Logic Design II

CSci 2021: Machine Architecture and Organization Lecture \#37, April 27th, 2015

Your instructor: Stephen McCamant

Truth Table Example

a	b	c	$(\mathrm{a} \& \mathrm{~b})$	$(\mathrm{a} \& \mathrm{~b}) / \mathrm{c}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Equivalence Example

a	b	c	$(\mathrm{b} \& \mathrm{c})$	$\mathrm{a} \mid(\mathrm{b} \& \mathrm{c})$	$(\mathrm{a} \mid \mathrm{b})$	$(\mathrm{a} \mid \mathrm{c})$
0	0	$(\mathrm{a} \mid \mathrm{b}) \&(\mathrm{a} \mid \mathrm{c})$				
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	1	1	1	0
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	0	1	1	1
1	1	1	1	1	1	1

Truth Tables

- Combinational circuit $=$ Boolean function
- Combinational: no cycles or memory
- Outputs are determined just by inputs
- Finite size
- A Boolean function has a finite representation
- If i input bits, 2^{i} possible input combinations
- Can study by just writing the output for all possible inputs
- Truth table
- Standard way to write a function
- 2^{i} rows, input combinations in increasing order
- One column per intermediate or output

Equivalences with a Truth Table

- Check whether two Boolean formulas are equal
- Write truth table covering both
- Check two columns have all the same entries

- Advantages

- Straightforward
- No algebraic insight needed
- Disadvantages
- Effort exponential in number of input bits

Combinational Logic Design

- Given: description of circuit behavior
- Word problem, or truth table
- Goal: efficient circuit implementation
- Usually most important: fewest gates and wires
- Secondarily: reduce number of levels (propagation delay)

■ Kinds of techniques

- Up to 6 inputs: pencil and paper approaches
- Large but structured: split into repeated pieces
- Large and unstructured: computer algorithm

DNF / SOP

- An input or its negation is called a literal
- E.g.: a, !b
- An AND of literals is a product term or cube
- E.g.: (a \& c), (a \& !b), (l \& \& ! b !c), c
- An OR of product terms is a sum of products (SOP), or in disjunctive normal form (DNF)
- E.g.: (a \& b) | (a \& c)
- (Dual: product of sums (POS), or conjunctive normal form (CNF))

Truth Table \rightarrow SOP

- Simple but not very efficient
- Create a product term for each 1 entry
- Example with XOR:

a	b	$a^{\wedge} \mathrm{b}$	Result: (la \& b) \| (a \& b ${ }_{\text {) }}$
0	0	0	
0	1		
1	0	1	
1	1	0	

- (Also possible: dual with Os and CNF)

Inefficiency of Straight DNF

- Consider another example:

| a | b | b | |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | Result: (la \& b) \| (a \& b) |
| 0 | 1 | 1 | |
| 1 | 0 | 0 | |
| 1 | 1 | 1 | |

- By algebra, can simplify back to "b"
- Factor, (!a | a) = 1,1 \& b = b
- Can we recognize these patterns earlier?

Karnaugh Map Idea

- Write truth table entries in an array
- Product terms represented by certain rectangles
- Visually, find small number of rectangles to cover 1 bits
- OK to cover more than once, combine with OR
- Fewer rectangles = smaller circuit

Logistics Intermission

- Sorry, no quiz 2s today
- Good chance of grades by tomorrow and papers Wednesday
- Cache Lab due tonight
- Moodle has been having some slowness
- Suggest you allow a little extra time for final submission
- Assignment V out on Wednesday
- Mostly logic design

2-variable "Karnaugh Map"

2-variable "Karnaugh Map" example

4-variable Karnaugh Map Example

ab =

00	0010		11	01	$\begin{aligned} & \text { (a \& !b) } \\ & \text { (a \& d) } \end{aligned}$
	0	1	0	1	
10	0	1	0	0	
$\text { cd }=$ 11	0	1	1	0	\& !c \& !d)
01	0	1	1	0	

5-variable Karnaugh Map Example

0	1	0	1
0	1	0	0
0	1	1	0
0	1	1	0

0	0	0	1
0	0	0	0
0	1	1	0
0	1	1	0

Extending to 3 and 4 Variables

- Put two variables on a side

- Weird order: 00011110
- "Gray Code": change only one bit at a time
- Rectangles can enclose $1,2,4$, or 8 entries
- Bigger is better
- Rectangles can wrap around the edges
- 00 is adjacent to 10

Extending to 5 and 6 Variables

- 2D is no longer enough
- No way to order 3 variables to capture 12 adjacencies
- Approach: stacking
- Make 2 (for 5 inputs) or 4 (for 6 inputs) 4-input Karnaugh maps
- Corresponding entries are "on top of" each other
- Rectangles become 3D
- Usually still drawn as 2 D
- With 6, more possibilities for wrapping too

Karnaugh Map Tips: Overlap is Good ab =

Karnaugh Map Tips: No 3s

Don't Cares

- Some results don't matter
- Domain of function is a subset of all n-bit strings
- Unused bit patterns in encodings
- Bits sometimes ignored by other circuits
- "Don't care" value could be $\mathbf{0}$ or $\mathbf{1}$
- Usually denoted by X
- Don't-cares allow designs to be simpler
- Choose the value that allows a simpler circuit
- In early CPUs, led to undocumented instructions
- Example: x86 ASL vs. SHL
- On modern CPUs, more error checking

Karnaugh Map Tips: Wrap Around

\[

\]

Karnaugh Map Tips: Don't Cares ab $=$

	00	10	11	01
00	X	0	X	1
10	0	X	X	X
$\mathrm{cd}=11$	X	X	X	X
01	1	X	X	X

Karnaugh Map: Try Yourself
ab =

Automated Methods

- Karnaugh maps don't scale well beyond 6 inputs
- Good job for a computer!
- Quine-McCluskey algorithm
- Tabular analog to Karnaugh maps
- Optimal, but suffers from exponential blowup
- Heuristic methods like "espresso"
- First, greedily achieve coverage
- Then, opportunistically improve
- No optimality guarantee, but good scalability
- Now a standard part of CAD systems
- Like compilers for software

