Logic Design V

CSci 2021: Machine Architecture and Organization
Lecture #40, May 4th, 2015

Your instructor: Stephen McCamant

Metastability

= Analogy: Metastable

Stable

0 1
m Flip-flop tries to return to a stable state
= Self-correcting feedback
m But, if close to metastable point:
= Might take a long time to “decide”
= Must avoid this situation for a reliable circuit

Counters

m Simple kind of time-varying digital system

= Produces a single sequence of states, repeating

= Changes every cycle or on a count pulse
m Example: 3-bit binary up-counter

= Produces 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, ...
m Variations:

= Down-counters

= Decade counters (for decimal): O through 9

= Gray code: sequence where only one bit changes at a time

= Ring counter: circular shift register producing one-hot outputs

Timing for Flip-Flops

= Input must be steady around clock edge for reliable
operation

® Setup time: amount of time before clock input must be right

® Hold time: amount of time after clock that input must right
m Delay before output changes

= Clock-to-output time: delay between clock edge and output edge
= Important fact:

= (hold time) < (clock-to-output time)

= |f true of two flip-flops, it is safe to connect output of one to input
of another, on the same clock

Shift Register

—D Q D Q D Q D Q-
l—> ol o J—> ol o l—> o |—> Q-

m Flip-flops connected in series

m Behavior:
= Sequence of bits each move one stage per clock cycle

m Variations:
= Serial or parallel input
= Series or parallel output
= Shift only one some cycles

State Machines

m State machine perspective:

If a device has limited memory, we can enumerate its possible
states

n bits of memory ->at most 2" states
Inputs cause state transitions

Outputs depend on state and possibly inputs
m General approach for designing sequential circuits
® Enumerate states
Determine state transitions and I/O
= Last two summarized in state transition diagram
Use flip-flops to remember state
Use combinational logic to implement update and output functions

Counters as State Machines

m Simplified special case

= Qutput is generally identical to state

® No input other than a clock

= State transition diagram is a single cycle
m Three-bit up counter:

£22D
(10— —(0)

Administrative Notes

m Final exam: Thursday, May 14th
= |ocation: 133 Tate Physics, same as regular lectures
= Time: 8:00am-10:00am, same rules as quizzes

= Topic coverage: comprehensive, but extra weight on post-quiz-2
material

m Assignment V due Friday in lecture

m Wednesday and Friday lecture topics: review
= Wednesday: outline of course topics, course evaluations
= Bring pen or pencil
= Friday: practice problems from VM through logic design

m Prof. Zhai will substitute for me on Friday and the final
= Still have office hours next week

State Diagram: Starting

A=)

Reset N N

~

m Think about all possible sequences of inputs

m States are the same if future behavior is the same
= E.g., Two nickels equivalent to one dime

Counter Block Diagram

L Wyl

State register
update] Output

logic —
1

Clock

m Register: parallel D flip-flops

m State update is a combinational circuit
® For 3-bit up counter, increment mod 8

Running Example: Vending Machine

m Sell some 30-cent product
= 30z cans of soda, etc.
m Inputs: coin detectors
= Nickels (5 cents), dimes (10 cents), quarters (25 cents)
m Output: can dispenser
m State: amount of money received so far

State Diagram: Up To $0.30

m Check: are there N, D, and Q edges out of every state?

Vending Machine Design

= What to do about overpayment?
1. Just keep the money
. } Can do with current I/O
Apply to the next transaction

Reject a single coin

Require new actions
Abort the whole transaction } 4

@ g Ly)

Make change Many complications

Q/DROPALL

Overpayment Choices

1/CAN

Just keep the money
Apply to the next transaction
Reject a single coin

N

Abort the whole transaction

Moore Machine Block Diagram

Inputs
— Next state res::er Output
function function
Clock

Overpayment State Diagram

Reset N N N N

m What can we do with this edge?

Two Ways to Handle Output

m Moore machine
= Qutput depends only on the current state
= Qutput changes only with the clock
= Qutput written in the state circle
® Requires more states
m Mealy machine
= Qutput based on state and inputs
= Qutput can change asynchronously
= Qutput written with transition, after a slash
= Requires fewer states

Mealy Machine Block Diagram

Inputs Outputs
—

— Outputs and next
state function

State
register

A

Clock

State Diagram Conventions

= Indicate the starting/reset state
= With an arrow coming from nowhere

= Input signals on edges can be separated with commas
= D, Q: dime or quarter

m Or, input signals can be combinational functions
®= D | Q:same

m Edges leaving a state must be mutually exclusive
= “Deterministic” state machine

m Often omitted:
= Transitions that stay in the same state

= Especially if all inputs inactive

® Inactive outputs

State Machine Logic

m Given encoding, create truth tables

m Then, reduces to combinational design
= Karnaugh maps, etc.

m Optionally, could use other kinds of flip-flops
= Sometimes leads to modest simplification

FPGA Overall Structure

Choosing a State Encoding

= Unique pattern of state bits for each state
1. One-hot
= Simplifies logic if not too many states
= Scales poorly with many states
2. Binary encoding
= Fewer wires and flip-flops
= Logic may be more complicated
m Careful choice of encoding makes logic simpler
= Use similar bit patterns for similar states
® There are automated CAD tools for this too

Some Implementation Technologies

m Breadboard and SSI ICs

= E.g., “hex inverter” chip

® For production, design a printed circuit board

= 70s technology, good for hobby projects and intro courses
m Application-Specific Integrated Circuit (ASIC)

= |.e., rent a microchip factory, like Intel’s

= Cost effective only in large quantities
m Reconfigurable logic

= “Field-Programmable Gate Array” (FPGA)

= General-purpose hardware can be electronically configured into a
chosen circuit

= Blurs the line between software and hardware

Configurable Logic Block (CLB)

m A small unit of reconfigurable hardware
m Might contain, for instance:

An arbitrary 5-input Boolean function implemented as a lookup
table

A full adder
= A D flip-flop

m The lookup table is just an SRAM
= So it’s programmable

= Butin operation, it typically stays fixed after bootup

Interconnect

m Have to wire these blocks into a circuit
m CLBs are connected with configurable channels
= |.e., wires with transistor-based switches at intersections

m Statically configured

= A certain wire is always used for the same connection

= Switches increase delay compared to a plain wire
Length tradeoffs

= Adjacent blocks have fastest connections

= Many switches > optimized for short paths

= Smaller number of long wires

= Specialized lines for clock distribution

Programming and Using FPGAs

m Automatic computerized layout standard

= Proprietary tools optimized by FPGA manufacturers
m Program might be:

" Loaded at power-on

= Stored in on-FPGA flash memory
m What are FPGAs good for?

® Prototyping complex hardware descriptions

= Low- to medium-volume specialized devices

= Accelerating certain very-parallel computations

