
1

Data Representation

Antonia Zhai
Department Computer Science and Engineering

University of Minnesota

http://www.cs.umn.edu/~zhai

CSCI 2021: Machine Architecture and Organization

With Slides from Bryant and O’Hallaron

With Slides from Bryant and O’Hallaron

CSCI 2021 2 1/22/15

A Two-State Approach

0 1

0.0V!
0.5V!

2.8V!
3.3V!

0! 1! 0

2

With Slides from Bryant and O’Hallaron

CSCI 2021 3 1/22/15

Counting

0 1 2 3 4
5 6 7 8 9

10 separate states!!

With Slides from Bryant and O’Hallaron

CSCI 2021 4 1/22/15

Why Don’t Computers Use Base 10?

•  Base 10 Number Representation
•  That’s why fingers are known as “digits”
•  Natural representation for financial transactions
•  Even carries through in scientific notation

•  1.5213 X 104

•  Implementing Electronically
•  Hard to store

•  ENIAC (First electronic computer) used 10 vacuum tubes / digit
•  Hard to transmit

•  Need high precision to encode 10 signal levels on single wire
•  Messy to implement digital logic functions

•  Addition, multiplication, etc.

3

With Slides from Bryant and O’Hallaron

CSCI 2021 5 1/22/15

Boolean Algebra

With Slides from Bryant and O’Hallaron

CSCI 2021 6 1/22/15

Boolean Algebra
•  Developed by George Boole in 19th Century

Algebraic representation of logic: encode “True” as 1 and “False” as 0

And: A&B = 1 when both A=1 and B=1

Not: ~A = 1 when A=0

Or: A|B = 1 when either A=1 or B=1

& 0 1
0 0 0
1 0 1

| 0 1
0 0 1
1 1 1

~
0 1
1 0

Associativity and commutativity Associativity and commutativity

4

With Slides from Bryant and O’Hallaron

CSCI 2021 7 1/22/15

The XOR Operation

Exclusive-Or (Xor):
A^B = 1 when either A=1 or B=1, but not both

^ 0 1
0 0 1
1 1 0

Associativity and commutativity

What about:
A ^ A?
A ^ 0?
A ^ 1?

With Slides from Bryant and O’Hallaron

Application of Boolean Algebra

•  Applied to Digital Systems by Claude Shannon
•  1937 MIT Master’s Thesis
•  Reason about networks of relay switches

•  Encode closed switch as 1, open switch as 0

A!

~A!

~B!

B!

Connection when!
 !

 A&~B | ~A&B!
!
 !

A&~B!

~A&B!

= A^B!

5

With Slides from Bryant and O’Hallaron

CSCI 2021 9 1/22/15

Relations Between Operations

•  DeMorgan’s Laws
•  Express & in terms of |, and vice-versa

•  A & B = ~(~A | ~B)
•  A and B are true if and only if neither A nor B is false

•  A | B = ~(~A & ~B)
•  A or B are true if and only if A and B are not both false

•  Exclusive-Or
•  A ^ B = (~A & B) | (A & ~B)

•  Exactly one of A and B is true
•  A ^ B = (A | B) & ~(A & B)

•  Either A is true, or B is true, but not both

With Slides from Bryant and O’Hallaron

CSCI 2021 10 1/22/15

Bit-Level Operations in C

•  Operations &, |, ~, ^ Available in C
•  Apply to any “integral” data type

•  long, int, short, char
•  View arguments as bit vectors
•  Arguments applied bit-wise

•  Examples (Char data type)

•  ~010000012 --> 101111102
•  ~000000002 --> 111111112

•  011010012 & 010101012 --> 010000012
•  011010012 | 010101012 --> 011111012

6

With Slides from Bryant and O’Hallaron

CSCI 2021 11 1/22/15

Contrast: Logic Operations in C

•  Contrast to Logical Operators
•  &&, ||, !

•  View 0 as “False”
•  Anything nonzero as “True”
•  Always return 0 or 1
•  Early termination

•  Examples (char data type)

•  ! 010000012 --> 000000002
•  ! 000000002 --> 000000012

•  !! 010000012--> 000000012

•  010100012 && 101011102 --> 000000012

•  010100012 || 101011102 --> 000000012

With Slides from Bryant and O’Hallaron

CSCI 2021 12 1/22/15

Boolean Algebras with Bit Vector

•  Operate on Bit Vectors

•  Operations applied bitwise

•  All of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

7

With Slides from Bryant and O’Hallaron

CSCI 2021 13 1/22/15

Cool Stuff with Xor

(A ^ B) ^ B = A
void swap()
{
 int x = 00100111, y = 11100111;
 x = x ^ y; /* #1 */
 y = x ^ y; /* #2 */
 x = x ^ y; /* #3 */
}

B A Begin!
B A^B 1!

(A^B)^B = A A^B 2!
A (A^B)^A = B 3!
A B End!

*y *x

(A^B)^B 0 1

0 0 1
1 0 1

A

B

With Slides from Bryant and O’Hallaron

CSCI 2021 14 1/22/15

Shift Operations

•  Left Shift: x << y
•  Shift bit-vector x left y positions

•  Throw away extra bits on left
•  Fill with 0’s on right

•  Right Shift: x >> y
•  Shift bit-vector x right y positions

•  Throw away extra bits on right
•  Logical shift

•  Fill with 0’s on left
•  Arithmetic shift

•  Replicate most significant bit on
right

•  Useful with two’s complement
integer representation

01100010 Argument x!

00010000 << 3!

00011000 Log. >> 2

00011000 Arith. >> 2

10100010 Argument x!

00010000 << 3!

00101000 Log. >> 2

11101000 Arith. >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

8

With Slides from Bryant and O’Hallaron

CSCI 2021 15 1/22/15

Binary Numbers

With Slides from Bryant and O’Hallaron

CSCI 2021 16 1/22/15

Converting Between Decimal and Binary

Binary to Decimal
10012 ?

= 1*23 + 0* 22 + 0* 21 + 1*20

= 8 + 1

= 9

00002 ?

= 0

11112 ?

= 15

9

With Slides from Bryant and O’Hallaron

CSCI 2021 17 1/22/15

Converting Between Decimal and Binary
Decimal to Binary
Dividing the number repeatedly by 2 until the number becomes 0

49 ?

Divide by Number Remainder

2 49 1

2 24 0

2 12 0

2 6 0

2 3 1

2 1 1

2 0

With Slides from Bryant and O’Hallaron

CSCI 2021 18 1/22/15

What about real numbers?

Binary to Decimal

101.112 ?

= 1 * 22 + 0 * 21 + 1 * 20 + 1* 2-1 + 1 * 2-2

= 4 + 1 + 0.5 + 0.25

= 5.75

0.12 ?

0.00012 ?

10

With Slides from Bryant and O’Hallaron

CSCI 2021 19 1/22/15

Converting Between Decimal and Binary
Decimal to Binary

 multiply the number by 2 and register the integer portion

0.3125 ?

Multiply by Number Remainder

2 0.3125 0

2 0.625 1

2 0.25 0

2 0.5 1

2 0

With Slides from Bryant and O’Hallaron

CSCI 2021 20 1/22/15

Converting Between Decimal and Binary
What about 0.4 ?

Multiply by Number Remainder
2 0.4 0
2 0.8 1
2 0.6 1
2 0.2 0
2 0.4 0
2 0.8 1
2 0.6 1
2 0.2 0

… …

0.410 = 0.[0110]2

Non-terminating repeating

11

With Slides from Bryant and O’Hallaron

CSCI 2021 21 1/22/15

Practice

Decimal Binary
2
6
65
63
1025
0.25
43.16
0.20

With Slides from Bryant and O’Hallaron

CSCI 2021 22 1/22/15

Hex and Octal Number

Binary numbers are long!
Binary-decimal conversion is non-trivial!

12

With Slides from Bryant and O’Hallaron

CSCI 2021 23 1/22/15

Binary Decimal Octal Hexadecimal

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 10 8
1001 9 11 9
1010 10 12 A
1011 11 13 B
1100 12 14 C
1101 13 15 D
1110 14 16 E
1111 15 17 F

With Slides from Bryant and O’Hallaron

Encoding Byte Values

•  Byte = 8 bits
•  Binary 000000002 to 111111112
•  Decimal: 010 to 25510
•  Hexadecimal 0016 to FF16

•  Base 16 number representation
•  Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
•  Write FA1D37B16 in C as

•  0xFA1D37B
•  0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex! Decim
al!

Binary!

• • •!

Byte-Oriented Memory Organization

13

With Slides from Bryant and O’Hallaron

Machine Words

•  Machine Has “Word Size”
•  Nominal size of integer-valued data

•  Including addresses
•  Most current machines use 32 bits (4 bytes) words

•  Limits addresses to 4GB
•  Becoming too small for memory-intensive applications

•  High-end systems use 64 bits (8 bytes) words
•  Potential address space ≈ 1.8 X 1019 bytes
•  x86-64 machines support 48-bit addresses: 256 Terabytes

•  Machines support multiple data formats
•  Fractions or multiples of word size
•  Always integral number of bytes

With Slides from Bryant and O’Hallaron

Word-Oriented Memory Organization

•  Addresses Specify Byte Locations
•  Address of first byte in word
•  Addresses of successive words

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit!
Words!

Bytes! Addr.!

0012
0013
0014
0015

64-bit!
Words!

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

0000

0004

0008

0012

0000

0008

14

With Slides from Bryant and O’Hallaron

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer 4 4 8

With Slides from Bryant and O’Hallaron

CSCI 2021 28 1/22/15

Variations of Data Format

Machines support multiple data formats
•  Fractions or multiples of word size,
•  but always integral number of bytes
int main () {

 printf("chars are %d bytes long\n", sizeof(char));

 printf("ints are %d bytes long\n", sizeof(int));

 printf("shorts are %d bytes long\n", sizeof(short));

 printf("floats are %d bytes long\n", sizeof(float));

}

chars are 1 bytes long
ints are 4 bytes long
shorts are 2 bytes long
floats are 4 bytes long

15

With Slides from Bryant and O’Hallaron

CSCI 2021 29 1/22/15

Byte Ordering Example

•  Big Endian
•  Least significant byte has highest address

•  Little Endian
•  Least significant byte has lowest address

•  Example
•  Variable x has 4-byte representation 0xDEADBEEF
•  Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian!

Little Endian!

DE AD BE EF

EF BE AD DE

With Slides from Bryant and O’Hallaron

CSCI 2021 30 1/22/15

Examining Data Representations

Code to Print Byte Representation of Data
•  Casting pointer to unsigned char * creates byte array

Printf directives:
%p: !Print pointer!
%x: !Print Hexadecimal!

int integer = 0xDEADBEEF;
int main()
{
 int i;
 unsigned char *pointer = &integer;
 for (i = 0; i < 4; i++)
 printf("Byte #%d: addr %p, value 0x%x\n", i, pointer+i, *(pointer+i));
}

16

With Slides from Bryant and O’Hallaron

CSCI 2021 31 1/22/15

The Outcome is Different on Different Machine

On SUN work station:

Byte #0: addr 20944, value 0xde
Byte #1: addr 20945, value 0xad

Byte #2: addr 20946, value 0xbe

Byte #3: addr 20947, value 0xef

A big endian machine

On PC (linux):

Byte #0: addr 0x80495f8, value 0xef
Byte #1: addr 0x80495f9, value 0xbe

Byte #2: addr 0x80495fa, value 0xad

Byte #3: addr 0x80495fb, value 0xde

A little endian machine

With Slides from Bryant and O’Hallaron

Representing Integers
Decimal: !15213
Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64!

3B
6D

00
00

Sun!

int A = 15213;	

93
C4
FF
FF

IA32, x86-64!

C4
93

FF
FF

Sun!

Two’s complement representation!
(Covered later)!

int B = -15213;	

long int C = 15213;	

00
00
00
00

6D
3B
00
00

x86-64!

3B
6D

00
00

Sun!

6D
3B
00
00

IA32!

17

With Slides from Bryant and O’Hallaron

Representing Pointers

Different	 compilers	 &	 machines	 assign	 different	 loca4ons	 to	 objects	

int B = -15213;

int *P = &B;

x86-64!Sun! IA32!
EF	
FF	
FB	
2C	

D4	
F8	
FF	
BF	

0C	
89	
EC	
FF	
FF	
7F	
00	
00	

With Slides from Bryant and O’Hallaron

char S[6] = "18243";

Representing Strings

•  Strings in C
•  Represented by array of characters
•  Each character encoded in ASCII format

•  Standard 7-bit encoding of character set
•  Character “0” has code 0x30

•  Digit i has code 0x30+i
•  String should be null-terminated

•  Final character = 0

•  Compatibility
•  Byte ordering not an issue

Linux/Alpha! Sun!

31	
38	
32	
34	
33	
00	

31	
38	
32	
34	
33	
00	

18

With Slides from Bryant and O’Hallaron

CSCI 2021 35 1/22/15

2’s Complement Representation

With Slides from Bryant and O’Hallaron

CSCI 2021 36 1/22/15

Binary Decimal Octal Hexadecimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 10 8
1001 9 11 9
1010 10 12 A
1011 11 13 B
1100 12 14 C
1101 13 15 D
1110 14 16 E
1111 15 17 F

We need Negativ
e Numbers!!

!

19

With Slides from Bryant and O’Hallaron

CSCI 2021 37 1/22/15

Addition and Subtraction in Binary

Decimal: 10 + 2 = 12

Hexadecimal: A + 2 = C

Binary: 1010 + 0010 =1100

Decimal: 12 - 2 = 10

Hexadecimal: C - 2 = A

Binary: 1100 - 0010 =1010

With Slides from Bryant and O’Hallaron

CSCI 2021 38 1/22/15

Addition/Subtraction in Binary with Negative Number

Decimal: 0 - 1 = -1

Hexadecimal: 0 - 1 = -1

Binary: 0000 + 0001 =1111

Decimal: -1 + 1 = 0

Hexadecimal: -1 + 1 = 0

Binary: 1111 + 0001 =0000

Decimal: -1 - 1 = -2

Hexadecimal: -1 - 1 = -2

Binary: 1111 - 0001 =1110

20

With Slides from Bryant and O’Hallaron

CSCI 2021 39 1/22/15

Sign Bit
Using half of the numbers for negative
•  The most significant bit indicates sign

•  0 for nonnegative
•  1 for negative

X! B2T(X)!B2U(X)!
0000
0001
0010
0011
0100
0101
0110
0111

8!
9!
10!
11!
12!
13!
14!
15!

1000
1001
1010
1011
1100
1101
1110
1111

0!
1!
2!
3!
4!
5!
6!
7!

Equivalence
•  Same encodings for nonnegative values

Uniqueness
•  Every bit pattern represents unique integer

•  Each representable integer has a unique
encoding

How to find the negative number?
1.  Find the positive number
2.  Inverse all bits
3.  Add “1” to it

With Slides from Bryant and O’Hallaron

CSCI 2021 40 1/22/15

Encoding Integers

 short int x = 15213;
 short int y = -15213;

B2T (X) = −xw−1 ⋅2
w−1 + xi ⋅2

i

i=0

w−2

∑B2U(X) = xi ⋅2
i

i=0

w−1

∑

Unsigned! Two’s Complement!

Sign!
Bit!

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

21

With Slides from Bryant and O’Hallaron

CSCI 2021 41 1/22/15

Encoding Example (Cont.)

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum 15213 -15213

With Slides from Bryant and O’Hallaron

CSCI 2021 42 1/22/15

Unsigned Values
•  UMin = 0

000…0
•  UMax = 2w – 1

111…1

Two’s Complement Values
•  TMin = –2w–1

100…0
•  TMax = 2w–1 – 1

011…1
Other Values

•  Minus 1
111…1

Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16!

Numeric Range

22

With Slides from Bryant and O’Hallaron

Unsigned & Signed Numeric Values
•  Equivalence

•  Same encodings for nonnegative
values

•  Uniqueness
•  Every bit pattern represents

unique integer value
•  Each representable integer has

unique bit encoding

•  ⇒ Can Invert Mappings
•  U2B(x) = B2U-1(x)

•  Bit pattern for unsigned
integer

•  T2B(x) = B2T-1(x)
•  Bit pattern for two’s comp

integer

X	 B2T(X)	 B2U(X)	
0000	 0	
0001	 1	
0010	 2	
0011	 3	
0100	 4	
0101	 5	
0110	 6	
0111	 7	

–8	 8	
–7	 9	
–6	 10	
–5	 11	
–4	 12	
–3	 13	
–2	 14	
–1	 15	

1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

0	
1	
2	
3	
4	
5	
6	
7	

With Slides from Bryant and O’Hallaron

CSCI 2021 44 1/22/15

Values for Different Word Sizes

•  Observations
•  |TMin | = TMax + 1

•  Asymmetric range
•  UMax = 2 * TMax + 1

W
8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

23

With Slides from Bryant and O’Hallaron

CSCI 2021 45 1/22/15

On A Real Machine

#include <stdio.h>

#include <limits.h>

main () {

 int uint_max = UINT_MAX;

 int int_max = INT_MAX;

 int int_min = INT_MIN;

 printf("uint_max = %u; int_max = %d; int_min = %d\n",

 uint_max, int_max, int_min);

}

uint_max = 4294967295; int_max = 2147483647; int_min = -2147483648

¢  C	 Programming	
§  #include	 <limits.h>	
§  Declares	 constants,	 e.g.,	

§  ULONG_MAX	
§  LONG_MAX	
§  LONG_MIN	

§  Values	 plaWorm	 specific
	
	 	

With Slides from Bryant and O’Hallaron

CSCI 2021 46 1/22/15

On A Real Machine

#include <stdio.h>
#include <limits.h>

main () {

 int ushrt_max = USHRT_MAX;

 int shrt_max = SHRT_MAX;

 int shrt_min = SHRT_MIN;

 printf("ushrt_max = %u; shrt_max = %d; shrt_min = %d\n",

 ushrt_max, shrt_max, shrt_min);

}

ushrt_max = 65535; shrt_max = 32767; shrt_min = -32768

24

With Slides from Bryant and O’Hallaron

CSCI 2021 47 1/22/15

 short int x = 55455;
 unsigned short int ux = (unsigned short) x;
 short int y = -55455;
 unsigned short int uy = (unsigned short) y;

Casting Signed to Unsigned

•  C Allows signed and unsigned value, and the conversions from signed to
unsigned, and vise versa

With Slides from Bryant and O’Hallaron

T2U	
T2B	 B2U	

Two’s	 Complement	 Unsigned	

Maintain	 Same	 Bit	 Pa^ern	

x	
 ux	

X	

Mapping Between Signed & Unsigned

U2T	
U2B	 B2T	

Two’s	 Complement	 Unsigned	

Maintain	 Same	 Bit	 Pa^ern	

ux	
 x	

X	

•  Mappings between unsigned and two’s complement numbers:
 keep bit representations and reinterpret

25

With Slides from Bryant and O’Hallaron

Signed vs. Unsigned in C
•  Constants

•  By default are considered to be signed integers
•  Unsigned if have “U” as suffix

0U, 4294967259U

•  Casting
•  Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

•  Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

With Slides from Bryant and O’Hallaron

CSCI 2021 50 1/22/15

Conversion in C

#include <stdio.h>
main () {

 int x = 55455;

 unsigned int ux = (unsigned int) x;

 int y = -55455;

 unsigned int uy = (unsigned int) y;

 printf("int 55455 = %d; int -55455 = %d\n", x, y);

 printf("unsigned 55455 = %u; unsigned -55455 = %u\n", ux, uy);

}

int 55455 = 55455; int -55455 = -55455
unsigned 55455 = 55455; unsigned -55455 = 4294911841

26

With Slides from Bryant and O’Hallaron

Mapping Signed ↔ Unsigned
Signed	

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned	

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits	

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T	

T2U	

With Slides from Bryant and O’Hallaron

Mapping Signed ↔ Unsigned
Signed	

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned	

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits	

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=	

+/-‐	 16	

27

With Slides from Bryant and O’Hallaron

CSCI 2021 53 1/22/15

0!

TMax!

TMin!

–1!
–2!

0!

UMax!
UMax – 1!

TMax!
TMax + 1!

2’s Comp.!
Range!

Unsigned!
Range!

Explanation of Casting Surprises

•  2’s Comp. → Unsigned
•  Ordering Inversion
•  Negative → Big Positive

With Slides from Bryant and O’Hallaron

 0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

•  Expression Evaluation
•  If mix unsigned and signed in single expression, signed values implicitly

cast to unsigned
•  Including comparison operations <, >, ==, <=, >=
•  Examples for W = 32

•  Constant1 Constant2 Relation Evaluation
 0 0U

 -1 0

 -1 0U

 2147483647 -2147483648
 2147483647U -2147483648
 -1 -2

 (unsigned) -1 -2

 2147483647 2147483648U

 2147483647 (int) 2147483648U

Conversion in C Answer

28

With Slides from Bryant and O’Hallaron

CSCI 2021 55 1/22/15

•  Task:
•  Given w-bit signed integer x
•  Convert it to w+k-bit integer with same value

•  Rule:
•  Make k copies of sign bit:
•  X ʹ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB!
• • • X 	

X ʹ′	
 • • • • • •

• • •

w!

w!k!

Sign Extension

With Slides from Bryant and O’Hallaron

CSCI 2021 56 1/22/15

Sign Extension Example

•  Converting from smaller to larger integer data type
•  C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal! Hex! Binary!
x! 15213! 3B 6D! 00111011 01101101!
ix! 15213! 00 00 3B 6D! 00000000 00000000 00111011 01101101!
y! -15213! C4 93! 11000100 10010011!
iy! -15213! FF FF C4 93! 11111111 11111111 11000100 10010011!

29

With Slides from Bryant and O’Hallaron

CSCI 2021 57 1/22/15

Why Should I Use Unsigned?

•  Don’t Use Just Because Number Nonzero
•  C compilers on some machines generate less efficient code
•  Easy to make mistakes

unsigned int i;

for (i = cnt-2; i >= 0; i--)

 a[i] += a[i+1];

•  Do Use When Performing Modular Arithmetic
•  Multiprecision arithmetic
•  Other esoteric stuff

•  Do Use When Need Extra Bit’s Worth of Range
•  Working right up to limit of word size

With Slides from Bryant and O’Hallaron

Code Security Example

•  Similar to code found in FreeBSD’s implementation of getpeername
•  There are legions of smart people trying to find vulnerabilities in

programs

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

 /* Byte count len is minimum of buffer size and maxlen */

 int len = KSIZE < maxlen ? KSIZE : maxlen;

 memcpy(user_dest, kbuf, len);

 return len;

}

30

With Slides from Bryant and O’Hallaron

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

 /* Byte count len is minimum of buffer size and maxlen */

 int len = KSIZE < maxlen ? KSIZE : maxlen;

 memcpy(user_dest, kbuf, len);

 return len;

}
#define MSIZE 528

void getstuff() {

 char mybuf[MSIZE];

 copy_from_kernel(mybuf, MSIZE);

 printf(“%s\n”, mybuf);

}

With Slides from Bryant and O’Hallaron

Malicious Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

 /* Byte count len is minimum of buffer size and maxlen */

 int len = KSIZE < maxlen ? KSIZE : maxlen;

 memcpy(user_dest, kbuf, len);

 return len;

}
#define MSIZE 528

void getstuff() {

 char mybuf[MSIZE];

 copy_from_kernel(mybuf, -MSIZE);

 . . .

}

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);

31

With Slides from Bryant and O’Hallaron

Summary
Casting Signed ↔ Unsigned: Basic Rules

•  Bit pattern is maintained
•  But reinterpreted

•  Can have unexpected effects: adding or subtracting 2w

•  Expression containing signed and unsigned int
•  int is cast to unsigned!!

With Slides from Bryant and O’Hallaron

CSCI 2021 62 1/22/15

•  Prove Correctness by Induction on k
•  Induction Step: extending by single bit maintains value

•  Key observation: –2w–1 = –2w +2w–1
•  Look at weight of upper bits:

X –2w–1 xw–1
X ʹ′ –2w xw–1 + 2w–1 xw–1 = –2w–1 xw–1

- • • • X 	

X ʹ′	
 - + • • •

w+1!

w!

Justification For Sign Extension

32

With Slides from Bryant and O’Hallaron

Summary:
Expanding, Truncating: Basic Rules

•  Expanding (e.g., short int to int)
•  Unsigned: zeros added
•  Signed: sign extension
•  Both yield expected result

•  Truncating (e.g., unsigned to unsigned short)
•  Unsigned/signed: bits are truncated
•  Result reinterpreted
•  Unsigned: mod operation
•  Signed: similar to mod
•  For small numbers yields expected behavior

With Slides from Bryant and O’Hallaron

Integer Arithmatics

CSCI 2021 64 1/22/15

33

With Slides from Bryant and O’Hallaron

CSCI 2021 65 1/22/15

•  Claim: Following Holds for 2’s Complement
 ~x + 1 == -x

•  Complement
•  Observation: ~x + x == 1111…112 == -1

•  Increment
~x + x + (-x + 1) == -1 + (-x + 1)

~x + 1 == -x

•  Warning: Be cautious treating int’s as integers

1 0 0 1 0 1 1 1 x

0 1 1 0 1 0 0 0 ~x +

1 1 1 1 1 1 1 1 -1

Negating with Complement & Increment

With Slides from Bryant and O’Hallaron

CSCI 2021 66 1/22/15

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
~x -15214 C4 92 11000100 10010010
~x+1 -15213 C4 93 11000100 10010011
y -15213 C4 93 11000100 10010011

x = 15213!

Decimal Hex Binary
0 0 00 00 00000000 00000000
~0 -1 FF FF 11111111 11111111
~0+1 0 00 00 00000000 00000000

0!

Comp. & Incr. Examples

34

With Slides from Bryant and O’Hallaron

CSCI 2021 67 1/22/15

•  Standard Addition Function
•  Ignores carry output

•  Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

UAddw(u,v) =
u + v u + v < 2w

u + v − 2w u + v ≥ 2w
⎧
⎨
⎩

• • •

• • •

u	

v	
+

• • • u + v	

• • •

True Sum: w+1 bits!

Operands: w bits!

Discard Carry: w bits! UAddw(u , v)	

Unsigned Addition

With Slides from Bryant and O’Hallaron

CSCI 2021 68 1/22/15

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

•  Integer Addition
•  4-bit integers u, v
•  Compute true sum

Add4(u , v)
•  Values increase

linearly with u and v
•  Forms planar surface

Add4(u , v)!

u!

v!

Integer Addition

35

With Slides from Bryant and O’Hallaron

CSCI 2021 69 1/22/15

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

•  Wraps Around
•  If true sum ≥ 2w
•  At most once

0!

2w!

2w+1!

UAdd4(u , v)!

u!

v!

True Sum!

Modular Sum!

Overflow!

Overflow!

Unsigned Addition

With Slides from Bryant and O’Hallaron

CSCI 2021 70 1/22/15

•  Functionality
•  True sum requires w

+1 bits
•  Drop off MSB
•  Treat remaining bits

as 2’s comp. integer

–2w –1!

–2w!

0!

2w –1!

2w–1!
True Sum!

TAdd Result!

1 000…0!

1 100…0!

0 000…0!

0 100…0!

0 111…1!

100…0!

000…0!

011…1!

PosOver!

NegOver!

TAddw (u,v) =

u + v + 2w−1 u + v < TMinw
u + v TMinw ≤ u + v ≤ TMaxw
u + v − 2w−1 TMaxw < u + v

⎧

⎨
⎪

⎩ ⎪

(NegOver)!

(PosOver)!u

v

< 0! > 0!

< 0!

> 0!

NegOver!

PosOver!
TAdd(u , v)!

2’s Complement Addition

36

With Slides from Bryant and O’Hallaron

CSCI 2021 71 1/22/15

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8

-6

-4

-2

0

2

4

6

8

•  Values
•  4-bit two’s comp.
•  Range from -8 to +7

•  Wraps Around
•  If sum ≥ 2w–1

•  Becomes negative
•  At most once

•  If sum < –2w–1
•  Becomes positive
•  At most once

TAdd4(u , v)!

u!

v!

PosOver!

NegOver!

2’s Complement Addition

With Slides from Bryant and O’Hallaron

CSCI 2021 72 1/22/15

•  Task
•  Given s = TAddw(u , v)
•  Determine if s = Addw(u , v)
•  Example
 int s, u, v;

 s = u + v;

•  Claim
•  Overflow iff either:

 u, v < 0, s ≥ 0 (NegOver)
 u, v ≥ 0, s < 0 (PosOver)

 ovf = (u<0 == v<0) && (u<0 != s<0);

0!

2w –1!

2w–1!
PosOver!

NegOver!

Detecting 2’s Complement Overflow

37

With Slides from Bryant and O’Hallaron

Mathematical Properties of TAdd

•  Isomorphic Group to unsigneds with UAdd
•  TAddw(u , v) = U2T(UAddw(T2U(u), T2U(v)))

•  Since both have identical bit patterns

•  Two’s Complement Under TAdd Forms a Group
•  Closed, Commutative, Associative, 0 is additive identity
•  Every element has additive inverse

TCompw(u) =
−u u ≠ TMinw
TMinw u = TMinw
⎧
⎨
⎩

With Slides from Bryant and O’Hallaron

•  Assume machine with 32 bit word size, two’s comp.
integers

•  TMin makes a good counterexample in many cases

q  x < 0 ⇒ ((x*2) < 0) False: !TMin
q  ux >= 0 True: !0 = UMin

q  x & 7 == 7 ⇒ (x<<30) < 0 True: !x1 = 1
q  ux > -1 False: !0
q  x > y ⇒ -x < -y False: !-1, TMin

q  x * x >= 0 False: !30426
q  x > 0 && y > 0 ⇒ x + y > 0 False: !TMax, TMax

q  x >= 0 ⇒ -x <= 0 True: !–TMax < 0!
q  x <= 0 ⇒ -x >= 0 !False: !TMin!

q  x < 0 ⇒ ((x*2) < 0)

q  ux >= 0

q  x & 7 == 7 ⇒ (x<<30) < 0

q  ux > -1

q  x > y ⇒ -x < -y

q  x * x >= 0

q  x > 0 && y > 0 ⇒ x + y > 0

q  x >= 0 ⇒ -x <= 0 !
q  x <= 0 ⇒ -x >= 0 !!

C Puzzle Answer
int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

38

With Slides from Bryant and O’Hallaron

CSCI 2021 75 1/22/15

•  Computing Exact Product of w-bit numbers x, y
•  Either signed or unsigned

•  Ranges
•  Unsigned: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

•  Up to 2w bits
•  Two’s complement min: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

•  Up to 2w–1 bits
•  Two’s complement max: x * y ≤ (–2w–1) 2 = 22w–2

•  Up to 2w bits, but only for (TMinw)2

•  Maintaining Exact Results
•  Would need to keep expanding word size with each product computed
•  Done in software by “arbitrary precision” arithmetic packages

Multiplication

With Slides from Bryant and O’Hallaron

Unsigned Multiplication in C

•  Standard Multiplication Function
•  Ignores high order w bits

•  Implements Modular Arithmetic
UMultw(u , v) = u · v mod 2w

• • •

• • •

u	

v	
*

• • • u · v	

• • •

True	 Product:	 2*w	 	 bits	

Operands:	 w	 bits	

Discard	 w	 bits:	 w	 bits	
UMultw(u , v)	

• • •

39

With Slides from Bryant and O’Hallaron

Signed Multiplication in C

•  Standard Multiplication Function
•  Ignores high order w bits
•  Some of which are different for signed

vs. unsigned multiplication
•  Lower bits are the same

• • •

• • •

u	

v	
*

• • • u · v	

• • •

True	 Product:	 2*w	 	 bits	

Operands:	 w	 bits	

Discard	 w	 bits:	 w	 bits	
TMultw(u , v)	

• • •

With Slides from Bryant and O’Hallaron

CSCI 2021 78 1/22/15

Power-of-2 Multiply with Shift

•  Operation
•  u << k gives u * 2k

•  Both signed and unsigned

•  Examples
•  u << 3 == u * 8
•  u << 5 - u << 3 == u * 24
•  Most machines shift and add much faster than multiply

•  Compiler generates this code automatically

• • •

0 0 1 0 0 0 •••

u	

2k	
*

u · 2k	
True Product: w+k bits!

Operands: w bits!

Discard k bits: w bits! UMultw(u , 2k)	

•••

k	

• • • 0 0 0 •••

TMultw(u , 2k)	

0 0 0 ••• •••

40

With Slides from Bryant and O’Hallaron

CSCI 2021 79 1/22/15

Unsigned Power-of-2 Divide with Shift

•  Quotient of Unsigned by Power of 2
•  u >> k gives ⎣ u / 2k ⎦

•  Uses logical shift

Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0 •••

u	

2k	
/

u / 2k	
Division: !

Operands:!
•••

k	

••• •••

••• 0 ••• •••

⎣ u / 2k ⎦! ••• Result:!

.!

Binary Point!

0 •••

With Slides from Bryant and O’Hallaron

CSCI 2021 80 1/22/15

Signed Power-of-2 Divide with Shift

•  Quotient of Signed by Power of 2
•  x >> k gives ⎣ x / 2k ⎦

•  Uses arithmetic shift
•  Rounds wrong direction when u < 0

0 0 1 0 0 0 •••

x	

2k	
/

x / 2k	
Division: !

Operands:!
•••

k	

••• •••

••• 0 ••• •••

RoundDown(x / 2k)	
 ••• Result:!

.!

Binary Point!

0 •••

Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

41

With Slides from Bryant and O’Hallaron

CSCI 2021 81 1/22/15

Correct Power-of-2 Divide

•  Quotient of Negative Number by Power of 2
•  Want ⎡ x / 2k ⎤ (Round Toward 0)
•  Compute as ⎣ (x+2k-1)/ 2k ⎦

•  In C: (x + (1<<k)-1) >> k
•  Biases dividend toward 0

•  Case 1: No rounding

Divisor: !

Dividend:!

0 0 1 0 0 0 •••

u	

2k	
/

 ⎡ u / 2k ⎤	

•••

k	

1 ••• 0 0 0 •••

1 ••• 0 1 1 ••• .!

Binary Point!

1

0 0 0 1 1 1 ••• +2k +–1	
 •••

1 1 1 •••

1 ••• 1 1 1 •••

Biasing has no effect!

With Slides from Bryant and O’Hallaron

CSCI 2021 82 1/22/15

Correct Power-of-2 Divide (Cont.)

Divisor: !

Dividend:!

Case 2: Rounding!

0 0 1 0 0 0 •••

x	

2k	
/

 ⎡ x / 2k ⎤	

•••

k	

1 ••• •••

1 ••• 0 1 1 ••• .!

Binary Point!

1

0 0 0 1 1 1 ••• +2k +–1	
 •••

1 ••• •••

Biasing adds 1 to final result!

•••

Incremented by 1!

Incremented by 1!

42

With Slides from Bryant and O’Hallaron

Arithmetic: Basic Rules

•  Addition:
•  Unsigned/signed: Normal addition followed by truncate,

same operation on bit level
•  Unsigned: addition mod 2w

•  Mathematical addition + possible subtraction of 2w
•  Signed: modified addition mod 2w (result in proper range)

•  Mathematical addition + possible addition or subtraction of 2w

•  Multiplication:
•  Unsigned/signed: Normal multiplication followed by truncate, same

operation on bit level
•  Unsigned: multiplication mod 2w

•  Signed: modified multiplication mod 2w (result in proper range)

With Slides from Bryant and O’Hallaron

Arithmetic: Basic Rules

•  Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism =
casting

•  Left shift
•  Unsigned/signed: multiplication by 2k

•  Always logical shift

•  Right shift
•  Unsigned: logical shift, div (division + round to zero) by 2k

•  Signed: arithmetic shift
•  Positive numbers: div (division + round to zero) by 2k

•  Negative numbers: div (division + round away from zero) by 2k

Use biasing to fix

43

With Slides from Bryant and O’Hallaron

Properties of Unsigned Arithmetic

•  Unsigned Multiplication with Addition Forms Commutative Ring
•  Addition is commutative group
•  Closed under multiplication

0 ≤ UMultw(u , v) ≤ 2w –1
•  Multiplication Commutative

UMultw(u , v) = UMultw(v , u)
•  Multiplication is Associative

UMultw(t, UMultw(u , v)) = UMultw(UMultw(t, u), v)
•  1 is multiplicative identity

UMultw(u , 1) = u
•  Multiplication distributes over addtion

UMultw(t, UAddw(u , v)) = UAddw(UMultw(t, u), UMultw(t, v))

With Slides from Bryant and O’Hallaron

Properties of Two’s Comp. Arithmetic
•  Isomorphic Algebras

•  Unsigned multiplication and addition
•  Truncating to w bits

•  Two’s complement multiplication and addition
•  Truncating to w bits

•  Both Form Rings
•  Isomorphic to ring of integers mod 2w

•  Comparison to (Mathematical) Integer Arithmetic
•  Both are rings
•  Integers obey ordering properties, e.g.,

u > 0 ⇒ u + v > v
u > 0, v > 0 ⇒ u · v > 0

•  These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)

44

With Slides from Bryant and O’Hallaron

CSCI 2021 87 1/22/15

Floating Point Representation

With Slides from Bryant and O’Hallaron

Floating Point

•  Background: Fractional binary numbers
•  IEEE floating point standard: Definition

•  Example and properties

•  Rounding, addition, multiplication

•  Floating point in C

•  Summary

45

With Slides from Bryant and O’Hallaron

Fractional binary numbers

•  What is 1011.1012?

With Slides from Bryant and O’Hallaron

2i	

2i-‐1	

4	
2	
1	

1/2	
1/4	
1/8	

2-‐j	

bi	 bi-‐1	 •••	 b2	 b1	 b0	 b-‐1	 b-‐2	 b-‐3	 •••	 b-‐j	

• • •	

Frac4onal	 Binary	 Numbers	

•  Representation
•  Bits to right of “binary point” represent fractional powers of 2
•  Represents rational number:

• • •	

46

With Slides from Bryant and O’Hallaron

Fractional Binary Numbers: Examples

¢  Value 	 Representa4on	
	5 3/4 	101.112	
 	2 7/8 	010.1112	
 	63/64 	001.01112	

¢  Observa4ons	
§  Divide	 by	 2	 by	 shiiing	 right	
§  Mul4ply	 by	 2	 by	 shiiing	 lei	
§  Numbers	 of	 form	 0.111111…2	 are	 just	 below	 1.0	

§  1/2	 +	 1/4	 +	 1/8	 +	 …	 +	 1/2i	 +	 …	 ➙	 1.0	
§  Use	 nota4on	 1.0	 –	 ε	

With Slides from Bryant and O’Hallaron

Representable Numbers

•  Limitation
•  Can only exactly represent numbers of the form x/2k
•  Other rational numbers have repeating bit representations

•  Value Representation
•  1/3 0.0101010101[01]…2	
•  1/5 0.001100110011[0011]…2	
•  1/10 0.0001100110011[0011]…2	

47

With Slides from Bryant and O’Hallaron

Floating Point

•  Background: Fractional binary numbers
•  IEEE floating point standard: Definition

•  Example and properties

•  Rounding, addition, multiplication

•  Floating point in C

•  Summary

With Slides from Bryant and O’Hallaron

Carnegie Mellon

IEEE Floating Point

•  IEEE Standard 754
•  Established in 1985 as uniform standard for floating point arithmetic

•  Before that, many idiosyncratic formats
•  Supported by all major CPUs

•  Driven by numerical concerns
•  Nice standards for rounding, overflow, underflow
•  Hard to make fast in hardware

•  Numerical analysts predominated over hardware designers in
defining standard

48

With Slides from Bryant and O’Hallaron

•  Numerical Form:
 (–1)s M 2E

•  Sign	 bit s determines whether number is negative or positive
•  Significand M normally a fractional value in range [1.0,2.0).
•  Exponent E weights value by power of two

•  Encoding
•  MSB s is sign bit s
•  exp field encodes E (but is not equal to E)
•  frac field encodes M (but is not equal to M)

Floating Point Representation

s	exp	 frac	

With Slides from Bryant and O’Hallaron

Precisions

•  Single precision: 32 bits

•  Double precision: 64 bits

•  Extended precision: 80 bits (Intel only)

s	exp	 frac	

1	 8-bits	 23-bits	

s	exp	 frac	

1	 11-bits	 52-bits	

s	exp	 frac	

1	 15-bits	 63 or 64-bits	

49

With Slides from Bryant and O’Hallaron

Normalized Values

•  Condition: exp ≠ 000…0 and exp ≠ 111…1

•  Exponent coded as biased value: E = Exp – Bias
•  Exp: unsigned value exp
•  Bias = 2k-1 - 1, where k is number of exponent bits

•  Single precision: 127 (Exp: 1…254, E: -126…127)
•  Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

•  Significand coded with implied leading 1: M = 1.xxx…x2
•  xxx…x: bits of frac
•  Minimum when 000…0 (M = 1.0)
•  Maximum when 111…1 (M = 2.0 – ε)
•  Get extra leading bit for “free”

With Slides from Bryant and O’Hallaron

Normalized Encoding Example

•  Value: Float F = 15213.0;
•  1521310 = 111011011011012
 = 1.11011011011012 x 213

•  Significand
M = 1.11011011011012
frac = 110110110110100000000002

•  Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

•  Result:

0 10001100 11011011011010000000000

s exp frac

50

With Slides from Bryant and O’Hallaron

Denormalized Values

•  Condition: exp = 000…0

•  Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)

•  Significand coded with implied leading 0: M = 0.xxx…x2
•  xxx…x: bits of frac

•  Cases
•  exp = 000…0, frac = 000…0

•  Represents zero value
•  Note distinct values: +0 and –0 (why?)

•  exp = 000…0, frac ≠ 000…0
•  Numbers very close to 0.0
•  Lose precision as get smaller
•  Equispaced

With Slides from Bryant and O’Hallaron

Special Values

•  Condition: exp = 111…1

•  Case: exp = 111…1, frac = 000…0

•  Represents value ∞ (infinity)
•  Operation that overflows
•  Both positive and negative
•  E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞

•  Case: exp = 111…1, frac ≠ 000…0
•  Not-a-Number (NaN)
•  Represents case when no numeric value can be determined
•  E.g., sqrt(–1), ∞ − ∞, ∞ × 0

51

With Slides from Bryant and O’Hallaron

Visualiza4on:	 Floa4ng	 Point	 Encodings	

+∞ −∞

-0

+Denorm +Normalized −Denorm −Normalized

+0 NaN NaN

With Slides from Bryant and O’Hallaron

Floa4ng	 Point	

•  Background: Fractional binary numbers
•  IEEE floating point standard: Definition

•  Example and properties

•  Rounding, addition, multiplication

•  Floating point in C

•  Summary

52

With Slides from Bryant and O’Hallaron

Tiny Floating Point Example

•  8-bit Floating Point Representation
•  the sign bit is in the most significant bit
•  the next four bits are the exponent, with a bias of 7
•  the last three bits are the frac

•  Same general form as IEEE Format
•  normalized, denormalized
•  representation of 0, NaN, infinity

s	 exp	 frac	

1	 4-bits	 3-bits	

With Slides from Bryant and O’Hallaron

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

53

With Slides from Bryant and O’Hallaron

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

•  6-bit IEEE-like format
•  e = 3 exponent bits
•  f = 2 fraction bits
•  Bias is 23-1-1 = 3

•  Notice how the distribution gets denser toward zero.

	 8	 values	

s	 exp	 frac	

1	 3-bits	 2-bits	

With Slides from Bryant and O’Hallaron

Distribution of Values (close-up view)

•  6-bit IEEE-like format
•  e = 3 exponent bits
•  f = 2 fraction bits
•  Bias is 3

s	 exp	 frac	

1	 3-bits	 2-bits	

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

54

With Slides from Bryant and O’Hallaron

Interesting Numbers
Description exp frac Numeric Value
•  Zero 00…00 00…00 0.0

•  Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}
•  Single ≈ 1.4 x 10–45
•  Double ≈ 4.9 x 10–324

•  Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}
•  Single ≈ 1.18 x 10–38
•  Double ≈ 2.2 x 10–308

•  Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}
•  Just larger than largest denormalized

•  One 01…11 00…00 1.0

•  Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}
•  Single ≈ 3.4 x 1038
•  Double ≈ 1.8 x 10308

{single,double}	

With Slides from Bryant and O’Hallaron

Special Properties of Encoding

•  FP Zero Same as Integer Zero
•  All bits = 0

•  Can (Almost) Use Unsigned Integer Comparison
•  Must first compare sign bits
•  Must consider −0 = 0
•  NaNs problematic

•  Will be greater than any other values
•  What should comparison yield?

•  Otherwise OK
•  Denorm vs. normalized
•  Normalized vs. infinity

55

With Slides from Bryant and O’Hallaron

Floating Point

•  Background: Fractional binary numbers
•  IEEE floating point standard: Definition

•  Example and properties

•  Rounding, addition, multiplication

•  Floating point in C

•  Summary

With Slides from Bryant and O’Hallaron

Floating Point Operations: Basic Idea

•  x +f y = Round(x + y)

•  x ×f y = Round(x × y)

•  Basic idea
•  First compute exact result
•  Make it fit into desired precision

•  Possibly overflow if exponent too large
•  Possibly round to fit into frac

56

With Slides from Bryant and O’Hallaron

Rounding

•  Rounding Modes (illustrate with $ rounding)

•  $1.40 $1.60 $1.50 $2.50 –$1.50
•  Towards zero $1 $1 $1 $2 –$1
•  Round down (−∞) $1 $1 $1 $2 –$2
•  Round up (+∞) $2 $2 $2 $3 –$1
•  Nearest Even (default) $1 $2 $2 $2 –$2

•  What are the advantages of the modes?

With Slides from Bryant and O’Hallaron

Closer Look at Round-To-Even

•  Default Rounding Mode
•  Hard to get any other kind without dropping into assembly
•  All others are statistically biased

•  Sum of set of positive numbers will consistently be over- or under-
estimated

•  Applying to Other Decimal Places / Bit Positions
•  When exactly halfway between two possible values

•  Round so that least significant digit is even
•  E.g., round to nearest hundredth

 1.2349999 1.23 (Less than half way)
 1.2350001 1.24 (Greater than half way)
 1.2350000 1.24 (Half way—round up)
 1.2450000 1.24 (Half way—round down)

57

With Slides from Bryant and O’Hallaron

Rounding Binary Numbers

•  Binary Fractional Numbers
•  “Even” when least significant bit is 0
•  “Half way” when bits to right of rounding position = 100…2

•  Examples
•  Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded

Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

With Slides from Bryant and O’Hallaron

FP Multiplication

•  (–1)s1 M1 2E1 x (–1)s2 M2 2E2
•  Exact Result: (–1)s M 2E

•  Sign s: s1 ^ s2
•  Significand M: M1 x M2
•  Exponent E: E1 + E2

•  Fixing
•  If M ≥ 2, shift M right, increment E
•  If E out of range, overflow
•  Round M to fit frac precision

•  Implementation
•  Biggest chore is multiplying significands

58

With Slides from Bryant and O’Hallaron

Carnegie Mellon

Floating Point Addition

•  (–1)s1 M1 2E1 + (-1)s2 M2 2E2
• Assume E1 > E2

•  Exact Result: (–1)s M 2E
• Sign s, significand M:

•  Result of signed align & add
• Exponent E: E1

•  Fixing
• If M ≥ 2, shift M right, increment E
• if M < 1, shift M left k positions, decrement E by k
• Overflow if E out of range
• Round M to fit frac precision

(–1)s1	 M1	 	

(–1)s2	 M2	 	

E1–E2

+	
(–1)s	 M	

With Slides from Bryant and O’Hallaron

Mathematical Properties of FP Add

•  Compare to those of Abelian Group
•  Closed under addition?

•  But may generate infinity or NaN
•  Commutative?
•  Associative?

•  Overflow and inexactness of rounding
•  0 is additive identity?
•  Every element has additive inverse

•  Except for infinities & NaNs
•  Monotonicity

•  a ≥ b ⇒ a+c ≥ b+c?
•  Except for infinities & NaNs

Yes	

Yes	

Yes	

No	

Almost	

Almost	

59

With Slides from Bryant and O’Hallaron

Mathematical Properties of FP Mult

•  Compare to Commutative Ring
•  Closed under multiplication?

•  But may generate infinity or NaN
•  Multiplication Commutative?
•  Multiplication is Associative?

•  Possibility of overflow, inexactness of rounding
•  1 is multiplicative identity?
•  Multiplication distributes over addition?

•  Possibility of overflow, inexactness of rounding

•  Monotonicity
•  a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?

•  Except for infinities & NaNs

Yes	

Yes	
No	

Yes	
No	

Almost	

With Slides from Bryant and O’Hallaron

Floating Point

•  Background: Fractional binary numbers
•  IEEE floating point standard: Definition

•  Example and properties

•  Rounding, addition, multiplication

•  Floating point in C

•  Summary

60

With Slides from Bryant and O’Hallaron

Floating Point in C

•  C Guarantees Two Levels
• float single precision
• double double precision

•  Conversions/Casting
• Casting between int, float, and double changes bit representation
•  double/float → int

•  Truncates fractional part
•  Like rounding toward zero
•  Not defined when out of range or NaN: Generally sets to TMin

•  int → double
•  Exact conversion, as long as int has ≤ 53 bit word size

•  int → float
•  Will round according to rounding mode

With Slides from Bryant and O’Hallaron

•  x == (int)(float) x

•  x == (int)(double) x

•  f == (float)(double) f

•  d == (float) d

•  f == -(-f);

•  2/3 == 2/3.0

•  d < 0.0 ⇒ ((d*2) < 0.0)

•  d > f ⇒ -f > -d

•  d * d >= 0.0

•  (d+f)-d == f !

int x = …;

float f = …;

double d = …;

Assume neither!
d nor f is NAN!

•  x == (int)(float) x No: 24 bit significand
•  x == (int)(double) x Yes: 53 bit significand

•  f == (float)(double) f Yes: increases precision
•  d == (float) d No: loses precision
•  f == -(-f); Yes: Just change sign bit

•  2/3 == 2/3.0 No: 2/3 == 0
•  d < 0.0 ⇒ ((d*2) < 0.0) Yes!

•  d > f ⇒ -f > -d Yes!
•  d * d >= 0.0 Yes!
•  (d+f)-d == f No: Not associative!

Floating Point Puzzle Answer

61

With Slides from Bryant and O’Hallaron

Floa4ng	 Point	

•  Background: Fractional binary numbers
•  IEEE floating point standard: Definition

•  Example and properties

•  Rounding, addition, multiplication

•  Floating point in C

•  Summary

With Slides from Bryant and O’Hallaron

Carnegie Mellon

Summary

•  IEEE Floating Point has clear mathematical properties
•  Represents numbers of form M x 2E

•  One can reason about operations independent of implementation
•  As if computed with perfect precision and then rounded

•  Not the same as real arithmetic
•  Violates associativity/distributivity
•  Makes life difficult for compilers & serious numerical applications

programmers

62

With Slides from Bryant and O’Hallaron

CSCI 2021 123 1/22/15

Summary

•  Binary algebra
•  &, |, ^, ~, <<, >>

•  Binary numbers
•  Binary, decimal, hexadecimal
•  Conversions: binary ó decimal; binary ó hexadecimal
•  2’s Complement Representation

•  Signed and unsigned numbers
•  Addition and overflow
•  Multiplication & division

•  Floating point numbers

