Logic Design V

CSci 2021: Machine Architecture and Organization
Lecture \#40, May 4th, 2015

Your instructor: Stephen McCamant

Metastability

- Analogy:

- Flip-flop tries to return to a stable state
- Self-correcting feedback
- But, if close to metastable point:
- Might take a long time to "decide"
- Must avoid this situation for a reliable circuit

Counters

- Simple kind of time-varying digital system
- Produces a single sequence of states, repeating
- Changes every cycle or on a count pulse
- Example: 3-bit binary up-counter
- Produces 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, ...
- Variations:
- Down-counters
- Decade counters (for decimal): 0 through 9
- Gray code: sequence where only one bit changes at a time
- Ring counter: circular shift register producing one-hot outputs

Timing for Flip-Flops

- Input must be steady around clock edge for reliable operation
- Setup time: amount of time before clock input must be right
- Hold time: amount of time after clock that input must right

- Delay before output changes

- Clock-to-output time: delay between clock edge and output edge
- Important fact:
- (hold time) < (clock-to-output time)
- If true of two flip-flops, it is safe to connect output of one to input of another, on the same clock

Shift Register

- Flip-flops connected in series

- Behavior:
- Sequence of bits each move one stage per clock cycle

- Variations:

- Serial or parallel input
- Series or parallel output
- Shift only one some cycles

State Machines

- State machine perspective:
- If a device has limited memory, we can enumerate its possible states
- n bits of memory -> at most 2^{n} states
- Inputs cause state transitions
- Outputs depend on state and possibly inputs
- General approach for designing sequential circuits

Enumerate states

- Determine state transitions and I/O
- Last two summarized in state transition diagram
- Use flip-flops to remember state
- Use combinational logic to implement update and output functions

Counters as State Machines

- Simplified special case
- Output is generally identical to state
- No input other than a clock
- State transition diagram is a single cycle
- Three-bit up counter:

Administrative Notes

- Final exam: Thursday, May 14th
- Location: 133 Tate Physics, same as regular lectures
- Time: 8:00am-10:00am, same rules as quizzes
- Topic coverage: comprehensive, but extra weight on post-quiz-2 material
- Assignment V due Friday in lecture
- Wednesday and Friday lecture topics: review
- Wednesday: outline of course topics, course evaluations - Bring pen or pencil
- Friday: practice problems from VM through logic design
- Prof. Zhai will substitute for me on Friday and the final
- Still have office hours next week

State Diagram: Starting

- Think about all possible sequences of inputs
- States are the same if future behavior is the same
- E.g., Two nickels equivalent to one dime

Counter Block Diagram

- Register: parallel D flip-flops
- State update is a combinational circuit
- For 3 -bit up counter, increment $\bmod 8$

Running Example: Vending Machine

- Sell some 30-cent product
- 3 oz cans of soda, etc.
- Inputs: coin detectors
- Nickels (5 cents), dimes (10 cents), quarters (25 cents)
- Output: can dispenser
- State: amount of money received so far

State Diagram: Up To \$0.30

- Check: are there N, D, and Q edges out of every state?

Vending Machine Design

- What to do about overpayment?

1. Just keep the money
2. Apply to the next transaction
Can do with current $1 / 0$
$\left.\begin{array}{l}\text { 3. Reject a single coin } \\ \text { 4. Abort the whole transaction }\end{array}\right\}$ Require new actions
3. Make change Many complications

Moore Machine Block Diagram

Overpayment State Diagram

- What can we do with this edge?

Two Ways to Handle Output

- Moore machine
- Output depends only on the current state
- Output changes only with the clock
- Output written in the state circle
- Requires more states

- Mealy machine

- Output based on state and inputs
- Output can change asynchronously
- Output written with transition, after a slash
- Requires fewer states

Mealy Machine Block Diagram

State Diagram Conventions

- Indicate the starting/reset state
- With an arrow coming from nowhere
- Input signals on edges can be separated with commas
- D, Q: dime or quarter
- Or, input signals can be combinational functions
- D|Q: same
- Edges leaving a state must be mutually exclusive
- "Deterministic" state machine
- Often omitted:
- Transitions that stay in the same state
- Especially if all inputs inactive
- Inactive outputs

State Machine Logic

- Given encoding, create truth tables
- Then, reduces to combinational design
- Karnaugh maps, etc.
- Optionally, could use other kinds of flip-flops
- Sometimes leads to modest simplification

FPGA Overall Structure

Choosing a State Encoding

- Unique pattern of state bits for each state

1. One-hot

- Simplifies logic if not too many states
- Scales poorly with many states

2. Binary encoding

- Fewer wires and flip-flops
- Logic may be more complicated
- Careful choice of encoding makes logic simpler
- Use similar bit patterns for similar states
- There are automated CAD tools for this too

Some Implementation Technologies

- Breadboard and SSI ICs
- E.g., "hex inverter" chip
- For production, design a printed circuit board
- 70s technology, good for hobby projects and intro courses
- Application-Specific Integrated Circuit (ASIC)
- I.e., rent a microchip factory, like Intel's
- Cost effective only in large quantities

- Reconfigurable logic

- "Field-Programmable Gate Array" (FPGA)
- General-purpose hardware can be electronically configured into a chosen circuit
- Blurs the line between software and hardware

Configurable Logic Block (CLB)

- A small unit of reconfigurable hardware
- Might contain, for instance:
- An arbitrary 5-input Boolean function implemented as a lookup table
- A full adder
- A D flip-flop
- The lookup table is just an SRAM
- So it's programmable
- But in operation, it typically stays fixed after bootup

Interconnect

- Have to wire these blocks into a circuit
- CLBs are connected with configurable channels
- I.e., wires with transistor-based switches at intersections
- Statically configured
- A certain wire is always used for the same connection
- Switches increase delay compared to a plain wire
- Length tradeoffs
- Adjacent blocks have fastest connections
- Many switches \rightarrow optimized for short paths
- Smaller number of long wires
- Specialized lines for clock distribution

Programming and Using FPGAs

- Automatic computerized layout standard
- Proprietary tools optimized by FPGA manufacturers
- Program might be:
- Loaded at power-on
- Stored in on-FPGA flash memory
- What are FPGAs good for?
- Prototyping complex hardware descriptions
- Low- to medium-volume specialized devices
- Accelerating certain very-parallel computations

