
CSci 5271
Introduction to Computer Security

Day 8: Defensive programming and design,
part 2

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Software engineering for security

Secure use of the OS

Announcements intermission

Bernstein’s perspective

Techniques for privilege separation

Error handling

Every error must be handled
I.e, program must take an appropriate
response action

Errors can indicate bugs, precondition
violations, or situations in the
environment

Error codes

Commonly, return value indicates error
if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to
handler

Good: avoid need for manual copying,
not dropped

May support: automatic cleanup
(finally)

Bad: non-local control flow can be
surprising

Testing and security

“Testing shows the presence, not the
absence of bugs” – Dijkstra
Easy versions of some bugs can be
found by targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Fuzz testing

Random testing can also sometimes
reveal bugs

Original ‘fuzz’ (Miller): program
</dev/urandom

Modern: small random changes to a
benign input

Outline

Software engineering for security

Secure use of the OS

Announcements intermission

Bernstein’s perspective

Techniques for privilege separation

Avoid special privileges

Require users to have appropriate
permissions

Rather than putting trust in programs

Anti-pattern 1: setuid/setgid program

Anti-pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

One slide on setuid/setgid

Unix users and process have a user id
number (UID) as well as one or more
group IDs

Normally, process has the IDs of the
use who starts it

A setuid program instead takes the UID
of the program binary

Don’t use shells or Tcl

. . . in security-sensitive applications

String interpretation and re-parsing are
very hard to do safely

Eternal Unix code bug: path names with
spaces

Prefer file descriptors

Maintain references to files by keeping
them open and using file descriptors,
rather than by name

References same contents despite file
system changes

Use openat, etc., variants to use FD
instead of directory paths

Prefer absolute paths

Use full paths (starting with /) for
programs and files

$PATH under local user control

Initial working directory under local user
control

But FD-like, so can be used in place of
openat if missing

Prefer fully trusted paths

Each directory component in a path
must be write protected

Read-only file in read-only directory
can be changed if a parent directory is
modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight
permissions and never reopen them

See detailed recommendations in Wheeler

Not quite good enough: reopen and
check matching device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of
set*id functions

Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid
Demystified (USENIX’02)

Whitelist environment variables

Can change the behavior of called
program in unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

Outline

Software engineering for security

Secure use of the OS

Announcements intermission

Bernstein’s perspective

Techniques for privilege separation

Deadlines reminder

Project progress reports: Wednesday
night

HW1 final submission: Friday night

Exercise set 2: week from Thursday

HW1 so far

Sending feedback on early submissions

Most still have a long road ahead

Ask your questions early

Notes on a couple of misconceptions:

Stack and non-stack buffers

char global[100];

void f(void) {

char stack[100];

char *heap = malloc(100);

}

printf and sprintf

Buffer overflow and format strings

printf("%s\n", untrusted)

sprintf(buf, "%s", untrusted)

Changed office hours this Thu/Fri

John will be traveling
Should have already submitted HW1
groups

Thursday 10-11am will substituted by
Stephen in his office 4-225E

Friday will substituted by Mike, 3-4pm
in 2-209

Outline

Software engineering for security

Secure use of the OS

Announcements intermission

Bernstein’s perspective

Techniques for privilege separation

Historical background

Traditional Unix MTA: Sendmail (BSD)
Monolithic setuid root program
Designed for a more trusting era
In mid-90s, bugs seemed endless

Spurred development of new,
security-oriented replacements

Bernstein’s qmail
Venema et al.’s Postfix

Distinctive qmail features

Single, security-oriented developer

Architecture with separate programs
and UIDs

Replacements for standard libraries

Deliveries into directories rather than
large files

Ineffective privilege separation

Example: prevent Netscape DNS helper
from accessing local file system
Before: bug in DNS code
! read user’s private files

After: bug in DNS code
! inject bogus DNS results
! man-in-the-middle attack
! read user’s private web data

Effective privilege separation

Transformations with constrained I/O

General argument: worst adversary can
do is control output

Which is just the benign functionality

MTA header parsing (Sendmail bug)

jpegtopnm inside xloadimage

Eliminating bugs

Enforce explicit data flow

Simplify integer semantics

Avoid parsing

Generalize from errors to inputs

Eliminating code

Identify common functions

Automatically handle errors

Reuse network tools

Reuse access controls

Reuse the filesystem

The “qmail security guarantee”

$500, later $1000 offered for security
bug

Never paid out

Issues proposed:
Memory exhaustion DoS
Overflow of signed integer indexes

Defensiveness does not encourage
more submissions

qmail today

Originally had terms that prohibited
modified redistribution

Now true public domain

Latest release from Bernstein: 1998;
netqmail: 2007

Does not have large market share

All MTAs, even Sendmail, are more
secure now

Outline

Software engineering for security

Secure use of the OS

Announcements intermission

Bernstein’s perspective

Techniques for privilege separation

Restricted languages

Main application: code provided by
untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting like (but
predates) CFI

Limit memory stores and sometimes
loads

Can’t jump out except to designated
points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process
from another

Pay overhead for creation and
communication

System call interface allows many
possibilities for mischief

System-call interposition

Trusted process examines syscalls
made by untrusted

Implement via ptrace (like strace, gdb)
or via kernel change

Easy policy: deny

Interposition challenges

Argument values can change in
memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model
kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to
any user

chroot

Unix system call to change root
directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces

OS-enabled containers

One kernel, but virtualizes all
namespaces

FreeBSD jails, Linux LXC, Solaris zones,
etc.

Quite robust, but the full, fixed, kernel is
in the TCB

(System) virtual machines

Presents hardware-like interface to an
untrusted kernel

Strong isolation, full administrative
complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’
underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs
for ease of virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU
architecture

Modern example: Chrom(ium)
Separates “browser kernel” from
less-trusted “rendering engine”

Pragmatic, keeps high-risk components
together

Experimented with various Windows
and Linux sandboxing techniques
Blocked 70% of historic vulnerabilities,
not all new ones
http://seclab.stanford.edu/websec/

chromium/

Next time

Protection and isolation

Basic (e.g., classic Unix) access control

