Logic Design I

CSci 2021: Machine Architecture and Organization Lecture \#36, April 24th, 2015

Your instructor: Stephen McCamant

Brief History of Computing Machines

- 1800s: purely mechanical
- General-purpose computer designed, but not fully built
- 1940s: first general-purpose computers
- Electromechanical relays
- Vacuum tubes
- Idea: electrically-controlled electric switch
- 1947: transistor
- "Solid state": no moving parts or gases
- Based on semiconducting materials like silicon
- Can be used as a switch or an amplifier
- Takes a lot to make a computer..

Integrated Circuits

- Key technology for inexpensive computing
- Printing transistors (and other devices) on a silicon wafer
- Low incremental production cost
- But the design and the factory are expensive
- Long history of increasing density
- First ICs had <100 devices per chip
- Moore's law: exponential increase in \# of transistors per device
- Doubling every 12-24 months
- Modern CPU: tens of billions of transistors

Transistors To Gates: CMOS Inverter

MOSFETs

- Modern kind of transistor used in ICs
- Metal-oxide-semiconductor field-effect transistor

n-channel MOSFET

p-channel MOSFET
- Voltage at the gate determines whether current can flow between source and drain
- n-channel type: high voltage allows current to flow
- p-channel type: low voltage allows current to flow

Transistors To Gates: CMOS Inverter

CMOS NAND Gate

Getting to AND and OR

- This is enough to build any circuit
- AND = NAND + NOT

Two-input One-output Gates (1)

- $2^{4}=\mathbf{1 6}$ possibilities. First some boring ones:

	0	1		0	1		0	1
0	0	0	0	0	0	0	1	1
1	0	0	1	1	1	1	0	0
Always 0			x			!x		
	0	1		0	1		0	1
0	1	1	0	0	1	0	1	0
1	1	1	1	0	1	1	1	0
Always 1						!y		

Logistics Note: (No) Readings

- Most of this material is not in the textbook
- We've posted links to free online resources
- On the "Useful" page of the main course site
- Will post specific suggestions for readings in "All About Circuits, Volume 4"
- But readings cover much material you don't need to know
- Lecture notes are guide to assignment and test coverage

One-input One-output Gates

- What are the possibilities? $\mathbf{2}^{\mathbf{2}}=\mathbf{4}$ choices

Two-input One-output Gates (2)

- Symmetric cases:

	0	1		0	1		0	1
0	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	0
AND			OR			XOR, !		
	0	1		0	1		0	1
0	1	1	0	1	0	0	1	0
1	1	0	1	0	0	1	0	1

Two-input One-output Gates (3)

- Asymmetric cases:

Boolean Algebra

- Boolean algebra

- Boolean functions (gates) have a nice algebraic structure
- But it's different from the rules for arithmetic
- Same algebraic structure applies to sets, Boolean functions

- Boolean algebra and other notations

- $0=1$
- $1=\mathrm{T}$
- $\&=\Lambda$, also sometimes
- $1=V$
- $\wedge=\oplus$
- ! = - , , or a line above, or ' suffix
- " + " is ambiguous: electrical engineers often use it for OR, but mathematicians use it for XOR

Boolean Identities (1)

- ($x \mid x)=x$
- $(x \& x)=x$
- ($x \mid 1$) $=1$
- $(x \& 0)=0$
- $(x \mid 0)=x$
- ($\mathrm{x} \& 1$) $=\mathrm{x}$
- | is associative
- \& is associative
- | is commutative
- \& is commutative
- ($\mathrm{x} \mid \mathrm{x} \mathrm{x})=1$
- ($x \&!x)=0$
- $a \&(b \mid c)=(a \& b)|(a \& c) \quad a|(b \& c)=(a \mid b) \&(a \mid c)$
- ! $(\mathrm{a} \& \mathrm{~b})=(\mathrm{l}|\mathrm{a}| \mathrm{b})$
- ! (a|b) = !a \& ! b
- Duality principle: given a formula using \& l, and !, it's also true if you swap \& with | and 0 with 1

Universal Sets of Gates

- A set of gates is universal if any Boolean function can be constructed from just gates in the set
- \{AND, OR, NOT\} is universal; proof coming later
- \{AND, NOT\} and \{OR, NOT\} are universal
- Use DeMorgan's laws
- \{NAND, NOT $\}$ is universal
- Make AND from NAND and NOT
- $\{N A N D\}$ is universal
- $!x=!(x \& x)$
- \{NOR, NOT $\}$ and $\{N O R\}$ are universal
- \{AND, OR $\}$ is not universal
- $\{\mathrm{XOR}, \mathrm{NOT}\}$ is not universal

Boolean Identities (2)

-!!x $=x$

- \wedge is commutative
- \wedge is associative
- ($\left.x^{\wedge} \mathrm{x}\right)=0$
- $\left(x^{\wedge} 0\right)=x$
- ($x^{\wedge} 1$) $=$! x
- ! $\left(a^{\wedge} \mathrm{b}\right)=\left(!a^{\wedge} b\right)=(a \wedge!b)$

Truth Tables

- Combinational circuit $=$ Boolean function
- Combinational: no cycles or memory
- Outputs are determined just by inputs

- Finite size

- A Boolean function has a finite representation
- If i input bits, 2^{i} possible input combinations
- Can study by just writing the output for all possible inputs

- Truth table

- Standard way to write a function
- 2^{i} rows, input combinations in increasing order
- One column per intermediate or output

Truth Table Example

a	b	c	$(\mathrm{a} \& \mathrm{~b})$	$(\mathrm{a} \& \mathrm{~b}) / \mathrm{c}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Equivalences with a Truth Table

- Check whether two Boolean formulas are equal
- Write truth table covering both
- Check two columns have all the same entries
- Advantages
- Straightforward
- No algebraic insight needed
- Disadvantages
- Effort exponential in number of input bits

Equivalence Example

a	b	c	$(\mathrm{b} \& \mathrm{c})$	$\mathrm{a} \mid(\mathrm{b} \& \mathrm{c})$	$(\mathrm{a} \mid \mathrm{b})$	$(\mathrm{a} \mid \mathrm{c})$	$(\mathrm{a} \mid \mathrm{b}) \&(\mathrm{a} \mid \mathrm{c})$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Combinational Logic Design

- Given: description of circuit behavior
- Word problem, or truth table
- Goal: efficient circuit implementation
- Usually most important: fewest gates and wires
- Secondarily: reduce number of levels (propagation delay)
- Kinds of techniques
- Up to 6 inputs: pencil and paper approaches
- Large but structured: split into repeated pieces
- Large and unstructured: computer algorithm

