

		Counting		
0	1	2	3	4
5	6	7	8	9
	10 se	parate s	states‼	
1/22/15 With Slides from Bryant ar	nd O'Hallaron	CSCI 2021		3

Boolean	Algebra
 Developed by George Boole in 19th Algebraic representation of logic 	Century : encode "True" as 1 and "False" as 0
And: A&B = 1 when both A=1 and B=1	Or: A B = 1 when either A=1 or B=1
&01000101Associativity and commutativity	I01001111Associativity and commutativity
Not: ~A =	1 when A=0
	1 0
1/22/15 CSC	l 2021 6
With Slides from Bryant and O'Hallaron	

Left Shift: x << y	Argument x	01100010
 Throw away extra bits on left 	<< 3	00010 <i>000</i>
 Fill with 0's on right 	Log. >> 2	<i>00</i> 011000
Right Shift: $x \gg y$	Arith. >> 2	<i>00</i> 011000
 Shift bit-vector x right y positions Throw away extra bits on right 		
 Logical shift 	Argument x	10100010
Fill with O's on left	<< 3	00010 <i>000</i>
 Arithmetic shift Replicate most significant bit on 	Log. >> 2	<i>00</i> 101000
right	Arith. >> 2	<i>11</i> 101000
 Useful with two's complement integer representation 		

ecimal to Binary multiply the num	ber by 2 and register	the integer portion
3125 ?		
Multiply by	Number	Remainder
2	0.3125	
2		
2		
2		
2		+

Multiply by Number Remainder 2 0.4	
2 0.4 2 2 2 2	
2	
2	
2	
2	
2	
2	
2	
0.4 ₁₀ = 0.[0110] ₂	

Decimal	Binary	
2		
6		
65		
63		
1025		
0.25		
43.16		
0.20		

Binary	Decimal	Octal	Hexadecimal
	1		1
	1	+	I
	1	1	1
	1	+	ı
	1	+	1
	ł	1	.
	1	+	+
	1	+	+
	1	+	1
	1	1	1

With Slides from Bryant and O'Hallaron

			115
C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

0000	0	0	
0001			0
	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	e !!!
0101	5	5	5
0110	6	6MV	6
0111	7	7 100	7
1000	8	Jule .	8
1001	9	11	9
1010	10 , 109	12	A
1011	11	13	В
1100	Nee	14	С
1101	13	15	D
1110	14	16	E
1111	15	17	F

Addition and S	oubtraction in Binary
Decimal:	10 + 2 = 12
Hexadecimal:	A + 2 = C
Binary:	1010 + 0010 =1100
Decimal:	12 - 2 = 10
Hexadecimal:	C - 2 = A
Binary:	1100 - 0010 =1010
1/22/15 With Slides from Bryant and O'Hallaron	CSCI 2021 37

Decimal:	0 - 1 = -1		
Hexadecimal:	0 - 1 = -1		
Binary: 0000 +	0001 =1111		
		Decimal:	-1 - 1 = -2
Decimal:	-1 + 1 - 0	Hexadecin	nal: -1 - 1 = -2
Hexadecimal:	-1 + 1 = 0	Binary:	1111 - 0001 =1110
Binary: 1111 +	0001 =0000		

Using half of the numbers for negative	X	B2U(<i>X</i>)	B2T(<i>X</i>
• The most significant bit indicates sign	0000	0	
• 0 for nonnegative	0001	1	
1 for regative	0010	2	
Fauivalance	0011	3	
Equivalence	0100	4	
 Same encodings for nonnegative values 	0101	5	
Uniqueness	0110	6	
• Eveny hit pattern represents unique integer	0111	7	
Cvery bit pattern represents unique integer	1000	8	
• Each representable integer has a unique	1001	9	
encoding	1010	10	
How to find the negative number?	1011	11	
1 Find the positive number	1100	12	
2 Thyongo all hits	1101	13	
	1110	14	
3. Add "1" to it	1111	15	

U	nsigned		Two's Complement
B2U	J(X) =	$\sum_{i=0}^{w-1} x_i \cdot 2^i$	$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i$ Sign
s	hort int hort int	x = 1! y = -1!	5213; 5213;
s	hort int hort int	x = 1! $y = -1!$	5213; 5213; Binan/
s s	hort int hort int Decimal	x = 1! y = -1! Hex	5213; 5213; Binary

	y LAu	mpie (Coni	.)
Weight	15213	3	-152	13
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213
		CSCI 2021		

	Nu	Imeric	Range
Unsigned Values			Two's Complement Values
• UMin =	0		• TMin = -2 ^{w-1}
0000			1000
• UMax =	2 <i>"</i> - 1		• TMax = 2 ^{w-1} - 1
1111			0111
			Other Values
			 Minus 1
			1111
Values fo	or $W = 16$		
	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	1000000 0000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 0000000

Х	B2U(<i>X</i>)	B2T(<i>X</i>)	• Equivalence
0000	0	0	 Same encodings for nonnegative
0001	1	1	values
0010	2	2	 Uniqueness
0011	3	3	 Every bit pattern represents
0100	4	4	unique integer value
0101	5	5	 Each representable integer has
0110	6	6	unique bit encoding
0111	7	7	 ⇒ Can Invert Mappings
1000	8	-8	• $U2B(x) = B2U^{-1}(x)$
1001	9	-7	Bit pattern for unsigned
1010	10	-6	integer
1011	11	-5	• $T2B(x) = B2T^{-1}(x)$
1100	12	-4	$\frac{1}{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$
1101	13	-3	integer
1110	14	-2	integer
1111	15	-1	

 ULONG_MAX LONG_MAX LONG_MIN Values platform specific %d\n",

	Conversion in C
≠include <stdio.h></stdio.h>	
nain () {	
int x = 55455;	
unsigned int ux = (unsig	ned int) x;
int y = -55455;	
unsigned int uy = (unsig	ned int) y;
printf("int 55455 = %d	; int -55455 = %d\n", x, y);
printf("unsigned 55455	5 = %u; unsigned -55455 = %u\n", ux, uy);
int 55455 = 554	155; int -55455 = -55455
unsigned 55455	= 55455; unsigned -55455 = 4294911841
122/15	CSCI 2021

 Expression Evaluation If mix unsigned ar cast to unsigned Including comparis Examples for W = 	n nd signed in single expression, signed values implicitly son operations <, >, ==, <=, >= 32
Constant ₁	Constant ₂
0	00
-1	0
-1	00
2147483647	-2147483648
2147483647U	-2147483648
-1	-2
(unsigned) -1	-2
2147483647	2147483648U
2147483647	(int) 2147483648U

		shou int shou int	rt int	x = 1521 ix = (int) y = -1521 iy = (int)	3; x; 3; y;		
	Decimal	He	ex		Bin	ary	
х	15213		3B 6D			00111011	0110110
ix	15213	00 00	3B 6D	00000000	00000000	00111011	0110110
У	-15213		C4 93			11000100	1001001
iy	-15213	FF FF	C4 93	11111111	11111111	11000100	1001001
•	Convert C autom	ing from atically	ı smalle perforn	r to larger in ns sign exten	teger data [.] sion	type	

	void *memcpy(vo:	n of library function memcpy */ id *dest, void *src, size_t n);
/* #de cha	Kernel memory region holding user-ac fine KSIZE 1024 r kbuf[KSIZE];	cessible data */
/* int	Copy at most maxlen bytes from kerne copy_from_kernel(void *user_dest, i /* Byte count len is minimum of buf int len = KSIZE < maxlen ? KSIZE : memcpy(user_dest, kbuf, len); return len;	el region to user buffer */ .nt maxlen) { Efer size and maxlen */ maxlen;
#de	fine MSIZE 528	
voi	d getstuff() { char mybuf[MSIZE];	

		Decimal	He	ex		Binary	
	Х	15213	3в	6D	001	111011 011	01101
	~x	-15214	C4	92	110	00100 100	10010
	~x+1	-15213	C4	93	110	00100 100	1001 1
	У	-15213	C4	93	11(000100 100	10011
0							
ĨГ		Decir	mal	Н	ex	Bin	ary
C)		0	00	00 (00000000	00000000
^	~ 0		-1	FI	F FF	11111111	11111111
^	~0+1		0	00	00 0	00000000	00000000

C F	Puzzle Answer	<pre>int x = foo(); int y = bar();</pre>
 Assume machine with 32 b integers <i>TMin</i> makes a good counter 	it word size, two's comp. rexample in many cases	<pre>unsigned ux = x; unsigned uy = y;</pre>
$ x < 0 \qquad \Rightarrow ux >= 0 $	((x*2) < 0)	
$\Box x \& 7 == 7 \implies$ $\Box ux > -1$	(x<<30) < 0	
$ x > y \qquad \Rightarrow x * x >= 0 $	-x < -y	
$\Box x > 0 & \psi > 0 \Rightarrow$ $\Box x >= 0 \Rightarrow$	x + y > 0 $-x <= 0$	
$\Box \mathbf{x} \ll 0 \qquad \Rightarrow \qquad \qquad$	-x >= 0	

Unsigned Multip	olication ir	n C		
Operands: <i>w</i> bits True Product: 2^*w bits $u \cdot v$ Discard <i>w</i> bits: <i>w</i> bits	$u \\ \star v$		0 0 0 0 0 0 0 0 0	
 Standard Multiplication Function Ignores high order w bits Implements Modular Arithmetic UMult_w(u, v)= u · v mod 2^w 				
With Slides from Bryant and O'Hallaron				

Signed M	ultiplicatio	n in C		
Operands: w bits	и * _V		0 0 0	
True Product: 2^*w bits $u \cdot v$	• • •			
Discard w bits: w bits	$\mathrm{TMult}_{w}(u, v)$			
 Standard Multiplication Function Ignores high order w bits Some of which are different vs. unsigned multiplication Lower bits are the same 	n t for signed			

Unsig	ned Pow	er-of-2	Divide	with SI	hift
• Quotient	t of Unsigned	by Power of 2	!		
• Uses	logical shift				
	2		k		
		u •	•• •	•• B	inary Point
Operands:	/	2 ^k 0 •••	010 •	••••••••	
Division:	u /	2 ^k		···]	•••
Result:		¹ 2 ^k] •••		•••	
	Division	Computed	Hex	Bin	ary
x	15213	15213	3B 6D	00111011	01101101
x >> 1	7606.5	7606	1D B6	0 0011101	10110110
x >> 4	950.8125	950	03 B6	0000011	10110110
x >> 8	59.4257813	59	00 3B	00000000	00111011
1/22/15		CSCI 2	021		7
h Slides from Bryant	and O'Hallaron				

With Slides from Bryant and O'Hallaron

	Precisions	
Single precision: 32	bits	
s exp	frac	
1 8-bits • Double precision: 64	23-bits bits	
s exp	frac	
• Extended pheictsion:	80 bits (Intel only)52-bits	
s exp	frac	
1 15-bits	63 or 64-bits	
With Slides from Bryant and O'Hallaron		

	s	exp	frac	Е	Value	
	0	0000	000	-6	0	
	0	0000	001	-6	$1/8 \times 1/64 = 1/512$	alagant to man
Denormalized	0	0000	010	-6	$2/8 \times 1/64 = 2/512$	ciosest to zero
numbers						
numbers	0	0000	110	-6	$6/8 \times 1/64 = 6/512$	
	0	0000	111	-6	7/8*1/64 = 7/512	lancest denorm
	0	0001	000	-6	8/8*1/64 = 8/512	
	0	0001	001	-6	9/8*1/64 = 9/512	smallest norm
	0	0110	110	-1	$14/8 \times 1/2 = 14/16$	
	0	0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1	
numbers	0	0111	001	0	9/8*1 = 9/8	closest to 1 above
	0	0111	010	0	$10/8 \times 1 = 10/8$	
	0	1110	110	7	$14/8 \times 128 = 224$	
	0	1110	111	7	15/8*128 = 240	largest norm
	0	1111	000	n/a	inf	

Description	ехр	frac	Numeric Value
• Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 × 10⁻⁴⁵ Double ≈ 4.9 × 10⁻³²⁴ 	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
 Largest Denormalized Single ≈ 1.18 × 10⁻³⁸ Double ≈ 2.2 × 10⁻³⁰⁸ 	0000	1111	(1.0 - ε) x 2 ^{-{126,1022}}
 Smallest Pos. Normalized Just larger than largest de 	0001 normalize	0000 2d	1.0 × 2 ^{- {126,1022}}
• One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 × 10³⁸ Double ≈ 1.8 × 10³⁰⁸ 	1110	1111	(2.0 - ε) x 2 ^{127,1023}

Rounding Modes (illustra	te with \$	rounding)		
	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
 Towards zero 	\$1	\$1	\$1	\$2	-\$1
• Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2
What are the advantages	s of the n	nodes?			

Binary Fr	actional Numbe	ers : Circut hit is C		
• "Even" i	when least sign	iticant bit is l a night of now) ndina nagitian - 10	
Hait w	ay when birs i	o right of rou	naing position = Ie	W 2
Examples				
 Round t 	to nearest 1/4 (2 bits right o	f binary point)	
Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.00 <mark>011</mark> 2	10.00 ₂	(<1/2-down)	2
2 3/16	10.00 <mark>110</mark> 2	10.01 ₂	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2—up)	3
			• • • • •	

FP Multiplication • $(-1)^{s1} M1 2^{s1} \times (-1)^{s2} M2 2^{s2}$ • Exact Result: $(-1)^{s} M 2^{s}$ • Sign s: $s1^{s2}$ • Significand M: M1 × M2 • Exponent E: $E1 + E2$ • Fixing • If M ≥ 2, shift M right, increment E • If E out of range, overflow • Round M to fit frac precision • Implementation • Biggest chore is multiplying significands		
• $(-1)^{s1} M1 2^{E_1} \times (-1)^{s_2} M2 2^{E_2}$ • Exact Result: $(-1)^s M 2^E$ • Sign s: s1^s2 • Significand M: M1 x M2 • Exponent E: E1 + E2 • Fixing • If M ≥ 2 , shift M right, increment E • If E out of range, overflow • Round M to fit frac precision • Implementation • Biggest chore is multiplying significands		FP Multiplication
 (-1)^{s1} M1 2^{E1} × (-1)^{s2} M2 2^{E2} Exact Result: (-1)^s M 2^E Sign s: s1 ^ s2 Significand M: M1 × M2 Exponent E: E1 + E2 Fixing If M ≥ 2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 		
 Exact Result: (-1)^s M 2^E Sign s: s1^s2 Significand M: M1 x M2 Exponent E: E1 + E2 Fixing If M≥2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 	• (-1) ^{s1} M1 2 ^{E1} × (-	1) ^{s2} M2 2 ^{E2}
 Sign s: s1 ^ s2 Significand M: M1 x M2 Exponent E: E1 + E2 Fixing If M ≥ 2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 	 Exact Result: (-1)^s 	M 2 ^E
 Significand M: M1 x M2 Exponent E: E1 + E2 Fixing If M ≥ 2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 	 Sign s: 	s1 ^ s2
 Exponent E: E1 + E2 Fixing If M ≥ 2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 	 Significand M: 	M1 × M2
 Fixing If M≥ 2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 	 Exponent E: 	E1 + E2
 If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 	 Fixing If M ≥ 2, shift M 	right, increment E
 Round M to fit frac precision Implementation Biggest chore is multiplying significands 	• If E out of range,	, overflow
Biggest chore is multiplying significands	 Implementation 	ac precision
	Biggest chore is n	nultiplying significands

