
1

1

Logic Design I

CSci 2021: Machine Architecture and Organization
Lecture #36, April 24th, 2015

Your instructor: Stephen McCamant

2

Brief History of Computing Machines

 1800s: purely mechanical

 General-purpose computer designed, but not fully built

 1940s: first general-purpose computers

 Electromechanical relays

 Vacuum tubes

 Idea: electrically-controlled electric switch

 1947: transistor

 “Solid state”: no moving parts or gases

 Based on semiconducting materials like silicon

 Can be used as a switch or an amplifier

 Takes a lot to make a computer…

3

Integrated Circuits

 Key technology for inexpensive computing

 Printing transistors (and other devices) on a silicon wafer

 Low incremental production cost

 But the design and the factory are expensive

 Long history of increasing density

 First ICs had <100 devices per chip

 Moore’s law: exponential increase in # of transistors per device

 Doubling every 12-24 months

 Modern CPU: tens of billions of transistors

4

MOSFETs

 Modern kind of transistor used in ICs

 Metal-oxide-semiconductor field-effect transistor

 Voltage at the gate determines whether current can flow
between source and drain

 n-channel type: high voltage allows current to flow

 p-channel type: low voltage allows current to flow

source

drain

gate

source

drain

gate

n-channel MOSFET p-channel MOSFET

5

Transistors To Gates: CMOS Inverter

x !x

High

Low/ground

= x !x

high
resistance

low
resistance

6

Transistors To Gates: CMOS Inverter

x !x

High

Low/ground

= x !x
high

resistance

low
resistance

2

7

CMOS NAND Gate

!(a & b)

a

a

b

b

High

Low/ground

= a

b
!(a & b)

8

Logistics Note: (No) Readings

 Most of this material is not in the textbook

 We’ve posted links to free online resources
 On the “Useful” page of the main course site

 Will post specific suggestions for readings in “All About
Circuits, Volume 4”

 But readings cover much material you don’t need to know
 Lecture notes are guide to assignment and test coverage

9

Getting to AND and OR

 This is enough to build any circuit

 AND = NAND + NOT

 OR = NOT + NOT + NAND

a

b

a

b =

a

b =
a

b

10

One-input One-output Gates

 What are the possibilities? 22 = 4 choices

x f(x)

0 0

1 0

x f(x)

0 1

1 1

x f(x)

0 0

1 1

x f(x)

0 1

1 0

Always false.
Boring.

Always true.
Boring.

Just like a wire.
Boring.

Inverter.
Least boring.

11

Two-input One-output Gates (1)

 24 = 16 possibilities. First some boring ones:

0 1

0 0 0

1 0 0

0 1

0 1 1

1 1 1

0 1

0 0 0

1 1 1

0 1

0 0 1

1 0 1

0 1

0 1 1

1 0 0

0 1

0 1 0

1 1 0

Always 0

Always 1

x

y

!x

!y

12

Two-input One-output Gates (2)

 Symmetric cases:

0 1

0 0 0

1 0 1

0 1

0 1 1

1 1 0

0 1

0 0 1

1 1 1

0 1

0 1 0

1 0 0

0 1

0 0 1

1 1 0

0 1

0 1 0

1 0 1

AND

NAND

OR

NOR

XOR, !=

XNOR, ==

3

13

Two-input One-output Gates (3)

 Asymmetric cases:

x\y 0 1

0 1 1

1 0 1

x\y 0 1

0 0 0

1 1 0

x\y 0 1

0 1 0

1 1 1

x\y 0 1

0 0 1

1 0 0

x -> y, !x | y

!(x -> y), x & !y

y -> x, !y | x

!(y -> x), y & !x

14

Boolean Algebra

 Boolean algebra

 Boolean functions (gates) have a nice algebraic structure

 But it’s different from the rules for arithmetic

 Same algebraic structure applies to sets, Boolean functions

 Boolean algebra and other notations

 0 = ⊥

 1 = ⊤

 & = ∧, also sometimes ⋅

 | = ∨

 ^ = ⊕

 ! = ¬, ~, or a line above, or ‘ suffix

 “+” is ambiguous: electrical engineers often use it for OR, but
mathematicians use it for XOR

15

Boolean Identities (1)

 (x | x) = x

 (x | 1) = 1

 (x | 0) = x

 | is associative

 | is commutative

 (x | !x) = 1

 a & (b | c) = (a & b) | (a & c)

 !(a & b) = (!a | !b)

 (x & x) = x

 (x & 0) = 0

 (x & 1) = x

 & is associative

 & is commutative

 (x & !x) = 0

 a | (b & c) = (a | b) & (a | c)

 !(a | b) = !a & !b

 Duality principle: given a formula using &, |, and !, it’s also
true if you swap & with | and 0 with 1

16

Boolean Identities (2)

 !!x = x

 ^ is commutative

 ^ is associative

 (x ^ x) = 0

 (x ^ 0) = x

 (x ^ 1) = !x

 !(a ^ b) = (!a ^ b) = (a ^ !b)

^ forms an Abelian group
with identity 0; the
inverse of x is x

17

Universal Sets of Gates

 A set of gates is universal if any Boolean function can be
constructed from just gates in the set
 {AND, OR, NOT} is universal; proof coming later

 {AND, NOT} and {OR, NOT} are universal

 Use DeMorgan’s laws

 {NAND, NOT} is universal

 Make AND from NAND and NOT

 {NAND} is universal

 !x = !(x & x)

 {NOR, NOT} and {NOR} are universal

 {AND, OR} is not universal

 {XOR, NOT} is not universal

18

Truth Tables

 Combinational circuit = Boolean function

 Combinational: no cycles or memory

 Outputs are determined just by inputs

 Finite size
 A Boolean function has a finite representation

 If i input bits, 2i possible input combinations

 Can study by just writing the output for all possible inputs

 Truth table
 Standard way to write a function

 2i rows, input combinations in increasing order

 One column per intermediate or output

4

19

Truth Table Example

a b c (a & b) (a & b) | c

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

20

Equivalences with a Truth Table

 Check whether two Boolean formulas are equal

 Write truth table covering both

 Check two columns have all the same entries

 Advantages
 Straightforward

 No algebraic insight needed

 Disadvantages

 Effort exponential in number of input bits

21

Equivalence Example

a b c (b & c) a | (b & c) (a | b) (a | c) (a | b) & (a | c)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

22

Combinational Logic Design

 Given: description of circuit behavior

 Word problem, or truth table

 Goal: efficient circuit implementation

 Usually most important: fewest gates and wires

 Secondarily: reduce number of levels (propagation delay)

 Kinds of techniques
 Up to 6 inputs: pencil and paper approaches

 Large but structured: split into repeated pieces

 Large and unstructured: computer algorithm

