
1

1

Logic Design V

CSci 2021: Machine Architecture and Organization
Lecture #40, May 4th, 2015

Your instructor: Stephen McCamant

2

Timing for Flip-Flops

 Input must be steady around clock edge for reliable
operation
 Setup time: amount of time before clock input must be right

 Hold time: amount of time after clock that input must right

 Delay before output changes
 Clock-to-output time: delay between clock edge and output edge

 Important fact:

 (hold time) < (clock-to-output time)

 If true of two flip-flops, it is safe to connect output of one to input
of another, on the same clock

3

Metastability

 Analogy:

 Flip-flop tries to return to a stable state
 Self-correcting feedback

 But, if close to metastable point:
 Might take a long time to “decide”

 Must avoid this situation for a reliable circuit

0 1

Stable

Metastable

4

Shift Register

 Flip-flops connected in series

 Behavior:
 Sequence of bits each move one stage per clock cycle

 Variations:
 Serial or parallel input

 Series or parallel output

 Shift only one some cycles

D Q

!Q

D Q

!Q

D Q

!Q

D Q

!Q

5

Counters

 Simple kind of time-varying digital system

 Produces a single sequence of states, repeating

 Changes every cycle or on a count pulse

 Example: 3-bit binary up-counter
 Produces 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, …

 Variations:
 Down-counters

 Decade counters (for decimal): 0 through 9

 Gray code: sequence where only one bit changes at a time

 Ring counter: circular shift register producing one-hot outputs

6

State Machines

 State machine perspective:

 If a device has limited memory, we can enumerate its possible
states

 n bits of memory -> at most 2n states

 Inputs cause state transitions

 Outputs depend on state and possibly inputs

 General approach for designing sequential circuits

 Enumerate states

 Determine state transitions and I/O

 Last two summarized in state transition diagram

 Use flip-flops to remember state

 Use combinational logic to implement update and output functions

2

7

Counters as State Machines

 Simplified special case

 Output is generally identical to state

 No input other than a clock

 State transition diagram is a single cycle

 Three-bit up counter:

000 001 010 011

111 110 101 100

8

Counter Block Diagram

 Register: parallel D flip-flops

 State update is a combinational circuit
 For 3-bit up counter, increment mod 8

Output

State
register

Clock

State
update

logic

9

Administrative Notes

 Final exam: Thursday, May 14th

 Location: 133 Tate Physics, same as regular lectures

 Time: 8:00am-10:00am, same rules as quizzes

 Topic coverage: comprehensive, but extra weight on post-quiz-2
material

 Assignment V due Friday in lecture

 Wednesday and Friday lecture topics: review
 Wednesday: outline of course topics, course evaluations

 Bring pen or pencil

 Friday: practice problems from VM through logic design

 Prof. Zhai will substitute for me on Friday and the final

 Still have office hours next week

10

Running Example: Vending Machine

 Sell some 30-cent product

 3 oz cans of soda, etc.

 Inputs: coin detectors

 Nickels (5 cents), dimes (10 cents), quarters (25 cents)

 Output: can dispenser

 State: amount of money received so far

11

State Diagram: Starting

 Think about all possible sequences of inputs

 States are the same if future behavior is the same
 E.g., Two nickels equivalent to one dime

$0.00

Reset

$0.05

N

$0.10

N

$0.10
D

D

12

State Diagram: Up To $0.30

 Check: are there N, D, and Q edges out of every state?

$0.00

Reset

$0.05

N

$0.10

N

D

$0.15 $0.20

NN

D

D

$0.25

Q
D N

$0.30

N D
Q

1 / CAN

3

13

Vending Machine Design

 What to do about overpayment?

1. Just keep the money

2. Apply to the next transaction

3. Reject a single coin

4. Abort the whole transaction

5. Make change

Can do with current I/O

Require new actions

Many complications

14

Overpayment State Diagram

 What can we do with this edge?

$0.00

Reset

$0.05

N

$0.10

N

D

$0.15 $0.20

NN

D

D

$0.25

Q
D N

$0.30

N D
Q

1 / CAN

Q?

15

Overpayment Choices

1. Just keep the money

2. Apply to the next transaction

3. Reject a single coin

4. Abort the whole transaction

$0.00

Reset

$0.05

N

$0.10

N

D

$0.15 $0.20

NN

D

D

$0.25

Q
D N

$0.30

N D
Q

1 / CAN Q

Q/CAN Q/DROP

Q/DROPALL

16

Two Ways to Handle Output

 Moore machine

 Output depends only on the current state

 Output changes only with the clock

 Output written in the state circle

 Requires more states

 Mealy machine
 Output based on state and inputs

 Output can change asynchronously

 Output written with transition, after a slash

 Requires fewer states

17

Moore Machine Block Diagram

State
register

Clock

Next state
function

Output
function

Inputs

18

Mealy Machine Block Diagram

State
register

Clock

Outputs and next
state function

OutputsInputs

4

19

State Diagram Conventions

 Indicate the starting/reset state

 With an arrow coming from nowhere

 Input signals on edges can be separated with commas

 D, Q: dime or quarter

 Or, input signals can be combinational functions

 D | Q: same

 Edges leaving a state must be mutually exclusive
 “Deterministic” state machine

 Often omitted:
 Transitions that stay in the same state

 Especially if all inputs inactive

 Inactive outputs

20

Choosing a State Encoding

 Unique pattern of state bits for each state

1. One-hot

 Simplifies logic if not too many states

 Scales poorly with many states

2. Binary encoding

 Fewer wires and flip-flops

 Logic may be more complicated

 Careful choice of encoding makes logic simpler

 Use similar bit patterns for similar states

 There are automated CAD tools for this too

21

State Machine Logic

 Given encoding, create truth tables

 Then, reduces to combinational design
 Karnaugh maps, etc.

 Optionally, could use other kinds of flip-flops
 Sometimes leads to modest simplification

22

Some Implementation Technologies

 Breadboard and SSI ICs

 E.g., “hex inverter” chip

 For production, design a printed circuit board

 70s technology, good for hobby projects and intro courses

 Application-Specific Integrated Circuit (ASIC)
 I.e., rent a microchip factory, like Intel’s

 Cost effective only in large quantities

 Reconfigurable logic
 “Field-Programmable Gate Array” (FPGA)

 General-purpose hardware can be electronically configured into a
chosen circuit

 Blurs the line between software and hardware

23

FPGA Overall Structure

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

24

Configurable Logic Block (CLB)

 A small unit of reconfigurable hardware

 Might contain, for instance:
 An arbitrary 5-input Boolean function implemented as a lookup

table

 A full adder

 A D flip-flop

 The lookup table is just an SRAM
 So it’s programmable

 But in operation, it typically stays fixed after bootup

5

25

Interconnect

 Have to wire these blocks into a circuit

 CLBs are connected with configurable channels
 I.e., wires with transistor-based switches at intersections

 Statically configured
 A certain wire is always used for the same connection

 Switches increase delay compared to a plain wire

 Length tradeoffs
 Adjacent blocks have fastest connections

 Many switches → optimized for short paths

 Smaller number of long wires

 Specialized lines for clock distribution

26

Programming and Using FPGAs

 Automatic computerized layout standard

 Proprietary tools optimized by FPGA manufacturers

 Program might be:

 Loaded at power-on

 Stored in on-FPGA flash memory

 What are FPGAs good for?
 Prototyping complex hardware descriptions

 Low- to medium-volume specialized devices

 Accelerating certain very-parallel computations

