
1

1

Logic Design II

CSci 2021: Machine Architecture and Organization
Lecture #37, April 27th, 2015

Your instructor: Stephen McCamant

2

Truth Tables

 Combinational circuit = Boolean function

 Combinational: no cycles or memory

 Outputs are determined just by inputs

 Finite size
 A Boolean function has a finite representation

 If i input bits, 2i possible input combinations

 Can study by just writing the output for all possible inputs

 Truth table
 Standard way to write a function

 2i rows, input combinations in increasing order

 One column per intermediate or output

3

Truth Table Example

a b c (a & b) (a & b) | c

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

4

Equivalences with a Truth Table

 Check whether two Boolean formulas are equal

 Write truth table covering both

 Check two columns have all the same entries

 Advantages
 Straightforward

 No algebraic insight needed

 Disadvantages

 Effort exponential in number of input bits

5

Equivalence Example

a b c (b & c) a | (b & c) (a | b) (a | c) (a | b) & (a | c)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

6

Combinational Logic Design

 Given: description of circuit behavior

 Word problem, or truth table

 Goal: efficient circuit implementation

 Usually most important: fewest gates and wires

 Secondarily: reduce number of levels (propagation delay)

 Kinds of techniques
 Up to 6 inputs: pencil and paper approaches

 Large but structured: split into repeated pieces

 Large and unstructured: computer algorithm

2

7

DNF / SOP

 An input or its negation is called a literal

 E.g.: a, !b

 An AND of literals is a product term or cube

 E.g.: (a & c), (a & !b), (!a & !b & !c), c

 An OR of product terms is a sum of products (SOP), or in
disjunctive normal form (DNF)
 E.g.: (a & b) | (a & c)

 (Dual: product of sums (POS), or conjunctive normal form
(CNF))

8

Truth Table → SOP

 Simple but not very efficient

 Create a product term for each 1 entry

 Example with XOR:

 (Also possible: dual with 0s and CNF)

a b a ^ b

0 0 0

0 1 1

1 0 1

1 1 0

(!a & b)

(a & !b)

Result: (!a & b) | (a & !b)

9

Inefficiency of Straight DNF

 Consider another example:

 By algebra, can simplify back to “b”

 Factor, (!a | a) = 1, 1 & b = b

 Can we recognize these patterns earlier?

a b b

0 0 0

0 1 1

1 0 0

1 1 1

Result: (!a & b) | (a & b)

10

Logistics Intermission

 Sorry, no quiz 2s today

 Good chance of grades by tomorrow and papers Wednesday

 Cache Lab due tonight

 Moodle has been having some slowness

 Suggest you allow a little extra time for final submission

 Assignment V out on Wednesday
 Mostly logic design

11

Karnaugh Map Idea

 Write truth table entries in an array

 Product terms represented by certain rectangles

 Visually, find small number of rectangles to cover 1 bits
 OK to cover more than once, combine with OR

 Fewer rectangles = smaller circuit

12

2-variable “Karnaugh Map”

a =

b =

0

0 1

1

3

13

2-variable “Karnaugh Map” example

a =

b =

0

0 1

1

1 1

1 0

Result:
!a | b

14

Extending to 3 and 4 Variables

 Put two variables on a side

 Weird order: 00 01 11 10

 “Gray Code”: change only one bit at a time

 Rectangles can enclose 1, 2, 4, or 8 entries
 Bigger is better

 Rectangles can wrap around the edges
 00 is adjacent to 10

15

4-variable Karnaugh Map Example

0 1 0 1

0 1 0 0

0 1 1 0

0 1 1 0

ab =
00 10 11 01

cd =

00

10

11

01

(a & !b)
|

(a & d)
|

(!a & b
& !c & !d)

16

Extending to 5 and 6 Variables

 2D is no longer enough

 No way to order 3 variables to capture 12 adjacencies

 Approach: stacking

 Make 2 (for 5 inputs) or 4 (for 6 inputs) 4-input Karnaugh maps

 Corresponding entries are “on top of” each other

 Rectangles become 3D

 Usually still drawn as 2D

 With 6, more possibilities for wrapping too

17

5-variable Karnaugh Map Example

0 1 0 1

0 1 0 0

0 1 1 0

0 1 1 0

0 0 0 1

0 0 0 0

0 1 1 0

0 1 1 0

18

Karnaugh Map Tips: Overlap is Good

0 1 0 0

0 1 0 0

0 1 1 0

0 1 1 0

ab =
00 10 11 01

cd =

00

10

11

01

4

19

Karnaugh Map Tips: No 3s

0 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

ab =
00 10 11 01

cd =

00

10

11

01

20

Karnaugh Map Tips: Wrap Around

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

ab =
00 10 11 01

cd =

00

10

11

01

!a & !c

21

Don’t Cares

 Some results don’t matter

 Domain of function is a subset of all n-bit strings

 Unused bit patterns in encodings

 Bits sometimes ignored by other circuits

 “Don’t care” value could be 0 or 1
 Usually denoted by X

 Don’t-cares allow designs to be simpler

 Choose the value that allows a simpler circuit

 In early CPUs, led to undocumented instructions

 Example: x86 ASL vs. SHL

 On modern CPUs, more error checking

22

Karnaugh Map Tips: Don’t Cares

x 0 x 1

0 x x x

x x x x

1 x x x

ab =
00 10 11 01

cd =

00

10

11

01

23

Dual (POS) Karnaugh Maps

1 1 1 1

1 1 0 1

1 1 0 1

1 1 1 1

00 10 11 01

00

10

11

01

 Pretend 0s are 1s

 And vice-versa

 Negate final result

!(a & b & c)

!a | !b | !c

24

Karnaugh Map: Try Yourself

1 0 0 0

1 1 0 0

1 1 1 1

1 1 0 1

ab =
00 10 11 01

cd =

00

10

11

01

5

25

Automated Methods

 Karnaugh maps don’t scale well beyond 6 inputs

 Good job for a computer!

 Quine-McCluskey algorithm
 Tabular analog to Karnaugh maps

 Optimal, but suffers from exponential blowup

 Heuristic methods like “espresso”

 First, greedily achieve coverage

 Then, opportunistically improve

 No optimality guarantee, but good scalability

 Now a standard part of CAD systems
 Like compilers for software

