
1

1

Logic Design I

CSci 2021: Machine Architecture and Organization
Lecture #36, April 24th, 2015

Your instructor: Stephen McCamant

2

Brief History of Computing Machines

 1800s: purely mechanical

 General-purpose computer designed, but not fully built

 1940s: first general-purpose computers

 Electromechanical relays

 Vacuum tubes

 Idea: electrically-controlled electric switch

 1947: transistor

 “Solid state”: no moving parts or gases

 Based on semiconducting materials like silicon

 Can be used as a switch or an amplifier

 Takes a lot to make a computer…

3

Integrated Circuits

 Key technology for inexpensive computing

 Printing transistors (and other devices) on a silicon wafer

 Low incremental production cost

 But the design and the factory are expensive

 Long history of increasing density

 First ICs had <100 devices per chip

 Moore’s law: exponential increase in # of transistors per device

 Doubling every 12-24 months

 Modern CPU: tens of billions of transistors

4

MOSFETs

 Modern kind of transistor used in ICs

 Metal-oxide-semiconductor field-effect transistor

 Voltage at the gate determines whether current can flow
between source and drain

 n-channel type: high voltage allows current to flow

 p-channel type: low voltage allows current to flow

source

drain

gate

source

drain

gate

n-channel MOSFET p-channel MOSFET

5

Transistors To Gates: CMOS Inverter

x !x

High

Low/ground

= x !x

high
resistance

low
resistance

6

Transistors To Gates: CMOS Inverter

x !x

High

Low/ground

= x !x
high

resistance

low
resistance

2

7

CMOS NAND Gate

!(a & b)

a

a

b

b

High

Low/ground

= a

b
!(a & b)

8

Logistics Note: (No) Readings

 Most of this material is not in the textbook

 We’ve posted links to free online resources
 On the “Useful” page of the main course site

 Will post specific suggestions for readings in “All About
Circuits, Volume 4”

 But readings cover much material you don’t need to know
 Lecture notes are guide to assignment and test coverage

9

Getting to AND and OR

 This is enough to build any circuit

 AND = NAND + NOT

 OR = NOT + NOT + NAND

a

b

a

b =

a

b =
a

b

10

One-input One-output Gates

 What are the possibilities? 22 = 4 choices

x f(x)

0 0

1 0

x f(x)

0 1

1 1

x f(x)

0 0

1 1

x f(x)

0 1

1 0

Always false.
Boring.

Always true.
Boring.

Just like a wire.
Boring.

Inverter.
Least boring.

11

Two-input One-output Gates (1)

 24 = 16 possibilities. First some boring ones:

0 1

0 0 0

1 0 0

0 1

0 1 1

1 1 1

0 1

0 0 0

1 1 1

0 1

0 0 1

1 0 1

0 1

0 1 1

1 0 0

0 1

0 1 0

1 1 0

Always 0

Always 1

x

y

!x

!y

12

Two-input One-output Gates (2)

 Symmetric cases:

0 1

0 0 0

1 0 1

0 1

0 1 1

1 1 0

0 1

0 0 1

1 1 1

0 1

0 1 0

1 0 0

0 1

0 0 1

1 1 0

0 1

0 1 0

1 0 1

AND

NAND

OR

NOR

XOR, !=

XNOR, ==

3

13

Two-input One-output Gates (3)

 Asymmetric cases:

x\y 0 1

0 1 1

1 0 1

x\y 0 1

0 0 0

1 1 0

x\y 0 1

0 1 0

1 1 1

x\y 0 1

0 0 1

1 0 0

x -> y, !x | y

!(x -> y), x & !y

y -> x, !y | x

!(y -> x), y & !x

14

Boolean Algebra

 Boolean algebra

 Boolean functions (gates) have a nice algebraic structure

 But it’s different from the rules for arithmetic

 Same algebraic structure applies to sets, Boolean functions

 Boolean algebra and other notations

 0 = ⊥

 1 = ⊤

 & = ∧, also sometimes ⋅

 | = ∨

 ^ = ⊕

 ! = ¬, ~, or a line above, or ‘ suffix

 “+” is ambiguous: electrical engineers often use it for OR, but
mathematicians use it for XOR

15

Boolean Identities (1)

 (x | x) = x

 (x | 1) = 1

 (x | 0) = x

 | is associative

 | is commutative

 (x | !x) = 1

 a & (b | c) = (a & b) | (a & c)

 !(a & b) = (!a | !b)

 (x & x) = x

 (x & 0) = 0

 (x & 1) = x

 & is associative

 & is commutative

 (x & !x) = 0

 a | (b & c) = (a | b) & (a | c)

 !(a | b) = !a & !b

 Duality principle: given a formula using &, |, and !, it’s also
true if you swap & with | and 0 with 1

16

Boolean Identities (2)

 !!x = x

 ^ is commutative

 ^ is associative

 (x ^ x) = 0

 (x ^ 0) = x

 (x ^ 1) = !x

 !(a ^ b) = (!a ^ b) = (a ^ !b)

^ forms an Abelian group
with identity 0; the
inverse of x is x

17

Universal Sets of Gates

 A set of gates is universal if any Boolean function can be
constructed from just gates in the set
 {AND, OR, NOT} is universal; proof coming later

 {AND, NOT} and {OR, NOT} are universal

 Use DeMorgan’s laws

 {NAND, NOT} is universal

 Make AND from NAND and NOT

 {NAND} is universal

 !x = !(x & x)

 {NOR, NOT} and {NOR} are universal

 {AND, OR} is not universal

 {XOR, NOT} is not universal

18

Truth Tables

 Combinational circuit = Boolean function

 Combinational: no cycles or memory

 Outputs are determined just by inputs

 Finite size
 A Boolean function has a finite representation

 If i input bits, 2i possible input combinations

 Can study by just writing the output for all possible inputs

 Truth table
 Standard way to write a function

 2i rows, input combinations in increasing order

 One column per intermediate or output

4

19

Truth Table Example

a b c (a & b) (a & b) | c

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

20

Equivalences with a Truth Table

 Check whether two Boolean formulas are equal

 Write truth table covering both

 Check two columns have all the same entries

 Advantages
 Straightforward

 No algebraic insight needed

 Disadvantages

 Effort exponential in number of input bits

21

Equivalence Example

a b c (b & c) a | (b & c) (a | b) (a | c) (a | b) & (a | c)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

22

Combinational Logic Design

 Given: description of circuit behavior

 Word problem, or truth table

 Goal: efficient circuit implementation

 Usually most important: fewest gates and wires

 Secondarily: reduce number of levels (propagation delay)

 Kinds of techniques
 Up to 6 inputs: pencil and paper approaches

 Large but structured: split into repeated pieces

 Large and unstructured: computer algorithm

