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A Two-State Approach 

0 1 

0.0V!
0.5V!

2.8V!
3.3V!

0! 1! 0
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Counting 

0 1 2 3 4 
5 6 7 8 9 

10 separate states!! 
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Why Don’t Computers Use Base 10? 

•  Base 10 Number Representation 
•  That’s why fingers are known as “digits” 
•  Natural representation for financial transactions 
•  Even carries through in scientific notation 

•  1.5213 X 104 

•  Implementing Electronically 
•  Hard to store 

•  ENIAC (First electronic computer) used 10 vacuum tubes / digit 
•  Hard to transmit 

•  Need high precision to encode 10 signal levels on single wire 
•  Messy to implement digital logic functions 

•  Addition, multiplication, etc. 
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Boolean Algebra 
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Boolean Algebra 
•  Developed by George Boole in 19th Century 

Algebraic representation of logic: encode “True” as 1 and “False” as 0 

And:  A&B = 1 when both A=1 and B=1 

Not:  ~A = 1 when A=0 

Or: A|B = 1 when either A=1 or B=1 

& 0 1 
0 0 0 
1 0 1 

| 0 1 
0 0 1 
1 1 1 

~ 
0 1 
1 0 

Associativity and commutativity Associativity and commutativity 
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The XOR Operation 

Exclusive-Or (Xor):  
A^B = 1 when either A=1 or B=1, but not both 

^ 0 1 
0 0 1 
1 1 0 

Associativity and commutativity 

What about: 
A ^ A? 
A ^ 0? 
A ^ 1? 

With Slides from Bryant and O’Hallaron 

Application of Boolean Algebra 

•  Applied to Digital Systems by Claude Shannon 
•  1937 MIT Master’s Thesis 
•  Reason about networks of relay switches 

•  Encode closed switch as 1, open switch as 0 

A!

~A!

~B!

B!

Connection when!
  !

 A&~B | ~A&B!
!
  !

A&~B!

~A&B!

= A^B!
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Relations Between Operations 

•  DeMorgan’s Laws 
•  Express & in terms of |, and vice-versa 

•  A & B  =  ~(~A | ~B) 
•  A and B are true if and only if neither A nor B is false 

•  A | B  =  ~(~A & ~B) 
•  A or B are true if and only if A and B are not both false 

•  Exclusive-Or 
•  A ^ B  =  (~A & B) | (A & ~B) 

•  Exactly one of A and B is true 
•  A ^ B  =  (A | B) & ~(A & B) 

•  Either A is true, or B is true, but not both 
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Bit-Level Operations in C 

•  Operations &,  |,  ~,  ^ Available in C 
•  Apply to any “integral” data type 

•  long,  int,  short,  char 
•  View arguments as bit vectors 
•  Arguments applied bit-wise 

•  Examples (Char data type) 

•  ~010000012  -->  101111102 
•  ~000000002  -->  111111112 

•  011010012 & 010101012 --> 010000012 
•  011010012 | 010101012 --> 011111012 
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Contrast: Logic Operations in C 

•  Contrast to Logical Operators 
•  &&, ||, ! 

•  View 0 as “False” 
•  Anything nonzero as “True” 
•  Always return 0 or 1 
•  Early termination 

•  Examples (char data type) 

•  ! 010000012 --> 000000002 
•  ! 000000002 --> 000000012 

•  !! 010000012--> 000000012 

•  010100012 && 101011102 --> 000000012 

•  010100012 || 101011102 --> 000000012 
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Boolean Algebras with Bit Vector 

•  Operate on Bit Vectors 

•  Operations applied bitwise 

•  All of the Properties of Boolean Algebra Apply 

  01101001 
& 01010101 
  01000001 

  01101001 
| 01010101 
  01111101 

  01101001 
^ 01010101 
  00111100 

   
~ 01010101 
  10101010   01000001 01111101 00111100 10101010 
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Cool Stuff with Xor 

(A ^ B) ^ B = A 
void swap() 
{ 
   int x = 00100111, y = 11100111; 
   x = x ^ y;    /* #1 */ 
   y = x ^ y;    /* #2 */ 
   x = x ^ y;    /* #3 */ 
} 

B A Begin!
B A^B 1!

(A^B)^B = A A^B 2!
A (A^B)^A = B 3!
A B End!

*y *x 

(A^B)^B 0 1 

0 0 1 
1 0 1 

A 

B 
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Shift Operations 

•  Left Shift:  x << y 
•  Shift bit-vector x left y positions 

•  Throw away extra bits on left 
•  Fill with 0’s on right 

•  Right Shift:  x >> y 
•  Shift bit-vector x right y positions 

•  Throw away extra bits on right 
•  Logical shift 

•  Fill with 0’s on left 
•  Arithmetic shift 

•  Replicate most significant bit on 
right 

•  Useful with two’s complement 
integer representation 

01100010 Argument x!

00010000 << 3!

00011000 Log. >> 2 

00011000 Arith. >> 2 

10100010 Argument x!

00010000 << 3!

00101000 Log. >> 2 

11101000 Arith. >> 2 

00010000 00010000 

00011000 00011000 

00011000 00011000 

00010000 

00101000 

11101000 

00010000 

00101000 

11101000 
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Binary Numbers 
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Converting Between Decimal and Binary 

Binary to Decimal 
10012 ? 

= 1*23 + 0* 22 + 0* 21 + 1*20 

= 8 + 1 

= 9 

 

00002 ? 

= 0 

 

11112 ? 

= 15 
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Converting Between Decimal and Binary 
Decimal to Binary   
Dividing the number repeatedly by 2 until the number becomes 0 

49 ? 

Divide by Number Remainder 

2 49 1 

2 24 0 

2 12 0 

2 6 0 

2 3 1 

2 1 1 

2 0 

With Slides from Bryant and O’Hallaron 
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What about real numbers? 

Binary to Decimal 
 

101.112 ? 

= 1 * 22 + 0 * 21 + 1 * 20 + 1* 2-1 + 1 * 2-2 

= 4 + 1 + 0.5 + 0.25 

= 5.75 

 

0.12 ? 

 

0.00012 ? 
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Converting Between Decimal and Binary 
Decimal to Binary   

 multiply the number by 2 and register the integer portion  

0.3125 ? 

Multiply by Number Remainder 

2 0.3125 0 

2 0.625 1 

2 0.25 0 

2 0.5 1 

2 0 
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Converting Between Decimal and Binary 
What about  0.4 ? 

Multiply by Number Remainder 
2 0.4 0 
2 0.8 1 
2 0.6 1 
2 0.2 0 
2 0.4 0 
2 0.8 1 
2 0.6 1 
2 0.2 0 

… … 

0.410 = 0.[0110]2 

Non-terminating repeating 
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Practice 

Decimal Binary 
2 
6 
65 
63 
1025 
0.25 
43.16 
0.20 
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Hex and Octal Number 

Binary numbers are long! 
Binary-decimal conversion is non-trivial! 
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Binary Decimal Octal Hexadecimal 

0000 0 0 0 
0001 1 1 1 
0010 2 2 2 
0011 3 3 3 
0100 4 4 4 
0101 5 5 5 
0110 6 6 6 
0111 7 7 7 
1000 8 10 8 
1001 9 11 9 
1010 10 12 A 
1011 11 13 B 
1100 12 14 C 
1101 13 15 D 
1110 14 16 E 
1111 15 17 F 
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Encoding Byte Values 

•  Byte = 8 bits 
•  Binary 000000002 to 111111112 
•  Decimal: 010 to 25510 
•  Hexadecimal 0016 to FF16 

•  Base 16 number representation 
•  Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 
•  Write FA1D37B16 in C as 

•  0xFA1D37B 
•  0xfa1d37b  

 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 

Hex! Decim
al!

Binary!

• • •!

Byte-Oriented Memory Organization 
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Machine Words 

•  Machine Has “Word Size” 
•  Nominal size of integer-valued data 

•  Including addresses 
•  Most current machines use 32 bits (4 bytes) words 

•  Limits addresses to 4GB 
•  Becoming too small for memory-intensive applications 

•  High-end systems use 64 bits (8 bytes) words 
•  Potential address space ≈ 1.8 X 1019 bytes 
•  x86-64 machines support 48-bit addresses: 256 Terabytes 

•  Machines support multiple data formats 
•  Fractions or multiples of word size 
•  Always integral number of bytes 

With Slides from Bryant and O’Hallaron 

Word-Oriented Memory Organization 

•  Addresses Specify Byte Locations 
•  Address of first byte in word 
•  Addresses of successive words 

differ by 4 (32-bit) or 8 (64-bit) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit!
Words!

Bytes! Addr.!

0012 
0013 
0014 
0015 

64-bit!
Words!

Addr !
=!
?? 

Addr !
=!
?? 

Addr !
=!
?? 

Addr !
=!
?? 

Addr !
=!
?? 

Addr !
=!
?? 

0000 

0004 

0008 

0012 

0000 

0008 
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Data Representations 

C Data Type Typical 32-bit Intel IA32 x86-64 

char 1 1 1 

short 2 2 2 

int 4 4 4 

long 4 4 8 

long long 8 8 8 

float 4 4 4 

double 8 8 8 

long double 8 10/12 10/16 

pointer 4 4 8 
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Variations of Data Format 

Machines support multiple data formats 
•  Fractions or multiples of word size,  
•  but always integral number of bytes 
int main ()   { 

    printf("chars are %d bytes long\n", sizeof(char)); 

    printf("ints are %d bytes long\n", sizeof(int)); 

    printf("shorts are %d bytes long\n", sizeof(short)); 

    printf("floats are %d bytes long\n", sizeof(float)); 

} 

chars are 1 bytes long 
ints are 4 bytes long 
shorts are 2 bytes long 
floats are 4 bytes long 
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Byte Ordering Example 

•  Big Endian 
•  Least significant byte has highest address 

•  Little Endian 
•  Least significant byte has lowest address 

•  Example 
•  Variable x has 4-byte representation 0xDEADBEEF 
•  Address given by &x is 0x100 

0x100 0x101 0x102 0x103 

01 23 45 67 

0x100 0x101 0x102 0x103 

67 45 23 01 

Big Endian!

Little Endian!

DE AD BE EF 

EF BE AD DE 

With Slides from Bryant and O’Hallaron 
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Examining Data Representations 

Code to Print Byte Representation of Data 
•  Casting pointer to unsigned char * creates byte array 

Printf directives: 
%p: !Print pointer!
%x: !Print Hexadecimal!

int integer = 0xDEADBEEF; 
int main() 
{ 
  int i; 
  unsigned char *pointer = &integer; 
  for (i = 0; i < 4; i++) 
    printf("Byte #%d: addr %p, value 0x%x\n", i, pointer+i, *(pointer+i)); 
} 
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The Outcome is Different on Different Machine 

On SUN work station:  

 

Byte #0: addr 20944, value 0xde 
Byte #1: addr 20945, value 0xad 

Byte #2: addr 20946, value 0xbe 

Byte #3: addr 20947, value 0xef 

 

 
 

A big endian machine 

On PC (linux): 

 

Byte #0: addr 0x80495f8, value 0xef 
Byte #1: addr 0x80495f9, value 0xbe 

Byte #2: addr 0x80495fa, value 0xad 

Byte #3: addr 0x80495fb, value 0xde 

A little endian machine 

With Slides from Bryant and O’Hallaron 

Representing Integers 
Decimal: !15213 
Binary:   0011 1011 0110 1101 

Hex:     3    B    6    D 

6D 
3B 
00 
00 

IA32, x86-64!

3B 
6D 

00 
00 

Sun!

int A = 15213;	

93 
C4 
FF 
FF 

IA32, x86-64!

C4 
93 

FF 
FF 

Sun!

Two’s complement representation!
(Covered later)!

int B = -15213;	

long int C = 15213;	

00 
00 
00 
00 

6D 
3B 
00 
00 

x86-64!

3B 
6D 

00 
00 

Sun!

6D 
3B 
00 
00 

IA32!
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Representing Pointers 

Different	  compilers	  &	  machines	  assign	  different	  loca4ons	  to	  objects	  

int B = -15213; 

int *P = &B; 

x86-64!Sun! IA32!
EF	
FF	
FB	
2C	

D4	
F8	
FF	
BF	

0C	
89	
EC	
FF	
FF	
7F	
00	
00	

With Slides from Bryant and O’Hallaron 

char S[6] = "18243"; 

Representing Strings 

•  Strings in C 
•  Represented by array of characters 
•  Each character encoded in ASCII format 

•  Standard 7-bit encoding of character set 
•  Character “0” has code 0x30 

•  Digit i  has code 0x30+i 
•  String should be null-terminated 

•  Final character = 0 

•  Compatibility 
•  Byte ordering not an issue 

Linux/Alpha! Sun!

31	
38	
32	
34	
33	
00	

31	
38	
32	
34	
33	
00	
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2’s Complement Representation 
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Binary Decimal Octal Hexadecimal 
0000 0 0 0 
0001 1 1 1 
0010 2 2 2 
0011 3 3 3 
0100 4 4 4 
0101 5 5 5 
0110 6 6 6 
0111 7 7 7 
1000 8 10 8 
1001 9 11 9 
1010 10 12 A 
1011 11 13 B 
1100 12 14 C 
1101 13 15 D 
1110 14 16 E 
1111 15 17 F 

We need Negativ
e Numbers!!

! 
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Addition and Subtraction in Binary 

Decimal:               10 + 2 = 12 

Hexadecimal:       A + 2 = C 

Binary: 1010 + 0010 =1100 

Decimal:               12 - 2 = 10 

Hexadecimal:       C - 2 = A 

Binary: 1100 - 0010 =1010 

With Slides from Bryant and O’Hallaron 
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Addition/Subtraction in Binary with Negative Number 

Decimal:               0 - 1 = -1 

Hexadecimal:       0 - 1 = -1 

Binary: 0000 + 0001 =1111 

Decimal:               -1 + 1 = 0 

Hexadecimal:        -1 + 1 = 0 

Binary: 1111 + 0001 =0000 

Decimal:               -1 - 1 = -2 

Hexadecimal:        -1 - 1 = -2 

Binary: 1111 - 0001 =1110 
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Sign Bit 
Using half of the numbers for negative 
•  The most significant bit indicates sign 

•  0 for nonnegative 
•  1 for negative 

X! B2T(X)!B2U(X)!
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 

8!
9!
10!
11!
12!
13!
14!
15!

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0!
1!
2!
3!
4!
5!
6!
7!

Equivalence 
•  Same encodings for nonnegative values 

Uniqueness 
•  Every bit pattern represents unique integer 

•  Each representable integer has a unique 
encoding 

How to find the negative number? 
1.  Find the positive number 
2.  Inverse all bits 
3.  Add “1” to it 

With Slides from Bryant and O’Hallaron 
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Encoding Integers 

  short int x =  15213; 
  short int y = -15213; 

B2T (X ) = −xw−1 ⋅2
w−1 + xi ⋅2

i

i=0

w−2

∑B2U(X ) = xi ⋅2
i

i=0

w−1

∑

Unsigned! Two’s Complement!

Sign!
Bit!

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011
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Encoding Example (Cont.) 

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum 15213 -15213

With Slides from Bryant and O’Hallaron 
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Unsigned Values 
•  UMin  =  0 

000…0 
•  UMax  =   2w – 1 

111…1 

Two’s Complement Values 
•  TMin  =   –2w–1 

100…0 
•  TMax  =   2w–1 – 1 

011…1 
Other Values 

•  Minus 1 
111…1 

Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16!

Numeric Range 
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Unsigned & Signed Numeric Values 
•  Equivalence 

•  Same encodings for nonnegative 
values 

•  Uniqueness 
•  Every bit pattern represents 

unique integer value 
•  Each representable integer has 

unique bit encoding 

•  ⇒ Can Invert Mappings 
•  U2B(x)  =  B2U-1(x) 

•  Bit pattern for unsigned 
integer 

•  T2B(x)  =  B2T-1(x) 
•  Bit pattern for two’s comp 

integer 

X	   B2T(X)	  B2U(X)	  
0000	   0	  
0001	   1	  
0010	   2	  
0011	   3	  
0100	   4	  
0101	   5	  
0110	   6	  
0111	   7	  

–8	  8	  
–7	  9	  
–6	  10	  
–5	  11	  
–4	  12	  
–3	  13	  
–2	  14	  
–1	  15	  

1000	  
1001	  
1010	  
1011	  
1100	  
1101	  
1110	  
1111	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  

With Slides from Bryant and O’Hallaron 
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Values for Different Word Sizes 

•  Observations 
•  |TMin |  =  TMax + 1 

•  Asymmetric range 
•  UMax  =  2 * TMax + 1 

   

W
8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
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On A Real Machine 

#include <stdio.h> 

#include <limits.h> 

main ()   { 

    int uint_max = UINT_MAX; 

    int int_max = INT_MAX; 

    int int_min = INT_MIN; 

    printf("uint_max = %u; int_max = %d; int_min = %d\n",  

                   uint_max, int_max, int_min); 

} 

 

uint_max = 4294967295; int_max = 2147483647; int_min = -2147483648 

¢  C	  Programming	  
§  #include	  <limits.h>	  
§  Declares	  constants,	  e.g.,	  

§  ULONG_MAX	  
§  LONG_MAX	  
§  LONG_MIN	  

§  Values	  plaWorm	  specific
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On A Real Machine 

#include <stdio.h> 
#include <limits.h> 

main ()   { 

    int ushrt_max = USHRT_MAX; 

    int shrt_max = SHRT_MAX; 

    int shrt_min = SHRT_MIN; 

    printf("ushrt_max = %u; shrt_max = %d; shrt_min = %d\n", 

                   ushrt_max, shrt_max, shrt_min); 

} 

ushrt_max = 65535; shrt_max = 32767; shrt_min = -32768 
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  short int           x =  55455; 
  unsigned short int ux = (unsigned short) x; 
  short int           y  = -55455; 
  unsigned short int uy = (unsigned short) y; 

Casting Signed to Unsigned 

•  C Allows signed and unsigned value, and the conversions from signed to 
unsigned, and vise versa 

With Slides from Bryant and O’Hallaron 

T2U	  
T2B	   B2U	  

Two’s	  Complement	   Unsigned	  

Maintain	  Same	  Bit	  Pa^ern	  

x	
 ux	

X	


Mapping Between Signed & Unsigned 

U2T	  
U2B	   B2T	  

Two’s	  Complement	  Unsigned	  

Maintain	  Same	  Bit	  Pa^ern	  

ux	
 x	

X	


•  Mappings between unsigned and two’s complement numbers: 
 keep bit representations and reinterpret 



25 

With Slides from Bryant and O’Hallaron 

Signed vs. Unsigned in C 
•  Constants 

•  By default are considered to be signed integers 
•  Unsigned if have “U” as suffix 

0U, 4294967259U 

•  Casting 
•  Explicit casting between signed & unsigned same as U2T and T2U 

int tx, ty; 
unsigned ux, uy; 
tx = (int) ux; 
uy = (unsigned) ty; 

•  Implicit casting also occurs via assignments and procedure calls 
tx = ux; 
uy = ty; 

With Slides from Bryant and O’Hallaron 
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Conversion in C 

#include <stdio.h> 
main ()   { 

  int           x =  55455; 

  unsigned int ux = (unsigned int) x; 

  int           y  = -55455; 

  unsigned int uy = (unsigned int) y; 

  printf("int 55455 = %d; int -55455 = %d\n", x, y); 

  printf("unsigned 55455 = %u; unsigned -55455 = %u\n", ux, uy); 

} 

int 55455 = 55455; int -55455 = -55455 
unsigned 55455 = 55455; unsigned -55455 = 4294911841 
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Mapping Signed ↔ Unsigned 
Signed	  

0 

1 

2 

3 

4 

5 

6 

7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

Unsigned	  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Bits	  

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

U2T	  

T2U	  
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Mapping Signed ↔ Unsigned 
Signed	  

0 

1 

2 

3 

4 

5 

6 

7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

Unsigned	  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Bits	  

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

=	  

+/-‐	  16	  
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0!

TMax!

TMin!

–1!
–2!

0!

UMax!
UMax – 1!

TMax!
TMax  + 1!

2’s Comp.!
Range!

Unsigned!
Range!

Explanation of Casting Surprises 

•  2’s Comp. → Unsigned 
•  Ordering Inversion 
•  Negative → Big Positive 

With Slides from Bryant and O’Hallaron 

 0  0U  ==  unsigned 
 -1  0  <  signed 
 -1  0U  >  unsigned 
 2147483647  -2147483648  >  signed 
 2147483647U  -2147483648  <  unsigned 
 -1  -2  >  signed 
 (unsigned) -1  -2  >  unsigned 
  2147483647  2147483648U  <  unsigned 
  2147483647  (int) 2147483648U  >  signed 

•  Expression Evaluation 
•  If mix unsigned and signed in single expression, signed values implicitly 

cast to unsigned 
•  Including comparison operations <, >, ==, <=, >= 
•  Examples for W = 32 

•  Constant1  Constant2  Relation  Evaluation 
 0  0U   

 -1  0   

 -1  0U   

 2147483647  -2147483648   
 2147483647U  -2147483648   
 -1  -2   

 (unsigned) -1  -2   

  2147483647  2147483648U   

  2147483647  (int) 2147483648U   

Conversion in C Answer 
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•  Task:  
•  Given w-bit signed integer x 
•  Convert it to w+k-bit integer with same value 

•  Rule: 
•  Make k copies of sign bit: 
•  X ʹ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0 

k copies of MSB!
• • • X 	


X ʹ′	
 • • • • • • 

• • • 

w!

w!k!

Sign Extension 
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Sign Extension Example 

•  Converting from smaller to larger integer data type 
•  C automatically performs sign extension 

  short int x =  15213; 
  int      ix = (int) x;  
  short int y = -15213; 
  int      iy = (int) y; 

Decimal! Hex! Binary!
x! 15213! 3B 6D! 00111011 01101101!
ix! 15213! 00 00 3B 6D! 00000000 00000000 00111011 01101101!
y! -15213! C4 93! 11000100 10010011!
iy! -15213! FF FF C4 93! 11111111 11111111 11000100 10010011!
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Why Should I Use Unsigned? 

•  Don’t Use Just Because Number Nonzero 
•  C compilers on some machines generate less efficient code 
•  Easy to make mistakes 

unsigned int i; 

for (i = cnt-2; i >= 0; i--) 

  a[i] += a[i+1]; 

•  Do Use When Performing Modular Arithmetic 
•  Multiprecision arithmetic 
•  Other esoteric stuff 

•  Do Use When Need Extra Bit’s Worth of Range 
•  Working right up to limit of word size 
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Code Security Example 

•  Similar to code found in FreeBSD’s implementation of getpeername 
•  There are legions of smart people trying to find vulnerabilities in 

programs 

/* Kernel memory region holding user-accessible data */ 

#define KSIZE 1024 

char kbuf[KSIZE]; 

 

/* Copy at most maxlen bytes from kernel region to user buffer */ 

int copy_from_kernel(void *user_dest, int maxlen) { 

    /* Byte count len is minimum of buffer size and maxlen */ 

    int len = KSIZE < maxlen ? KSIZE : maxlen; 

    memcpy(user_dest, kbuf, len); 

    return len; 

} 



30 

With Slides from Bryant and O’Hallaron 

Typical Usage 

/* Kernel memory region holding user-accessible data */ 
#define KSIZE 1024 

char kbuf[KSIZE]; 

 

/* Copy at most maxlen bytes from kernel region to user buffer */ 

int copy_from_kernel(void *user_dest, int maxlen) { 

    /* Byte count len is minimum of buffer size and maxlen */ 

    int len = KSIZE < maxlen ? KSIZE : maxlen; 

    memcpy(user_dest, kbuf, len); 

    return len; 

} 
#define MSIZE 528 

 

void getstuff() { 

    char mybuf[MSIZE]; 

    copy_from_kernel(mybuf, MSIZE); 

    printf(“%s\n”, mybuf); 

} 
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Malicious Usage 

/* Kernel memory region holding user-accessible data */ 

#define KSIZE 1024 

char kbuf[KSIZE]; 

 

/* Copy at most maxlen bytes from kernel region to user buffer */ 

int copy_from_kernel(void *user_dest, int maxlen) { 

    /* Byte count len is minimum of buffer size and maxlen */ 

    int len = KSIZE < maxlen ? KSIZE : maxlen; 

    memcpy(user_dest, kbuf, len); 

    return len; 

} 
#define MSIZE 528 

void getstuff() { 

    char mybuf[MSIZE]; 

    copy_from_kernel(mybuf, -MSIZE); 

    . . . 

} 

/* Declaration of library function memcpy */ 
void *memcpy(void *dest, void *src, size_t n); 
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Summary 
Casting Signed ↔ Unsigned: Basic Rules 

•  Bit pattern is maintained 
•  But reinterpreted 

•  Can have unexpected effects: adding or subtracting 2w 

•  Expression containing signed and unsigned int 
•  int is cast to unsigned!! 
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•  Prove Correctness by Induction on k 
•  Induction Step: extending by single bit maintains value 

•  Key observation:  –2w–1  =  –2w +2w–1 
•  Look at weight of upper bits:  

X   –2w–1 xw–1  
X ʹ′  –2w xw–1 + 2w–1 xw–1  =  –2w–1 xw–1 

- • • • X 	


X ʹ′	
 - + • • • 

w+1!

w!

Justification For Sign Extension 
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Summary: 
Expanding, Truncating: Basic Rules 

•  Expanding (e.g., short int to int) 
•  Unsigned: zeros added 
•  Signed: sign extension 
•  Both yield expected result 

•  Truncating (e.g., unsigned to unsigned short) 
•  Unsigned/signed: bits are truncated 
•  Result reinterpreted 
•  Unsigned: mod operation 
•  Signed: similar to mod 
•  For small numbers yields expected behavior 
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Integer Arithmatics 

CSCI 2021  64 1/22/15 
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•  Claim: Following Holds for 2’s Complement 
 ~x + 1 == -x 

•  Complement 
•  Observation: ~x + x == 1111…112 == -1 

•  Increment 
~x + x + (-x + 1)  ==  -1 + (-x + 1) 

~x + 1  ==  -x 

•  Warning: Be cautious treating int’s as integers 

1 0 0 1 0 1 1 1  x 

0 1 1 0 1 0 0 0 ~x + 

1 1 1 1 1 1 1 1 -1 

Negating with Complement & Increment 
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Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
~x -15214 C4 92 11000100 10010010
~x+1 -15213 C4 93 11000100 10010011
y -15213 C4 93 11000100 10010011

x = 15213!

Decimal Hex Binary
0 0 00 00 00000000 00000000
~0 -1 FF FF 11111111 11111111
~0+1 0 00 00 00000000 00000000

0!

Comp. & Incr. Examples 
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•  Standard Addition Function 
•  Ignores carry output 

•  Implements Modular Arithmetic 
s   =   UAddw(u , v)  =  u + v  mod 2w 

UAddw(u,v) =
u + v u + v < 2w

u + v − 2w u + v ≥ 2w
⎧ 
⎨ 
⎩ 

• • • 

• • • 

u	


v	
+ 

• • • u + v	


• • • 

True Sum: w+1 bits!

Operands: w bits!

Discard Carry: w bits! UAddw(u , v)	


Unsigned Addition 
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0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

•  Integer Addition 
•  4-bit integers u, v 
•  Compute true sum 

Add4(u , v) 
•  Values increase 

linearly with u and v 
•  Forms planar surface 

Add4(u , v)!

u!

v!

Integer Addition 
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0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

•  Wraps Around 
•  If true sum ≥ 2w 
•  At most once 

0!

2w!

2w+1!

UAdd4(u , v)!

u!

v!

True Sum!

Modular Sum!

Overflow!

Overflow!

Unsigned Addition 
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•  Functionality 
•  True sum requires w

+1 bits 
•  Drop off MSB 
•  Treat remaining bits 

as 2’s comp. integer 

–2w –1!

–2w!

0!

2w –1!

2w–1!
True Sum!

TAdd Result!

1 000…0!

1 100…0!

0 000…0!

0 100…0!

0 111…1!

100…0!

000…0!

011…1!

PosOver!

NegOver!

TAddw (u,v) =

u + v + 2w−1 u + v < TMinw
u + v TMinw ≤ u + v ≤ TMaxw
u + v − 2w−1 TMaxw < u + v

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

(NegOver)!

(PosOver)!u 

v 

< 0! > 0!

< 0!

> 0!

NegOver!

PosOver!
TAdd(u , v)!

2’s Complement Addition 
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-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8

-6

-4

-2

0

2

4

6

8

•  Values 
•  4-bit two’s comp. 
•  Range from -8 to +7 

•  Wraps Around 
•  If sum ≥ 2w–1 

•  Becomes negative 
•  At most once 

•  If sum < –2w–1 
•  Becomes positive 
•  At most once 

TAdd4(u , v)!

u!

v!

PosOver!

NegOver!

2’s Complement Addition 
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•  Task 
•  Given s  =  TAddw(u , v) 
•  Determine if s   = Addw(u , v) 
•  Example 
 int s, u, v; 

 s = u + v; 

•  Claim 
•  Overflow iff either: 

 u, v < 0, s ≥ 0  (NegOver) 
 u, v ≥ 0, s < 0  (PosOver) 

 ovf = (u<0 == v<0) && (u<0 != s<0); 

0!

2w –1!

2w–1!
PosOver!

NegOver!

Detecting 2’s Complement Overflow 
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Mathematical Properties of TAdd 

•  Isomorphic Group to unsigneds with UAdd 
•  TAddw(u , v) =  U2T(UAddw(T2U(u ), T2U(v))) 

•  Since both have identical bit patterns 

•  Two’s Complement Under TAdd Forms a Group 
•  Closed, Commutative, Associative, 0 is additive identity 
•  Every element has additive inverse 

TCompw(u) =
−u u ≠ TMinw
TMinw u = TMinw
⎧ 
⎨ 
⎩ 
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•  Assume machine with 32 bit word size, two’s comp. 
integers 

•  TMin makes a good counterexample in many cases 

q  x < 0  ⇒  ((x*2) < 0)  False: !TMin 
q  ux >= 0    True: !0 = UMin 

q  x & 7 == 7  ⇒  (x<<30) < 0  True:  !x1 = 1 
q  ux > -1    False: !0 
q  x > y  ⇒  -x < -y  False: !-1, TMin 

q  x * x >= 0    False: !30426 
q  x > 0 && y > 0  ⇒  x + y > 0  False: !TMax, TMax 

q  x >= 0  ⇒  -x <= 0  True: !–TMax < 0!
q  x <= 0  ⇒  -x >= 0 !False: !TMin!

q  x < 0  ⇒  ((x*2) < 0) 

q  ux >= 0     

q  x & 7 == 7  ⇒  (x<<30) < 0   

q  ux > -1     

q  x > y  ⇒  -x < -y   

q  x * x >= 0     

q  x > 0 && y > 0  ⇒  x + y > 0   

q  x >= 0  ⇒  -x <= 0  !
q  x <= 0  ⇒  -x >= 0 !!

C Puzzle Answer 
int x = foo(); 

int y = bar(); 

unsigned ux = x; 

unsigned uy = y; 



38 

With Slides from Bryant and O’Hallaron 

CSCI 2021  75 1/22/15 

•  Computing Exact Product of w-bit numbers x, y 
•  Either signed or unsigned 

•  Ranges 
•  Unsigned: 0 ≤ x * y ≤ (2w – 1) 2  =  22w – 2w+1 + 1 

•  Up to 2w bits 
•  Two’s complement min: x * y  ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1 

•  Up to 2w–1 bits 
•  Two’s complement max: x * y ≤ (–2w–1) 2  =  22w–2 

•  Up to 2w bits, but only for (TMinw)2 

•  Maintaining Exact Results 
•  Would need to keep expanding word size with each product computed 
•  Done in software by “arbitrary precision” arithmetic packages 

Multiplication 
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Unsigned Multiplication in C 

•  Standard Multiplication Function 
•  Ignores high order w bits 

•  Implements Modular Arithmetic 
UMultw(u , v) =  u   · v  mod 2w 

• • • 

• • • 

u	


v	
* 

• • • u · v	


• • • 

True	  Product:	  2*w	  	  bits	  

Operands:	  w	  bits	  

Discard	  w	  bits:	  w	  bits	  
UMultw(u , v)	

• • • 
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Signed Multiplication in C 

•  Standard Multiplication Function 
•  Ignores high order w bits 
•  Some of which are different for signed 

vs. unsigned multiplication 
•  Lower bits are the same 

• • • 

• • • 

u	


v	
* 

• • • u · v	


• • • 

True	  Product:	  2*w	  	  bits	  

Operands:	  w	  bits	  

Discard	  w	  bits:	  w	  bits	  
TMultw(u , v)	

• • • 
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Power-of-2 Multiply with Shift 

•  Operation 
•  u << k gives u * 2k 

•  Both signed and unsigned 

•  Examples 
•  u << 3  ==  u * 8 
•  u << 5 - u << 3 ==  u * 24 
•  Most machines shift and add much faster than multiply 

•  Compiler generates this code automatically 

• • • 

0 0 1 0 0 0 ••• 

u	


2k	
* 

u · 2k	
True Product: w+k  bits!

Operands: w bits!

Discard k  bits: w bits! UMultw(u , 2k)	


••• 

k	


• • • 0 0 0 ••• 

TMultw(u , 2k)	


0 0 0 ••• ••• 



40 

With Slides from Bryant and O’Hallaron 

CSCI 2021  79 1/22/15 

Unsigned Power-of-2 Divide with Shift 

•  Quotient of Unsigned by Power of 2 
•  u >> k gives  ⎣ u / 2k ⎦ 

•  Uses logical shift 

Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0 ••• 

u	


2k	
/ 

u / 2k	
Division: !

Operands:!
••• 

k	

••• ••• 

••• 0 ••• ••• 

⎣ u / 2k ⎦! ••• Result:!

.!

Binary Point!

0 ••• 
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Signed Power-of-2 Divide with Shift 

•  Quotient of Signed by Power of 2 
•  x >> k gives  ⎣ x / 2k ⎦ 

•  Uses arithmetic shift 
•  Rounds wrong direction when u < 0 

0 0 1 0 0 0 ••• 

x	


2k	
/ 

x / 2k	
Division: !

Operands:!
••• 

k	

••• ••• 

••• 0 ••• ••• 

RoundDown(x / 2k)	
 ••• Result:!

.!

Binary Point!

0 ••• 

Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100
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Correct Power-of-2 Divide 

•  Quotient of Negative Number by Power of 2 
•  Want  ⎡ x / 2k ⎤    (Round Toward 0) 
•  Compute as  ⎣ (x+2k-1)/ 2k ⎦ 

•  In C: (x + (1<<k)-1) >> k 
•  Biases dividend toward 0 

•  Case 1: No rounding 

Divisor: !

Dividend:!

0 0 1 0 0 0 ••• 

u	


2k	
/ 

 ⎡ u / 2k  ⎤	

••• 

k	

1 ••• 0 0 0 ••• 

1 ••• 0 1 1 ••• .!

Binary Point!

1 

0 0 0 1 1 1 ••• +2k +–1	
 ••• 

1 1 1 ••• 

1 ••• 1 1 1 ••• 

Biasing has no effect!
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Correct Power-of-2 Divide (Cont.) 

Divisor: !

Dividend:!

Case 2: Rounding!

0 0 1 0 0 0 ••• 

x	


2k	
/ 

 ⎡ x / 2k  ⎤	

••• 

k	

1 ••• ••• 

1 ••• 0 1 1 ••• .!

Binary Point!

1 

0 0 0 1 1 1 ••• +2k +–1	
 ••• 

1 ••• ••• 

Biasing adds 1 to final result!

••• 

Incremented by 1!

Incremented by 1!
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Arithmetic: Basic Rules 

•  Addition: 
•  Unsigned/signed: Normal addition followed by truncate, 

same operation on bit level 
•  Unsigned: addition mod 2w 

•  Mathematical addition + possible subtraction of 2w 
•  Signed: modified addition mod 2w (result in proper range) 

•  Mathematical addition + possible addition or subtraction of 2w 

•  Multiplication: 
•  Unsigned/signed: Normal multiplication followed by truncate, same 

operation on bit level 
•  Unsigned: multiplication mod 2w 

•  Signed: modified multiplication mod 2w (result in proper range) 
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Arithmetic: Basic Rules 

•  Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = 
casting 

•  Left shift 
•  Unsigned/signed: multiplication by 2k 

•  Always logical shift 

•  Right shift 
•  Unsigned: logical shift, div (division + round to zero) by 2k 

•  Signed: arithmetic shift 
•  Positive numbers: div (division + round to zero) by 2k 

•  Negative numbers: div (division + round away from zero) by 2k 

Use biasing to fix 
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Properties of Unsigned Arithmetic 

•  Unsigned Multiplication with Addition Forms Commutative Ring 
•  Addition is commutative group 
•  Closed under multiplication 

0  ≤ UMultw(u , v)  ≤  2w –1 
•  Multiplication Commutative 

UMultw(u , v)  =   UMultw(v , u) 
•  Multiplication is Associative 

UMultw(t, UMultw(u , v))  =   UMultw(UMultw(t, u ), v) 
•  1 is multiplicative identity 

UMultw(u , 1)  =  u 
•  Multiplication distributes over addtion 

UMultw(t, UAddw(u , v))  =   UAddw(UMultw(t, u ), UMultw(t, v)) 
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Properties of Two’s Comp. Arithmetic 
•  Isomorphic Algebras 

•  Unsigned multiplication and addition 
•  Truncating to w bits 

•  Two’s complement multiplication and addition 
•  Truncating to w bits 

•  Both Form Rings 
•  Isomorphic to ring of integers mod 2w 

•  Comparison to (Mathematical) Integer Arithmetic 
•  Both are rings 
•  Integers obey ordering properties, e.g., 

u > 0  ⇒  u + v > v 
u > 0, v > 0  ⇒  u · v > 0 

•  These properties are not obeyed by two’s comp. arithmetic 
TMax + 1  ==  TMin 
15213 * 30426  ==  -10030 (16-bit words) 
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Floating Point Representation 

With Slides from Bryant and O’Hallaron 

Floating Point 

•  Background: Fractional binary numbers 
•  IEEE floating point standard: Definition 

•  Example and properties 

•  Rounding, addition, multiplication 

•  Floating point in C 

•  Summary 
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Fractional binary numbers 

•  What is 1011.1012? 
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2i	  

2i-‐1	  

4	  
2	  
1	  

1/2	  
1/4	  
1/8	  

2-‐j	  

bi	   bi-‐1	   •••	   b2	   b1	   b0	   b-‐1	   b-‐2	   b-‐3	   •••	   b-‐j	  

• • •	


Frac4onal	  Binary	  Numbers	  

•  Representation 
•  Bits to right of “binary point” represent fractional powers of 2 
•  Represents rational number: 

• • •	
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Fractional Binary Numbers: Examples 

¢  Value 	  Representa4on	  
	5 3/4 	101.112	  
 	2 7/8 	010.1112	  
  	63/64 	001.01112	  

¢  Observa4ons	  
§  Divide	  by	  2	  by	  shiiing	  right	  
§  Mul4ply	  by	  2	  by	  shiiing	  lei	  
§  Numbers	  of	  form	  0.111111…2	  are	  just	  below	  1.0	  

§  1/2	  +	  1/4	  +	  1/8	  +	  …	  +	  1/2i	  +	  …	  ➙	  1.0	  
§  Use	  nota4on	  1.0	  –	  ε	  
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Representable Numbers 

•  Limitation 
•  Can only exactly represent numbers of the form x/2k 
•  Other rational numbers have repeating bit representations 

•  Value  Representation 
•  1/3  0.0101010101[01]…2	
•  1/5  0.001100110011[0011]…2	
•  1/10  0.0001100110011[0011]…2	
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Floating Point 

•  Background: Fractional binary numbers 
•  IEEE floating point standard: Definition 

•  Example and properties 

•  Rounding, addition, multiplication 

•  Floating point in C 

•  Summary 
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Carnegie Mellon 

IEEE Floating Point 

•  IEEE Standard 754 
•  Established in 1985 as uniform standard for floating point arithmetic 

•  Before that, many idiosyncratic formats 
•  Supported by all major CPUs 

•  Driven by numerical concerns 
•  Nice standards for rounding, overflow, underflow 
•  Hard to make fast in hardware 

•  Numerical analysts predominated over hardware designers in 
defining standard 
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•  Numerical Form:  
   (–1)s M  2E 

•  Sign	  bit s determines whether number is negative or positive 
•  Significand M  normally a fractional value in range [1.0,2.0). 
•  Exponent E weights value by power of two 

•  Encoding 
•  MSB s is sign bit s 
•  exp field encodes E (but is not equal to E) 
•  frac field encodes M (but is not equal to M) 

Floating Point Representation 

s	exp	 frac	
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Precisions 

•  Single precision: 32 bits 

•  Double precision: 64 bits 

•  Extended precision: 80 bits (Intel only) 

s	exp	 frac	

1	 8-bits	 23-bits	

s	exp	 frac	

1	 11-bits	 52-bits	

s	exp	 frac	

1	 15-bits	 63 or 64-bits	
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Normalized Values 

•  Condition: exp ≠ 000…0 and exp ≠ 111…1 

•  Exponent coded as biased value: E  =  Exp – Bias 
•  Exp: unsigned value exp  
•  Bias = 2k-1 - 1, where k is number of exponent bits 

•  Single precision: 127 (Exp: 1…254, E: -126…127) 
•  Double precision: 1023 (Exp: 1…2046, E: -1022…1023) 

•  Significand coded with implied leading 1: M  =  1.xxx…x2 
•   xxx…x: bits of frac 
•  Minimum when 000…0 (M = 1.0) 
•  Maximum when 111…1 (M = 2.0 – ε) 
•  Get extra leading bit for “free” 
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Normalized Encoding Example 

•  Value: Float F = 15213.0; 
•  1521310  = 111011011011012    
                     = 1.11011011011012 x 213 

•  Significand 
M  =  1.11011011011012 
frac =    110110110110100000000002 

•  Exponent 
E   =  13 
Bias  =  127 
Exp  =  140  =  100011002 
 

•  Result: 
 
0 10001100 11011011011010000000000  
 
s exp frac 
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Denormalized Values 

•  Condition: exp = 000…0 

•  Exponent value: E = –Bias + 1 (instead of E = 0 – Bias) 

•  Significand coded with implied leading 0: M = 0.xxx…x2 
•  xxx…x: bits of frac 

•  Cases 
•   exp = 000…0, frac = 000…0 

•  Represents zero value 
•  Note distinct values: +0 and –0 (why?) 

•  exp = 000…0, frac ≠ 000…0 
•  Numbers very close to 0.0 
•  Lose precision as get smaller 
•  Equispaced 
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Special Values 

•  Condition: exp = 111…1 

•  Case: exp = 111…1, frac = 000…0 

•  Represents value ∞ (infinity) 
•  Operation that overflows 
•  Both positive and negative 
•  E.g., 1.0/0.0 = −1.0/−0.0 = +∞,  1.0/−0.0 = −∞ 

•  Case: exp = 111…1, frac ≠ 000…0 
•  Not-a-Number (NaN) 
•  Represents case when no numeric value can be determined 
•  E.g., sqrt(–1), ∞ − ∞, ∞ × 0 
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Visualiza4on:	  Floa4ng	  Point	  Encodings	  

+∞ −∞ 

-0 

+Denorm +Normalized −Denorm −Normalized 

+0 NaN NaN 
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Floa4ng	  Point	  

•  Background: Fractional binary numbers 
•  IEEE floating point standard: Definition 

•  Example and properties 

•  Rounding, addition, multiplication 

•  Floating point in C 

•  Summary 
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Tiny Floating Point Example 

•  8-bit Floating Point Representation 
•  the sign bit is in the most significant bit 
•  the next four bits are the exponent, with a bias of 7 
•  the last three bits are the frac 

•  Same general form as IEEE Format 
•  normalized, denormalized 
•  representation of 0, NaN, infinity 

s	 exp	 frac	

1	 4-bits	 3-bits	
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s exp  frac  E  Value  

0 0000 000  -6  0 

0 0000 001  -6  1/8*1/64 = 1/512 

0 0000 010  -6  2/8*1/64 = 2/512 

… 

0 0000 110  -6  6/8*1/64 = 6/512 

0 0000 111  -6  7/8*1/64 = 7/512 

0 0001 000  -6  8/8*1/64 = 8/512 

0 0001 001   -6  9/8*1/64 = 9/512 

… 

0 0110 110  -1  14/8*1/2 = 14/16 

0 0110 111  -1  15/8*1/2 = 15/16 

0 0111 000  0  8/8*1    = 1 

0 0111 001  0  9/8*1    = 9/8 

0 0111 010  0  10/8*1   = 10/8 

… 

0 1110 110  7  14/8*128 = 224 

0 1110 111  7  15/8*128 = 240 

0 1111 000  n/a  inf 

Dynamic Range (Positive Only) 

closest to zero 

largest denorm 
smallest norm 

closest to 1 below 

closest to 1 above 

largest norm 

Denormalized 
numbers 

Normalized 
numbers 
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-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values 

•  6-bit IEEE-like format 
•  e = 3 exponent bits 
•  f = 2 fraction bits 
•  Bias is 23-1-1 = 3 

•  Notice how the distribution gets denser toward zero.  

	  8	  values	  

s	 exp	 frac	

1	 3-bits	 2-bits	
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Distribution of Values (close-up view) 

•  6-bit IEEE-like format 
•  e = 3 exponent bits 
•  f = 2 fraction bits 
•  Bias is 3 

s	 exp	 frac	

1	 3-bits	 2-bits	

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Interesting Numbers 
Description  exp  frac  Numeric Value 
•  Zero  00…00  00…00  0.0 

•  Smallest Pos. Denorm.  00…00  00…01  2– {23,52} x 2– {126,1022} 
•  Single ≈ 1.4 x 10–45 
•  Double ≈ 4.9 x 10–324 

•  Largest Denormalized  00…00  11…11  (1.0 – ε) x 2– {126,1022} 
•  Single ≈ 1.18 x 10–38 
•  Double ≈ 2.2 x 10–308 

•  Smallest Pos. Normalized  00…01  00…00  1.0 x 2– {126,1022} 
•  Just larger than largest denormalized 

•  One  01…11  00…00  1.0 

•   Largest Normalized  11…10  11…11  (2.0 – ε) x 2{127,1023} 
•  Single ≈ 3.4 x 1038 
•  Double ≈ 1.8 x 10308 

{single,double}	  
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Special Properties of Encoding 

•  FP Zero Same as Integer Zero 
•  All bits = 0 

•  Can (Almost) Use Unsigned Integer Comparison 
•  Must first compare sign bits 
•  Must consider −0 = 0 
•  NaNs problematic 

•  Will be greater than any other values 
•  What should comparison yield? 

•   Otherwise OK 
•  Denorm vs. normalized 
•  Normalized vs. infinity 
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Floating Point 

•  Background: Fractional binary numbers 
•  IEEE floating point standard: Definition 

•  Example and properties 

•  Rounding, addition, multiplication 

•  Floating point in C 

•  Summary 
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Floating Point Operations: Basic Idea 

•  x +f y = Round(x + y) 

•  x ×f y = Round(x × y) 

•  Basic idea 
•  First compute exact result 
•  Make it fit into desired precision 

•  Possibly overflow if exponent too large 
•  Possibly round to fit into frac 
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Rounding 

•  Rounding Modes (illustrate with $ rounding) 

•   $1.40  $1.60  $1.50  $2.50  –$1.50 
•  Towards zero  $1  $1  $1  $2  –$1 
•  Round down (−∞)  $1  $1  $1  $2  –$2 
•  Round up (+∞)  $2  $2  $2  $3  –$1 
•  Nearest Even (default)  $1  $2  $2  $2  –$2 

•  What are the advantages of the modes? 
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Closer Look at Round-To-Even 

•  Default Rounding Mode 
•  Hard to get any other kind without dropping into assembly 
•  All others are statistically biased 

•  Sum of set of positive numbers will consistently be over- or under- 
estimated 

•  Applying to Other Decimal Places / Bit Positions 
•  When exactly halfway between two possible values 

•  Round so that least significant digit is even 
•  E.g., round to nearest hundredth 

 1.2349999  1.23  (Less than half way) 
 1.2350001  1.24  (Greater than half way) 
 1.2350000  1.24  (Half way—round up) 
 1.2450000  1.24  (Half way—round down) 
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Rounding Binary Numbers 

•  Binary Fractional Numbers 
•  “Even” when least significant bit is 0 
•  “Half way” when bits to right of rounding position = 100…2 

•  Examples 
•  Round to nearest 1/4 (2 bits right of binary point) 
Value  Binary  Rounded  Action  Rounded 

Value 
2 3/32  10.000112  10.002  (<1/2—down)  2 
2 3/16  10.001102  10.012  (>1/2—up)  2 1/4 
2 7/8  10.111002  11.002  (  1/2—up)  3 
2 5/8  10.101002  10.102  (  1/2—down)  2 1/2 
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FP Multiplication 

•  (–1)s1 M1  2E1   x   (–1)s2 M2  2E2 
•  Exact Result: (–1)s M  2E 

•  Sign s:   s1 ^ s2 
•  Significand M:  M1 x  M2 
•  Exponent E:  E1 + E2 

•  Fixing 
•  If M ≥ 2, shift M right, increment E 
•  If E out of range, overflow  
•  Round M to fit frac precision 

•  Implementation 
•  Biggest chore is multiplying significands 
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Carnegie Mellon 

Floating Point Addition 

•  (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 
• Assume E1 > E2 

•  Exact Result: (–1)s M  2E 
• Sign s, significand M:  

•  Result of signed align & add 
• Exponent E:  E1 

•  Fixing 
• If M ≥ 2, shift M right, increment E  
• if M < 1, shift M left k positions, decrement E by k 
• Overflow if E out of range 
• Round M to fit frac precision 

(–1)s1	  M1	  	  

(–1)s2	  M2	  	  

E1–E2 

+	  
(–1)s	  M	  
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Mathematical Properties of FP Add 

•  Compare to those of Abelian Group 
•  Closed under addition?     

•  But may generate infinity or NaN 
•  Commutative? 
•  Associative? 

•  Overflow and inexactness of rounding 
•  0 is additive identity? 
•  Every element has additive inverse 

•  Except for infinities & NaNs 
•  Monotonicity 

•  a ≥ b ⇒ a+c ≥ b+c? 
•  Except for infinities & NaNs 

Yes	  

Yes	  

Yes	  

No	  

Almost	  

Almost	  
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Mathematical Properties of FP Mult 

•  Compare to Commutative Ring 
•  Closed under multiplication? 

•  But may generate infinity or NaN 
•  Multiplication Commutative? 
•  Multiplication is Associative? 

•  Possibility of overflow, inexactness of rounding 
•  1 is multiplicative identity? 
•  Multiplication distributes over addition? 

•  Possibility of overflow, inexactness of rounding 

•  Monotonicity 
•  a ≥ b  & c ≥ 0  ⇒ a * c ≥ b *c? 

•  Except for infinities & NaNs 

Yes	  

Yes	  
No	  

Yes	  
No	  

Almost	  
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Floating Point 

•  Background: Fractional binary numbers 
•  IEEE floating point standard: Definition 

•  Example and properties 

•  Rounding, addition, multiplication 

•  Floating point in C 

•  Summary 
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Floating Point in C 

•  C Guarantees Two Levels 
• float  single precision 
• double  double precision 

•  Conversions/Casting 
• Casting between int, float, and double changes bit representation 
•  double/float → int 

•  Truncates fractional part 
•  Like rounding toward zero 
•  Not defined when out of range or NaN: Generally sets to TMin 

•  int → double 
•  Exact conversion, as long as int has ≤ 53 bit word size 

•  int → float 
•  Will round according to rounding mode 
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•  x == (int)(float) x    

•  x == (int)(double) x   

•  f == (float)(double) f   

•  d == (float) d     

•  f == -(-f);     

•  2/3 == 2/3.0     

•  d < 0.0  ⇒ ((d*2) < 0.0)   

•  d > f  ⇒ -f > -d    

•  d * d >= 0.0     

•  (d+f)-d == f    !

int x = …; 

float f = …; 

double d = …; 

Assume neither!
d nor f is NAN!

•  x == (int)(float) x   No: 24 bit significand 
•  x == (int)(double) x  Yes: 53 bit significand 

•  f == (float)(double) f  Yes: increases precision 
•  d == (float) d    No: loses precision 
•  f == -(-f);    Yes: Just change sign bit 

•  2/3 == 2/3.0    No: 2/3 == 0 
•  d < 0.0  ⇒ ((d*2) < 0.0)  Yes! 

•  d > f  ⇒ -f > -d   Yes! 
•  d * d >= 0.0    Yes! 
•  (d+f)-d == f    No: Not associative!

Floating Point Puzzle Answer 
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Floa4ng	  Point	  

•  Background: Fractional binary numbers 
•  IEEE floating point standard: Definition 

•  Example and properties 

•  Rounding, addition, multiplication 

•  Floating point in C 

•  Summary 
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Carnegie Mellon 

Summary 

•  IEEE Floating Point has clear mathematical  properties 
•  Represents numbers of form M x 2E 

•  One can reason about operations independent of implementation 
•  As if computed with perfect precision and then rounded 

•  Not the same as real arithmetic 
•  Violates associativity/distributivity 
•  Makes life difficult for compilers & serious numerical applications 

programmers 
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CSCI 2021  123 1/22/15 

Summary 

•  Binary algebra 
•  &, |, ^, ~, <<, >> 

•  Binary numbers 
•  Binary, decimal, hexadecimal 
•  Conversions: binary ó decimal; binary  ó hexadecimal 
•  2’s Complement Representation 

•  Signed and unsigned numbers 
•  Addition and overflow 
•  Multiplication & division  

•  Floating point numbers 


