CSci 5271 Introduction to Computer Security Day 5: Low-level defenses and counterattacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Exploiting other vulnerabilities

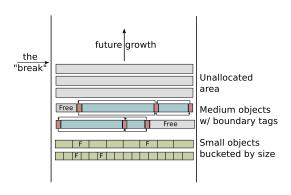
Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Epilogue: BCVS Makefile


Non-control data overwrite

- Overwrite other security-sensitive data
- No change to program control flow
- Set user ID to 0, set permissions to all, etc.

Heap meta-data

- Boundary tags similar to doubly-linked list
- Overwritten on heap overflow
- Arbitrary write triggered on free
- Simple version stopped by sanity checks

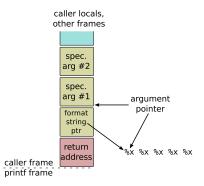
Heap meta-data

Use after free

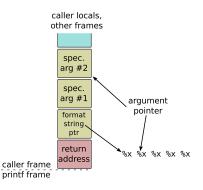
- Write to new object overwrites old, or vice-versa
- Key issue is what heap object is reused for
- Influence by controlling other heap operations

Integer overflows

- Easiest to use: overflow in small (8-, 16-bit) value, or only overflowed value used
- 2GB write in 100 byte buffer
 - Find some other way to make it stop
- Arbitrary single overwrite
 - Use math to figure out overflowing value


Null pointer dereference

- Add offset to make a predictable pointer
 - On Windows, interesting address start low
- Allocate data on the zero page
 - Most common in user-space to kernel attacks
 - Read more dangerous than a write


Format string attack

- Attacker-controlled format: little interpreter
- Step one: add extra integer specifiers, dump stack
 - Already useful for information disclosure

Format string attack layout

Format string attack layout

Format string attack: overwrite

- %n specifier: store number of chars written so far to pointer arg
- Advance format arg pointer to other attacker-controlled data
- Control number of chars written with padding
- On x86, use unaligned stores to create pointer

Outline

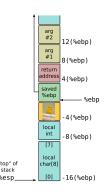
Exploiting other vulnerabilities

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)


Epilogue: BCVS Makefile

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

- Value hard to reproduce because it would tell the copy to stop
- StackGuard: 0x00 0D 0A FF
 - O: String functions
 - newline: fgets(), etc.
 - **9 -1**: getc()
 - carriage return: similar to newline?
- Doesn't stop: memcpy, custom loops

Random canary

- Can't reproduce because attacker can't quess
- For efficiency, usually one per execution
- Ineffective if disclosed

XOR canary

- Want to protect against non-sequential overwrites
- XOR return address with value c at entry
- $lue{}$ XOR again with c before return
- Standard choice for c: see random canary

Further refinements

- More flexible to do earlier in compiler
- Rearrange buffers after other variables
 - Reduce chance of non-control overwrite
- Skip canaries for functions with only small variables
 - Who has an overflow bug in an 8-byte array?

What's usually not protected?

- Backwards overflows
- Function pointers
- Adjacent structure fields
- Adjacent static data objects

Where to keep canary value

- Fast to access
- Buggy code/attacker can't read or write
- **<u>linux/x86</u>**: %gs:0x14

Complex anti-canary attack

- Canary not updated on fork in server
- Attacker controls number of bytes overwritten

Complex anti-canary attack

- Canary not updated on fork in server
- Attacker controls number of bytes overwritten
- ANRY BNRY CNRY DNRY ENRY FNRY

Shadow return stack

- Suppose you have a safe place to store the canary
- Why not just store the return address there?
- Needs to be a separate stack
- Ultimate return address protection

Outline

Exploiting other vulnerabilities

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Epilogue: BCVS Makefile

You may notice

- We're catching up with the readings
- Today: StackGuard, ASLR attacks
- Next time: CFI, Shacham ROP

Pre-proposals due tonight

- One PDF per group
- Submit via Moodle by 11:55pm

Pre-proposals schedule note

- Favorite meeting time: Mondays 2:30-3:00
- Not everyone can have that time
- If your favorite time is popular, have more second choices

Registering HW1 groups

- Send list of members to geddes@cs.umn.edu
- Include names and UMN ids/login names
- We'll notify you when VMs are ready

Outline

Exploiting other vulnerabilities

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Epilogue: BCVS Makefile

Basic idea

- "Address Space Layout Randomization"
- Move memory areas around randomly so attackers can't predict addresses
- Keep internal structure unchanged
 - E.g., whole stack moves together

Code and data locations

- Execution of code depends on memory location
- **E.g.**, on 32-bit x86:
 - Direct jumps are relative
 - Function pointers are absolute
 - Data must be absolute

Relocation (Windows)

- Extension of technique already used in compilation
- Keep table of absolute addresses, instructions on how to update
- Disadvantage: code modifications take time on load, prevent sharing

PIC/PIE (GNU/Linux)

- "Position-Independent Code / Executable"
- Keep code unchanged, use register to point to data area
- Disadvantage: code complexity, register pressure hurt performance

What's not covered

- Main executable (Linux 32-bit PIC)
- Incompatible DLLs (Windows)
- Relative locations within a module/area

Entropy limitations

- Intuitively, entropy measures amount of randomness, in bits
- Random 32-bit int: 32 bits of entropy
- \blacksquare ASLR page aligned, so at most 32 12 = 20 bits of entropy
- Other constraints further reduce possibilities

Leakage limitations

- If an attacker learns the randomized base address, can reconstruct other locations
- Any stack address → stack unprotected, etc.

GOT hijack (Müller)

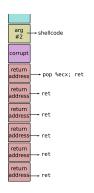
- Main program fixed, libc randomized
- PLT in main program used to call libc
- Rewire PLT to call attacker's favorite libc functions
- E.g., turn printf into system

GOT hijack (Müller)

printf@plt: jmp *0x8049678

. . .

system@plt: jmp *0x804967c


. .

0x8049678: <addr of printf in libc> 0x804967c: <addr of system in libc>

ret2pop (Müller)

- Take advantage of shellcode pointer already present on stack
- Rewrite intervening stack to treat the shellcode pointer like a return address
 - A long sequence of chained returns, one pop

ret2pop (Müller)

Outline

Exploiting other vulnerabilities

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Epilogue: BCVS Makefile

Basic idea

- Traditional shellcode must go in a memory area that is
 - unitable, so the shellcode can be inserted
 - executable, so the shellcode can be executed
- But benign code usually does not need this combination
- \blacksquare W xor X, really $\neg (W \land X)$

Non-writable code, $X \rightarrow \neg W$

- E.g., read-only .text section
- Has been standard for a while, especially on Unix
- Lets OS efficiently share code with multiple program instances

Non-executable data, $W \rightarrow \neg X$

- Prohibit execution of static data, stack, heap
- Not a problem for most programs
 - Incompatible with some GCC features no one uses
 - Non-executable stack opt-in on Linux, but now near-universal

Implementing $W \oplus X$

- Page protection implemented by CPU
 - \blacksquare Some architectures (e.g. SPARC) long supported $W \oplus X$
- x86 historically did not
 - One bit controls both read and execute
 - Partial stop-gap "code segment limit"
- Eventual obvious solution: add new bit
 - NX (AMD), XD (Intel), XN (ARM)

One important exception

- Remaining important use of self-modifying code: just-in-time (JIT) compilers
 - E.g., all modern JavaScript engines
- Allow code to re-enable execution per-block
 - mprotect, VirtualProtect
 - Now a favorite target of attackers

Counterattack: code reuse

- Attacker can't execute new code
- So, take advantage of instructions already in binary
- There are usually a lot of them
- And no need to obey original structure

Classic return-to-libc (1997)

- Overwrite stack with copies of:
 - Pointer to libc's system function
 - Pointer to "/bin/sh" string (also in libc)
- The system function is especially convenient
- Distinctive feature: return to entry point

Chained return-to-libc

- Shellcode often wants a sequence of actions, e.g.
 - Restore privileges
 - Allow execution of memory area
 - Overwrite system file, etc.
- Can put multiple fake frames on the stack
 - Basic idea present in 1997, further refinements

Beyond return-to-libc

- Can we do more? Oh, yes.
- Classic academic approach: what's the most we could ask for?
- Here: "Turing completeness"
- How to do it: reading for Monday

Outline

Exploiting other vulnerabilities

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Epilogue: BCVS Makefile

BCVS Makefile

```
CFLAGS := -g -w -m32 \
  -fno-stack-protector \
  -z execstack -z norelro
```

BCVS Makefile

```
CFLAGS := -g -w -m32 \
  -fno-stack-protector \
  -z execstack -z norelro
```

Standard non-security options

BCVS Makefile

```
CFLAGS := -g -w -m32 \
  -fno-stack-protector \
  -z execstack -z norelro
```

Turn off canaries

BCVS Makefile

```
CFLAGS := -g -w -m32 \
  -fno-stack-protector \
  -z execstack -z norelro
```

Allow execution on stack

BCVS Makefile

```
CFLAGS := -g -w -m32 \
  -fno-stack-protector \
  -z execstack -z norelro
```

Leave GOT writable

BCVS unprotection, cont'd

- Not in Makefile: disable ASLR
- Will be done system-wide in VM
- For pre-VM testing, can use setarch i386 -R

Next time

- Return-oriented programming (ROP)
 - And counter-defenses
- Control-flow integrity (CFI)