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Logic Design V

CSci 2021: Machine Architecture and Organization
Lecture #40, May 4th, 2015

Your  instructor: Stephen McCamant
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Timing for Flip-Flops

 Input must be steady around clock edge for reliable 
operation
 Setup time: amount of time before clock input must be right

 Hold time: amount of time after clock that input must right

 Delay before output changes
 Clock-to-output time: delay between clock edge and output edge

 Important fact:

 (hold time) < (clock-to-output time)

 If true of two flip-flops, it is safe to connect output of one to input 
of another, on the same clock
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Metastability

 Analogy:

 Flip-flop tries to return to a stable state
 Self-correcting feedback

 But, if close to metastable point:
 Might take a long time to “decide”

 Must avoid this situation for a reliable circuit
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Shift Register

 Flip-flops connected in series

 Behavior:
 Sequence of bits each move one stage per clock cycle

 Variations:
 Serial or parallel input

 Series or parallel output

 Shift only one some cycles
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Counters

 Simple kind of time-varying digital system

 Produces a single sequence of states, repeating

 Changes every cycle or on a count pulse

 Example: 3-bit binary up-counter
 Produces 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, …

 Variations:
 Down-counters

 Decade counters (for decimal): 0 through 9

 Gray code: sequence where only one bit changes at a time

 Ring counter: circular shift register producing one-hot outputs
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State Machines

 State machine perspective:

 If a device has limited memory, we can enumerate its possible 
states

 n bits of memory -> at most 2n states

 Inputs cause state transitions

 Outputs depend on state and possibly inputs

 General approach for designing sequential circuits

 Enumerate states

 Determine state transitions and I/O

 Last two summarized in state transition diagram

 Use flip-flops to remember state

 Use combinational logic to implement update and output functions
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Counters as State Machines

 Simplified special case

 Output is generally identical to state

 No input other than a clock

 State transition diagram is a single cycle

 Three-bit up counter:

000 001 010 011

111 110 101 100
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Counter Block Diagram

 Register: parallel D flip-flops

 State update is a combinational circuit
 For 3-bit up counter, increment mod 8
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Administrative Notes

 Final exam: Thursday, May 14th

 Location: 133 Tate Physics, same as regular lectures

 Time: 8:00am-10:00am, same rules as quizzes

 Topic coverage: comprehensive, but extra weight on post-quiz-2 
material

 Assignment V due Friday in lecture

 Wednesday and Friday lecture topics: review
 Wednesday: outline of course topics, course evaluations

 Bring pen or pencil

 Friday: practice problems from VM through logic design

 Prof. Zhai will substitute for me on Friday and the final

 Still have office hours next week
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Running Example: Vending Machine

 Sell some 30-cent product

 3 oz cans of soda, etc.

 Inputs: coin detectors

 Nickels (5 cents), dimes (10 cents), quarters (25 cents)

 Output: can dispenser

 State: amount of money received so far
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State Diagram: Starting

 Think about all possible sequences of inputs

 States are the same if future behavior is the same
 E.g., Two nickels equivalent to one dime
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State Diagram: Up To $0.30

 Check: are there N, D, and Q edges out of every state?
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Vending Machine Design

 What to do about overpayment?

1. Just keep the money

2. Apply to the next transaction

3. Reject a single coin

4. Abort the whole transaction

5. Make change

Can do with current I/O

Require new actions

Many complications
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Overpayment State Diagram

 What can we do with this edge?
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Overpayment Choices

1. Just keep the money

2. Apply to the next transaction

3. Reject a single coin

4. Abort the whole transaction
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Two Ways to Handle Output

 Moore machine

 Output depends only on the current state

 Output changes only with the clock

 Output written in the state circle

 Requires more states

 Mealy machine
 Output based on state and inputs

 Output can change asynchronously

 Output written with transition, after a slash

 Requires fewer states
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Moore Machine Block Diagram
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Mealy Machine Block Diagram
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State Diagram Conventions

 Indicate the starting/reset state

 With an arrow coming from nowhere

 Input signals on edges can be separated with commas

 D, Q: dime or quarter

 Or, input signals can be combinational functions

 D | Q: same

 Edges leaving a state must be mutually exclusive
 “Deterministic” state machine

 Often omitted:
 Transitions that stay in the same state

 Especially if all inputs inactive

 Inactive outputs
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Choosing a State Encoding

 Unique pattern of state bits for each state

1. One-hot

 Simplifies logic if not too many states

 Scales poorly with many states

2. Binary encoding

 Fewer wires and flip-flops

 Logic may be more complicated

 Careful choice of encoding makes logic simpler

 Use similar bit patterns for similar states

 There are automated CAD tools for this too
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State Machine Logic

 Given encoding, create truth tables

 Then, reduces to combinational design
 Karnaugh maps, etc.

 Optionally, could use other kinds of flip-flops
 Sometimes leads to modest simplification
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Some Implementation Technologies

 Breadboard and SSI ICs

 E.g., “hex inverter” chip

 For production, design a printed circuit board

 70s technology, good for hobby projects and intro courses

 Application-Specific Integrated Circuit (ASIC)
 I.e., rent a microchip factory, like Intel’s

 Cost effective only in large quantities

 Reconfigurable logic
 “Field-Programmable Gate Array” (FPGA)

 General-purpose hardware can be electronically configured into a 
chosen circuit

 Blurs the line between software and hardware
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FPGA Overall Structure
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Configurable Logic Block (CLB)

 A small unit of reconfigurable hardware

 Might contain, for instance:
 An arbitrary 5-input Boolean function implemented as a lookup 

table

 A full adder

 A D flip-flop

 The lookup table is just an SRAM
 So it’s programmable

 But in operation, it typically stays fixed after bootup
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Interconnect

 Have to wire these blocks into a circuit

 CLBs are connected with configurable channels
 I.e., wires with transistor-based switches at intersections

 Statically configured
 A certain wire is always used for the same connection

 Switches increase delay compared to a plain wire

 Length tradeoffs
 Adjacent blocks have fastest connections

 Many switches → optimized for short paths

 Smaller number of long wires

 Specialized lines for clock distribution
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Programming and Using FPGAs

 Automatic computerized layout standard

 Proprietary tools optimized by FPGA manufacturers

 Program might be:

 Loaded at power-on

 Stored in on-FPGA flash memory

 What are FPGAs good for?
 Prototyping complex hardware descriptions

 Low- to medium-volume specialized devices

 Accelerating certain very-parallel computations


