
CSci 2021: Review Lecture 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Quiz 1 topics (in one slide)

Number representation
Bits and bitwise operators
Unsigned and signed integers
Floating point numbers

Machine-level code representation
Instructions, operands, flags
Branches, jump tables, loops
Procedures and calling conventions
Arrays, structs, unions
32-bit versus 64-bit
Buffer overflow attacks

Outline

Topics in number representation

Topics in machine code

Number representation problems

Machine code problems

Bits and bitwise operations

Base 2 (binary) and base 16 (hex) generalize
from base 10 (decimal)
And, or, xor, not

Left shift, two kinds of right shift
Similarity to multiply/divide by 2

k

Unsigned and signed integers

Unsigned: plain base 2, non-negative
Overflow is like operations modulo 2

n

Signed: two’s complement with a sign bit
Sign bit counts for negative place value
Overflow possible in both directions

Comparing the two
Ranges partially overlap
+, -, * (same size output), <<, ==, narrowing are the
same
/, %, >>, <, * (high output bits), and widening are
different

Algebra properties exist despite overflow

Floating point numbers

Represent fractions and larger numbers using
binary scientific notation

Fractions whose denominator is a power of two
All others must be rounded
Limited precision gradually loses information

Rounding: examine thrown-away bits

Special cases for +/- 0, +/- 1, NaN

Ordering properties but fewer algebraic
properties



Normalized and denormalized

All but the smallest finite numbers are
normalized

Represent as 1:x � 2
e

(Leading 1 is not stored)

For smallest numbers, special denormalized
form

Smallest exp encoding: same E as smallest normal
Leading 0 is not stored

Outline

Topics in number representation

Topics in machine code

Number representation problems

Machine code problems

Instructions and operands

Assembly language $ machine code

Sequence of instructions, encoded in bytes

An instruction reads from or writes to operands
x86: usually at most one memory operand
AT&T: destination is last operand
AT&T shows operand size with b/w/l/q suffix

Addressing modes

General form: disp(base,index,scale)
Displacement is any constant, scale is 1, 2, 4 or 8
Base and index are registers
Formula: mem[disp+ base+ index � scale]

All but base are optional
Missing displacement or index: 0
Missing scale: 1
Drop trailing (but not leading) commas

Do same computation, just put address in
register: lea

Flags and branches

Flags (aka condition codes) are set based on
results of arithmetic

ZF: result is zero
SF: result is negative (highest bit set)
OF: signed overflow occurred
CF: unsigned overflow (“carry”) occurred

Used for condition in:
setCC: store 1 or 0
cmovCC: copy or don’t copy
jCC: jump or don’t jump

Just for setting flags: cmp (like sub), test (like
and)

Jump tables

Faster compilation for some switch statements

Make table of code addresses for cases

Read from that table like an array

Fall-through implemented by ordering and/or
jumps



Loops

Simplest structure: conditional jump “at the
bottom”, like a C do-while
C while also checks at beginning

C for e.g. initializes a variable and updates it on
each iteration
Assembly most like C with goto

Stack and frames

“The” stack is used for data with a function
lifetime
%esp points at the most recent in-use element
(“top”)
Convenient instructions: push and pop

Section for one run of a function: stack frame

%ebp used to point at current frame

Calling conventions

Handle that both caller and callee want to use
registers
Caller-saved: callee might modify, caller must
save if using

%eax, %ecx, %edx, flags

Callee-saved: caller might be using, callee must
save before using

%ebx, %esi, %edi, (%esp, %ebp)

Function arguments appear on stack below
return address
Return value is in %eax

Arrays

Sequence of values of same size and type, next
to each other
Numbered starting from 0 in C

To find location: start with base, add index times
size
C’s pointer arithmetic is basically the same
operation
Multi-dimensional array

Needs more multiplying

Array of pointers to arrays
Different, more flexible layout
Each access needs more loads

Structs and unions

Struct groups objects of different types and
sizes, in order
Fields often accessed using displacement from
a pointer
Alignment requirements ! padding

Most primitive values aligned to their size
Pad between elements, when next needs more
alignment
Pad at end, to round off total size

Unions: “like structs where every offset is 0”
Used to save space if only one needed at a time
Can also reveal storage details

x86-64

C long and pointers increase to 64-bits

32-bit registers widen to 64-bit (“r”), plus 8
more

64-bit operations specified with q suffix
32-bit operations still possible, usually zero-extend
result

Frame pointer usually not used

First six (i.e., most) parameters passed in
registers



Buffer overflows

Local arrays stored on the stack

C compilers usually do not check limits of array
accesses
Too much buffer data can overwrite a return
address

Changes what code will execute
Various nefarious uses

Various partial defenses:
Randomize stack location
Non-executable stack
Stack canary checking

Outline

Topics in number representation

Topics in machine code

Number representation problems

Machine code problems

Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow:
Unsigned overflow, no signed overflow:
Unsigned overflow, positive overflow:
Unsigned overflow, negative overflow:
No unsigned overflow, positive overflow:
No unsigned overflow, negative overflow:

Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
Unsigned overflow, no signed overflow:
Unsigned overflow, positive overflow:
Unsigned overflow, negative overflow:
No unsigned overflow, positive overflow:
No unsigned overflow, negative overflow:

Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
Unsigned overflow, no signed overflow: 1111 + 0001
= 0000
Unsigned overflow, positive overflow:
Unsigned overflow, negative overflow:
No unsigned overflow, positive overflow:
No unsigned overflow, negative overflow:

Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
Unsigned overflow, no signed overflow: 1111 + 0001
= 0000
Unsigned overflow, positive overflow: can’t happen
Unsigned overflow, negative overflow:
No unsigned overflow, positive overflow:
No unsigned overflow, negative overflow:



Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
Unsigned overflow, no signed overflow: 1111 + 0001
= 0000
Unsigned overflow, positive overflow: can’t happen
Unsigned overflow, negative overflow: 1000 + 1000
= 0000
No unsigned overflow, positive overflow:
No unsigned overflow, negative overflow:

Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
Unsigned overflow, no signed overflow: 1111 + 0001
= 0000
Unsigned overflow, positive overflow: can’t happen
Unsigned overflow, negative overflow: 1000 + 1000
= 0000
No unsigned overflow, positive overflow: 0100 +
0100 = 1000
No unsigned overflow, negative overflow:

Overflow

Which of these combinations can describe the
same additions?

No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
Unsigned overflow, no signed overflow: 1111 + 0001
= 0000
Unsigned overflow, positive overflow: can’t happen
Unsigned overflow, negative overflow: 1000 + 1000
= 0000
No unsigned overflow, positive overflow: 0100 +
0100 = 1000
No unsigned overflow, negative overflow: can’t
happen

Outline

Topics in number representation

Topics in machine code

Number representation problems

Machine code problems

Working with ordering

Which of these conditions are the same?
x < y x > y x <= y x >= y

y < x y > x y <= x y >= x

!(x < y) !(x > y) !(x <= y) !(x >= y)

!(y < x) !(y > x) !(y <= x) !(y >= x)

Working with ordering

Which of these conditions are the same?
A:x < y B:x > y C:x <= y D:x >= y

B:y < x A:y > x D:y <= x C:y >= x

D:!(x < y) C:!(x > y) B:!(x <= y) A:!(x >= y)

C:!(y < x) D:!(y > x) A:!(y <= x) B:!(y >= x)


