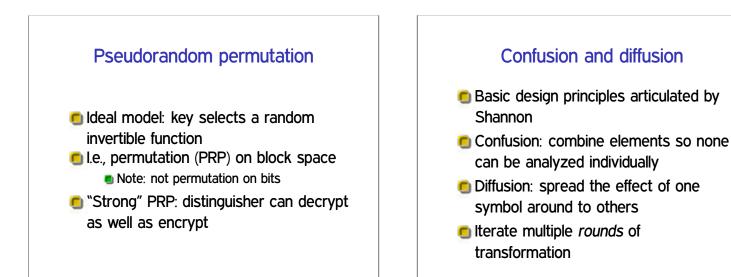
CSci 5271 Introduction to Computer Security Day 15: Cryptography part 2: public-key

Stephen McCamant University of Minnesota, Computer Science & Engineering

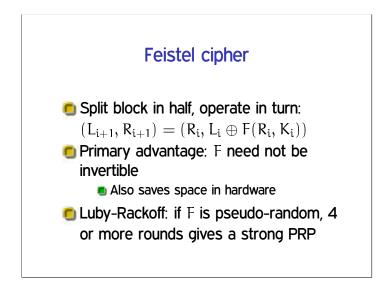
Outline


Block ciphers and modes of operation

- Hash functions and MACs
- Announcements
- Building a secure channel
- Public-key crypto basics
- Public key encryption and signatures

Block cipher, basic idea

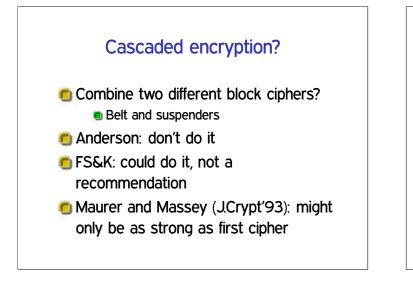
- Encryption/decryption for a fixed sized block
- Insecure if block size is too small
 - Barely enough: 64 bits; current standard: 128
- Reversible, so must be one-to-one and onto function

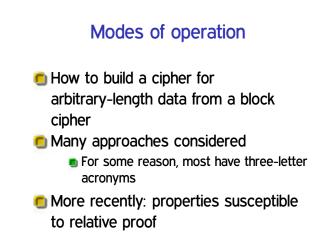


Substitution/permutation network

- Parallel structure combining reversible elements:
- Substitution: invertible lookup table ("S-box")
- Permutation: shuffle bits

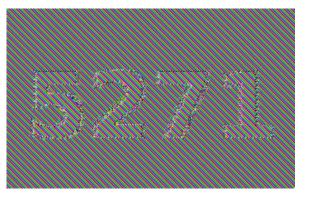
AES

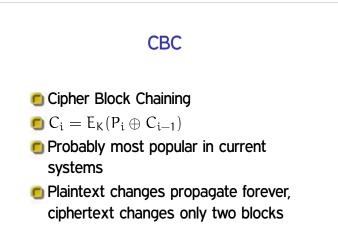

- Advanced Encryption Standard: NIST contest 2001
 Developed under the name Rijndael
- 128-bit block, 128/192/256-bit key
- Fast software implementation with lookup tables (or dedicated insns)
- Allowed by US government up to Top Secret

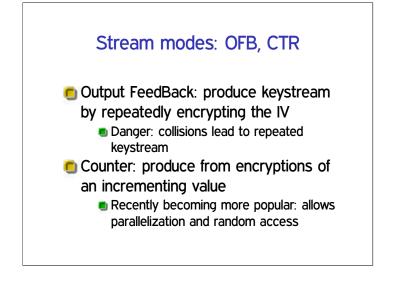


DES

- Data Encryption Standard: AES predecessor 1977-2005
- 64-bit block, 56-bit key
- Implementable in 70s hardware, not terribly fast in software
- Triple DES variant still used in places






ECB Electronic CodeBook Split into blocks, apply cipher to each one individually Leaks equalities between plaintext blocks Almost never suitable for general use

Do not use ECB

CBC: getting an IV C₀ is called the initialization vector (IV) Must be known for decryption IV should be random-looking To prevent first-block equalities from leaking (lesser version of ECB problem) Common approaches Generate at random Encrypt a nonce

Outline

Block ciphers and modes of operation

Hash functions and MACs

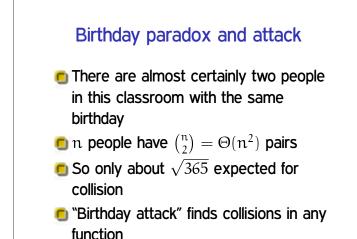
Announcements

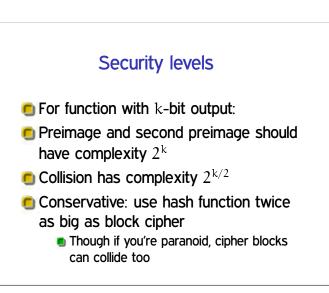
Building a secure channel

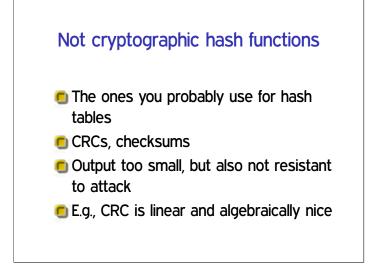
Public-key crypto basics

Public key encryption and signatures

Ideal model

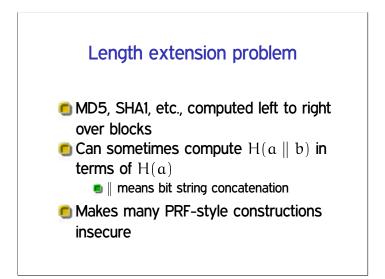

Ideal crypto hash function: pseudorandom function

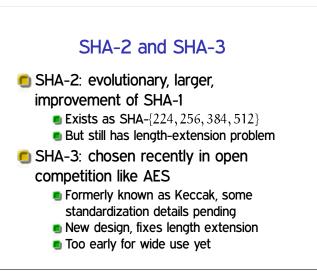

Arbitrary input, fixed-size output


- Simplest kind of elf in box, theoretically very convenient
- But large gap with real systems: better practice is to target particular properties

Kinds of attacks

- **Over the equation of a set o**
- Second preimage, targeted collision: given x, H(x), find $x' \neq x$ such that H(x') = H(x)
- (Free) collision: find x_1, x_2 such that $H(x_1) = H(x_2)$

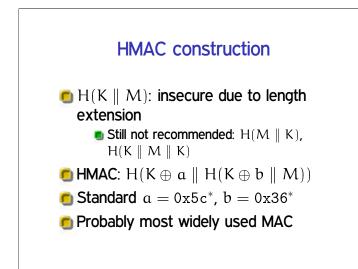



Short hash function history

One the way out: MD5 (128 bit)

 Flaws known, collision-finding now routine
 SHA(-0): first from NIST/NSA, quickly withdrawn

 Likely flaw discovered 3 years later
 SHA-1: fixed SHA-0, 160-bit output.
 Attacks with complexity around 2⁶⁰
 No collisions yet publicly demonstrated



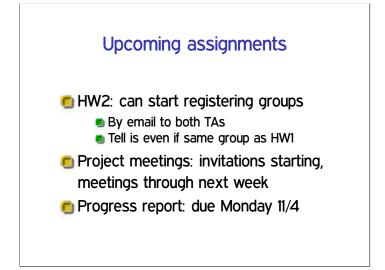
MAC: basic idea

- Message authentication code: similar to hash function, but with a key
- Adversary without key cannot forge MACs
- Strong definition: adversary cannot forge anything, even given chosen-message MACs on other messages

CBC-MAC construction

- Same process as CBC encryption, but:
 Start with IV of 0
 Return only the last ciphertext block
- Both these conditions needed for security
- For fixed-length messages (only), as secure as the block cipher

Outline


Block ciphers and modes of operation Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

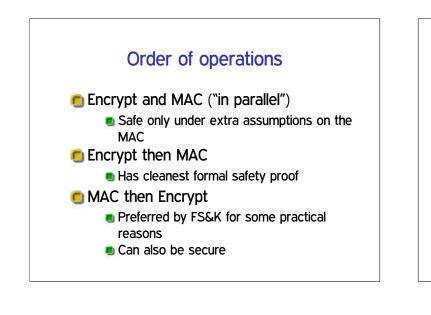
Crypto textbook show and tell 3/5

- Handbook of Applied Cryptography
- Recommended as reference in 5471, available online
- Comprehensive, long bibliography, but only up to about 1996

Outline

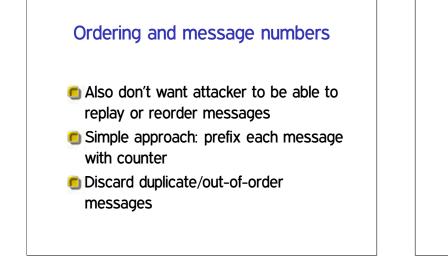
Block ciphers and modes of operation Hash functions and MACs

Announcements


Building a secure channel

Public-key crypto basics

Public key encryption and signatures


Session keys Don't use your long term password, etc., directly as a key Instead, session key used for just one channel In practice, usually obtained with public-key crypto Separate keys for encryption and

MACing

Authenticated encryption modes

- Encrypting and MACing as separate steps is about twice as expensive as just encrypting
- *Authenticated encryption modes do both at once
 - Recent (circa 2000) innovation, many variants
- NIST-standardized and unpatented: Galois Counter Mode (GCM)

Padding

- Adjust message size to match multiple of block size
- To be reversible, must sometimes make message longer
- E.g.: for 16-byte block, append either 1, or 2 2, or 3 3 3, up to 16 "16" bytes

Padding oracle attack

- Have to be careful that decoding of padding does not leak information
- E.g., spend same amount of time MACing and checking padding whether or not padding is right
- Remote timing attack against CBC TLS published just this year

Don't actually reinvent the wheel

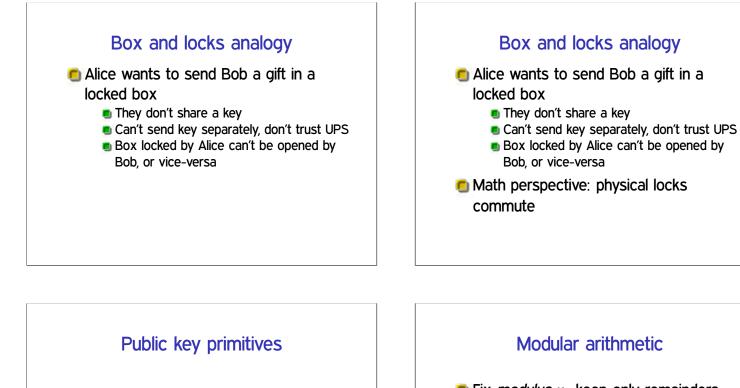
- This is all implemented carefully in OpenSSL, SSH, etc.
- Good to understand it, but rarely sensible to reimplement it
- You'll probably miss at least one of decades worth of attacks

Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

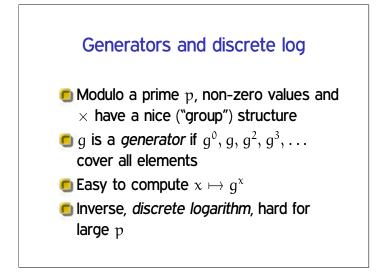

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Pre-history of public-key crypto

- First invented in secret at GCHQ
- Proposed by Ralph Merkle for UC Berkeley grad. security class project First attempt only barely practical
 - Professor didn't like it
- Merkle then found more sympathetic Stanford collaborators named Diffie and Hellman


- Public-key encryption (generalizes) block cipher)
 - Separate encryption key EK (public) and decryption key DK (secret)
- Signature scheme (generalizes MAC)
 - Separate signing key SK (secret) and verification key VK (public)

E Fix *modulus* n, keep only remainders **mod** n

mod 12: clock face; mod 2³²: int

- $\mathbf{0}+, -, \mathbf{and} \times \mathbf{work}$ mostly the same
- Division: see Exercise Set 1
- Exponentiation: efficient by square and multiply

Diffie-Hellman key exchange

- 🖲 Goal: anonymous key exchange
- Public parameters p, g; Alice and Bob have resp. secrets a, b

- **o** Alice computes $B^a = g^{ba} = k$
- **Observe Set 5** Bob computes $A^b = g^{ab} = k$

Relationship to a hard problem

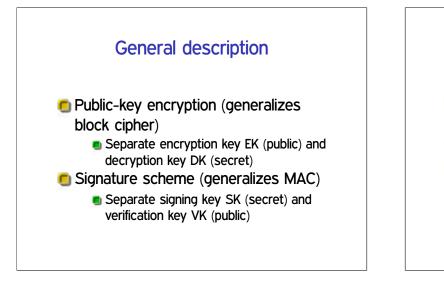
- We're not sure discrete log is hard (likely not even NP-complete), but it's been unsolved for a long time
- If discrete log is easy (e.g., in P), DH is insecure
- Converse might not be true: DH might have other problems

Categorizing assumptions

- Math assumptions unavoidable, but can categorize
- E.g., build more complex scheme, shows it's "as secure" as DH because it has the same underlying assumption
- Commonly "decisional" (DDH) and "computational" (CDH) variants

Key size, elliptic curves

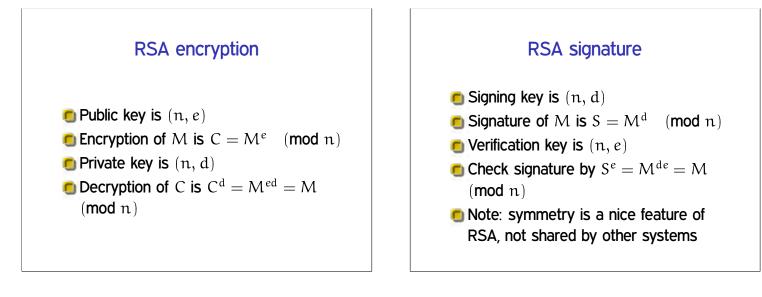
- Need key sizes ~10 times larger then security level

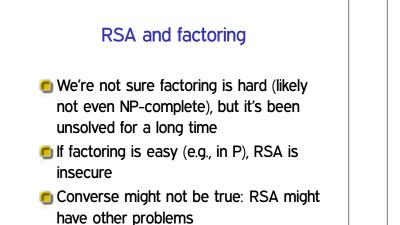

 Attacks shown up to about 768 bits

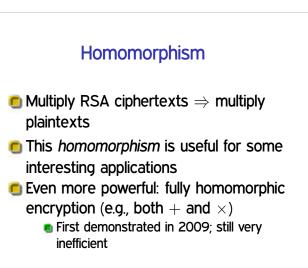
 Elliptic curves: objects from higher math with analogous group structure
 - (Only tenuously connected to ellipses)
- Elliptic curve algorithms have smaller keys, about 2× security level

Outline

Block ciphers and modes of operation


- Hash functions and MACs
- Announcements
- Building a secure channel
- Public-key crypto basics
- Public key encryption and signatures




RSA setup

- Choose n = pq, product of two large primes, as modulus
- \mathbf{a} n is public, but p and q are secret
- Compute encryption and decryption exponents *e* and d such that

 $M^{ed} = M \pmod{n}$

Problems with vanilla RSA

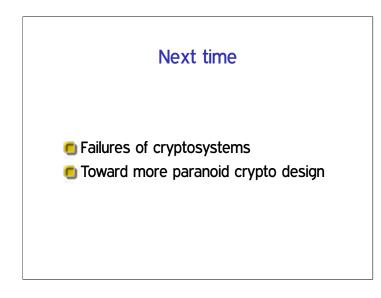
- Homomorphism leads to chosen-ciphertext attacks
- If message and e are both small compared to n, can compute M^{1/e} over the integers
- Many more complex attacks too

Hybrid encryption

- Public-key operations are slow
- In practice, use them just to set up symmetric session keys
- + Only pay RSA costs at setup time
- Breaks at either level are fatal

Padding, try #1

- Need to expand message (e.g., AES key) size to match modulus
- PKCS#1 v. 1.5 scheme: prepend 00 01 FF FF .. FF
- Surprising discovery (Bleichenbacher'98): allows adaptive chosen ciphertext attacks on SSL


Modern "padding"

- Much more complicated encoding schemes using hashing, random salts, Feistel-like structures, etc.
- Common examples: OAEP for encryption, PSS for signing
- Progress driven largely by improvement in random oracle proofs

Simpler padding alternative "Key encapsulation mechanism" (KEM) For common case of public-key crypto used for symmetric-key setup Also applies to DH Choose RSA message r at random mod n, symmetric key is H(r) Hard to retrofit, RSA-KEM insecure if e and r reused with different n

Box and locks revisited

- Alice and Bob's box scheme fails if an intermediary can set up two sets of boxes
 - Man-in-the-middle (or middleperson) attack
- Real world analogue: challenges of protocol design and public key distribution

