
1

1

Logic Design III

CSci 2021: Machine Architecture and Organization
Lecture #38, April 29th, 2015

Your instructor: Stephen McCamant

2

Combinational Building Blocks

 Large circuits usually have repeating structures

 E.g., 64-bit arithmetic circuits in a CPU

 Design approach: reuse and replicate blocks

 More practical than Karnaugh-map-style optimization

 Optimize for circuit size over minimal depth

 Learn from prior practice instead of first principles

 CAD systems have “libraries” like software

 Our examples:
 Multiplexers and friends

 Addition and other basic arithmetic

3

Binary vs. One-hot Encoding

 Say we want to represent 4 possibilities

 Binary encoding: 00, 01, 10, 11
 Fewest bits, wires

 Combination can require complex logic

 <50% unused patterns

 One-hot encoding: 0001, 0010, 0100, 1000
 More like “unary” than binary

 More wires needed

 Combination logic is simpler

 Many bit patterns are illegal

4

Encoders and Decoders

 (“Line”) Encoder: convert one-hot to binary

 (“Line”) Decoder: convert binary to one-hot

 Notation conventions:

 Example: 4 combinations, 2 bits in binary

 Binary value is b1b0

 One-hot lines are w0, w1, w2, and w3

5

2-line to 4-line Decoder

 w0 = !b1 & !b0

 w1 = !b1 & b0

 w2 = b1 & !b0

 w3 = b1 & b0

 Basic idea:

 Each one-line corresponds to one product term

b0
b1

w3

b0
b1

w2

b0
b1

w1

b0
b1

w0

6

4-line to 2-line Encoder

 Basic idea:

 Each binary bit is the OR of the one-hot lines in whose number it is
set

 b0 = w1 | w3

 b1 = w2 | w3

w1

w3

w2

w3

b0

b1

2

7

Multiplexers and Demultiplexers

 Similar families to (de/en)coders

 Relate n wires to 2n wires

 But:

 Different purpose: switch one of several values on a wire

 Binary selector is an input to both mux and demux

Encoder Decoder

Mux Demux

8

4:1 Multiplexer

 z = (!s1 & !s0 & w0) | (!s1 & s0 & w1) | (s1 & !s0 & w2) |
(s1 & s0 & w3)

s0
s1

s0
s1

s0
s1

s0
s1
w0

w1

w2

w3

z

9

2:4 Demultiplexer

 w0 = z & !b1 & !b0

 w1 = z & !b1 & b0

 w2 = z & b1 & !b0

 w3 = z & b1 & b0

 Basic idea:

 Like decoder, but with an extra multiplexed/enable signal z

b0
b1 w3

b0
b1 w2

b0
b1 w1

b0
b1 w0

z

10

Multiplexers: Other Perspectives

 2:1 mux is the circuit analog of if-then-else (?:)

 Another construction strategy: smaller muxes
 4:1 mux made out of 2:1 muxes:

D0

D1

D2

D3

S0 S1

out

M
U

X

M
U

X
M

U
X

11

Quiz 2 Statistics

1

2 2 2

10

8

20

14

21

14

21

17 17

10 10

13

3

4

0 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 More≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

N = 190 (both sections)

Mean = 50.2

Median = 51

Standard dev’n = 18.1

12

Binary Addition

 Addition table is simple

 But the result is not always a single bit

 Same situation as carrying in grade-school

 Second bit of result: “carry out”

 Formulas are just XOR and AND

+ 0 1

0 0 1

1 1 2

s 0 1

0 0 1

1 1 0

CO 0 1

0 0 0

1 0 1

3

13

Half Adder

a b

s

Co
XOR

14

Full Adder

 What do we do with the carry?

 Probably include it in another addition

 Need a new input: “carry in”

 Sum of three bits still fits in two output bits

a b ci co s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

15

Why “half” and “full”?

a b

s

Co

Ci
HA

HA

A direct implementation is more
common, because it has fewer delays

16

Ripple Carry Adder

 Basic design for multi-bit adder:

 Chain carries from position to position

 Major disadvantage:
 Long delay for carry propagation

 For 64-bit add, if each adder takes time t, carries take 64t

FA 0FAFAFA
Co

a3 b3 a2 b2 a1 b1 a0 b0

s3 s2 s1 s0

17

Carry Lookahead Ideas

 Basic tradeoff:

 Add more gates to decrease delay

 Design principles:

 Compute as much as possible before the carry-in is available

 Group several bit positions together (commonly 4)

 Fast path for transmission from group to group

 Groups can themselves be grouped (like a tree)

18

Carry Lookahead Formulas

 “Generate”

 Produces carry-out even without carry-in

 gi = ai & bi

 “Propagate”
 Carry-out if there’s a carry in

 pi = ai | bi

 Basic relation:

 ci+1 = gi | (pi & ci)

 Unrolled:

 c4 = g3 | (g2&p3) | (g1&p2&p3) | (g0&p1&p2&p3) | (c0&p0&p1&p2&p3)

 Complex, but only two-level

4

19

Basic ALU Design

 Repeated design (“slice”) for each bit position

 Slices operate in parallel except for carries

 Control inputs select operation, same for all

 Initial carry-in can also be controlled

 Typical supported operations:
 Bitwise NOT, AND, OR, XOR, (NAND, NOR, XNOR, …)

 Add, subtract, negate, add 1

 Shift left one (as a + a)

 Not possible with this design:
 Multiple shift, variable shift, right shift

 Multiply, divide, modulo

 Floating point

20

Barrel Shifter

 Goal: fast implementation of variable shift or rotate

 Idea 1: direct gate implementation
 Complicated: every output depends on every input

 Idea 2: N, N:1 multiplexers
 N-line decoder for control inputs

 Also requires a lot of gates

 Idea 3: (log N) levels of 2:1 multiplexers
 Shift by 0 or 4 based on 22 bit of shift amount, etc.

 Fewer gates, more delay

 Idea 4: crossbar switch
 A switch is a non-gate abstraction, but cheap in this application

21

Crossbar Barrel Shifter

i0

i1

i2

i3

i4

i5

i6

i7

o0 o1 o2 o3 o4 o5 o6 o7 shift by 0

shift right 1

shift left 3

…

22

Sequential Circuits

 Introduce elements that keep state

 Cyclic connections between gates

 Makes more interesting computations possible
 Processing changing inputs over time

 E.g., CPU

 Raises more issues related to timing
 Coordinating timing of operations

 Time margins for reliable operation

 Avoiding transient incorrect results

23

Paired Inverters

 Good: maintains a particular state

 Bad: no way to set

1

1
1

0

0

0

0

1

24

S-R Latch

S

R

!Q

Q

set to 1

reset to 0
normal output

inverted output

Stable state: storing 1
Stable state: storing 0

5

25

Coordination and Clock Signals

 In sequential design, must control when events occur

 Standard approach: clock signal
 Alternates between 0 and 1

 Same signal used throughout circuit

 Challenge in high-speed designs: propagation speed

 Rate controls speed of entire circuit

 Design circuit to allow highest possible clock speed

 Example: 3.0 GHz CPU

 Use clock to control when sequential devices “read”

26

Level-sensitivity

 First approach:

 Value updated only when an enable signal (E) is high

 Called a “level-sensitive” or “gated” device

 Example: gated S-R latch

 Implementation: AND E with S and R inputs

S

E

R

Q

!Q

27

Transparency

 Definition:

 A device is transparent if input changes immediately propagate to
the output

 S-R latch is an example

 Transparent devices in series

 Connect output of one latch to input of another

 Input causes both devices to change at the same time

 Undesirable in many situations

 E.g., remember Y86 pipeline stages

28

Edge-triggered Devices

 Idea: update only on a clock “edge”:

 Positive/rising edge: 0 to 1

 Negative/falling edge: 1 to 0

 One update per clock cycle

 An edge-triggered bit-storage device is a “flip-flop”

 Flip-flops in series:
 Previous output changes only after next input is “read”

 Leads to lock-step propagation, one flip-flop per cycle

29

D Flip-Flop

 Triangle indicates clock input

 No bubble → rising edge triggered

 On edge, store the value of D (“data”)

 This was our main building block for Y86 registers

 !Q is often unused, but available for free

D Q

!Q

30

S-R to D

 D = 1: S = 1, R = 0

 D = 0: S = 0, R = 1

 Avoids ever having S and R together

 Trickier: how to build edge-triggering?

S

R

D

6

31

Transient timing

 What does this circuit do?

 Functional perspective:
 (x & !!!x) = (x & !x) = 0, useless?

 Actually, rising edge of x causes a brief output pulse
 Fast path goes to 1 before delayed path goes to 0

x
?

32

Master-slave D flip-flop

 Make flip-flop out of two gated latches

 Updates only on rising clock edge
 Master freezes first

 Then slave is enabled

D Q

!QE

D Q

!QE

D

Clock

