to retain
identification
Various workarounds:

Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

Combine various server or JS-visible
attributes passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from

exhaustive)

History stealing

History of what sites you’ve visited is
not supposed to be JS-visible
But, many side-channel attacks have
been possible

Query link color
CSS style with external image for visited
links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives
in extensions

Disabling most JavaScript (NoScript)
HTTPS Everywhere (whitelist)
Tor Browser Bundle

Default behavior is much more
controversial

Concern not to kill advertising support as
an economic model

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

Misconfiguration problems (A5)

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from
query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack
backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does
it?

Using vulnerable components (A9)

Large web apps can use a lot of
third-part code
Convenient for attackers too

OWASP: two popular vulnerable
components downloaded 22m times

Hiding doesn’t work if it’s popular

Stay up to date on security
announcements

Clickjacking

Fool users about what they’re clicking
on

Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge,
but proprietary

Yours in a certain context, if you view
ads, etc.

Sites don’t want it downloaded
automatically (web crawling)

Or parsed and user for another
purpose (screen scraping)

High-rate or honest access detectable

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

Internet addition: middleboxes

Original design: middle of net is only
routers

End-to-end principle

Modern reality: more functionality in the
network

Security is one major driver

Security/connectivity tradeoff

A lot of security risk comes from a
network connection

Attacker could be anywhere in the world

Reducing connectivity makes security
easier

Connectivity demand comes from end
users

What a firewall is

Basically, a router that chooses not to
forward some traffic

Based on an a-priori policy

More complex architectures have
multiple layers

DMZ: area between outer and inner
layers, for outward-facing services

Inbound and outbound control

Most obvious firewall use: prevent
attacks from the outside
Often also some control of insiders

Block malware-infected hosts
Employees wasting time on Facebook
Selling sensitive info to competitors
Nation-state Internet management

May want to log or rate-limit, not block

Default: deny

Usual whitelist approach: first, block
everything

Then allow certain traffic

Basic: filter packets based on headers

More sophisticated: proxy traffic at a
higher level

IPv4 address scarcity

Design limit of 232 hosts
Actually less for many reasons

Addresses becoming gradually more
scarce over a many-year scale

Some high-profile exhaustions in 2011

IPv6 adoption still very low, occasional
signs of progress

Network address translation (NAT)

Middlebox that rewrites addresses in
packets
Main use: allow inside network to use
non-unique IP addresses

RFC 1918: 10.*, 192.168.*, etc.
While sharing one outside IP address

Inside hosts not addressable from
outside

De-facto firewall

Packet filtering rules

Match based on:
Source IP address
Source port
Destination IP address
Destination port
Packet flags: TCP vs. UDP, TCP ACK, etc.

Action, e.g. allow or block

Obviously limited in specificity

Client and server ports

TCP servers listen on well-known port
numbers

Often < 1024, e.g. 22 for SSH or 80 for
HTTP

Clients use a kernel-assigned random
high port

Plain packet filter would need to allow
all high-port incoming traffic

Stateful filtering

In general: firewall rules depend on
previously-seen traffic

Key instance: allow replies to an
outbound connection

See: port 23746 to port 80

Allow incoming port 23746
To same inside host

Needed to make a NAT practical

Circuit-level proxying

Firewall forwards TCP connections for
inside client
Standard protocol: SOCKS

Supported by most web browsers
Wrapper approaches for non-aware apps

Not much more powerful that
packet-level filtering

Application-level proxying

Knows about higher-level semantics

Long history for, e.g., email, now HTTP
most important
More knowledge allows better filtering
decisions

But, more effort to set up

Newer: “transparent proxy”
Pretty much a man-in-the-middle

Tunneling

Any data can be transmitted on any
channel, if both sides agree
E.g., encapsulate IP packets over SSH
connection

Compare covert channels, steganography

Powerful way to subvert firewall
Some legitimate uses

Outline

Cross-site scripting

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even web more risks

Firewalls and NAT boxes

Intrusion detection systems

Basic idea: detect attacks

The worst attacks are the ones you
don’t even know about
Best case: stop before damage occurs

Marketed as “prevention”

Still good: prompt response

Challenge: what is an attack?

Network and host-based IDSes

Network IDS: watch packets similar to
firewall

But don’t know what’s bad until you see it
More often implemented offline

Host-based IDS: look for compromised
process or user from within machine

Signature matching

Signature is a pattern that matches
known bad behavior

Typically human-curated to ensure
specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential
attack

Has possibility of finding novel attacks

Performance depends on normal
behavior too

Recall: FPs and FNs

False positive: detector goes off
without real attack

False negative: attack happens without
detection

Any detector design is a tradeoff
between these (ROC curve)

Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base
rate), most positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm
admins
E.g., 100 attacks out of 10 million
packets, 0.01% FP rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of
attacks

But attackers won’t keep using
techniques that are detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of
syscalls
Compute A \M, where:

A models allowed sequences
M models sequences achieving
attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar
effect

Next time

Malware and network denial of service

