CSci 2021 Review Lecture 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Quiz 1 topics (in one slide)

) Number representation

| Bits and bitwise operators
| Unsigned and signed integers
B Floating point numbers

) Machine-level code representation

B Instructions, operands, flags

| Branches, jump tables, loops

® Procedures and calling conventions
® Arrays, structs, unions

| 32-bit versus 64-bit

| Buffer overflow attacks

Outline

Topics in number representation

Bits and bitwise operations

) Base 2 (binary) and base 16 (hex) generalize
from base 10 (decimal)
) And, or, xor, not
) Left shift, two kinds of right shift
® Similarity to multiply/divide by 2*

Unsigned and signed integers

i) Unsigned: plain base 2, non-negative
| Overflow is like operations modulo 2™
IC) Signed: two's complement with a sign bit
® Sign bit counts for negative place value
| Overflow possible in both directions
i) Comparing the two
B Ranges partially overlap
B + -, * (same size output), <<, ==, narrowing are the
same
m /, % >>, <, * (high output bits), and widening are
different

IT) Algebra properties exist despite overflow

Floating point numbers

) Represent fractions and larger numbers using
binary scientific notation
) Fractions whose denominator is a power of two

| All others must be rounded
® Limited precision gradually loses information

) Rounding: examine thrown-away bits
) Special cases for +/- 0, +/- co, NaN

) Ordering properties but fewer algebraic
properties




Normalized and denormalized

1

) All but the smallest finite numbers are

normalized
® Represent as 1.x - 2¢
B (Leading 1is not stored)

) For smallest numbers, special denormalized

form
® Smallest exp encoding: same E as smallest normal
B Leading O is not stored

Outline

Topics in machine code

Instructions and operands

i) Assembly language <+ machine code
I£) Sequence of instructions, encoded in bytes

) An instruction reads from or writes to operands

| x86: usually at most one memory operand
| AT&T: destination is last operand
| AT&T shows operand size with b/w/I/q suffix

Addressing modes

) General form: disp(base,index,scale)

| Displacement is any constant, scaleis 1, 2, 4 or 8
| Base and index are registers
® Formula: mem(disp + base + index - scale]

) All but base are optional

® Missing displacement or index: O
| Missing scale: 1
® Drop trailing (but not leading) commas
) Do same computation, just put address in
register: lea

Flags and branches

IC) Flags (aka condition codes) are set based on

results of arithmetic
| ZF: result is zero
| SF: result is negative (highest bit set)
® OF: signed overflow occurred
® CF: unsigned overflow (“carry”) occurred

IF) Used for condition in:

B setCC: store 1or O
& cmovCC: copy or don't copy
& jCC: jump or don't jump
I£) Just for setting flags: cmp (like sub), test (like
and)

Jump tables

) Faster compilation for some switch statements
) Make table of code addresses for cases
) Read from that table like an array

) Fall-through implemented by ordering and/or
jumps




Loops

) Simplest structure: conditional jump “at the
bottom”, like a C do-while
I£) C while also checks at beginning

I£) C for eq. initializes a variable and updates it on
each iteration
I£) Assembly most like C with goto

Stack and frames

) "The" stack is used for data with a function
lifetime

) Yesp points at the most recent in-use element
("top”)

) Convenient instructions: push and pop

) Section for one run of a function: stack frame

) %ebp used to point at current frame

Calling conventions

) Handle that both caller and callee want to use
registers
) Caller-saved: callee might modify, caller must
save if using
B Jeax, hecx, hedx, flags
) Callee-saved: caller might be using, callee must
save before using
B Jebx, jesi, hedi, (hesp, %ebp)
I£) Function arguments appear on stack below
return address
£) Return value is in %eax

Arrays

) Sequence of values of same size and type, next
to each other

) Numbered starting from O in C

) To find location: start with base, add index times
size

) C's pointer arithmetic is basically the same
operation

) Multi-dimensional array

® Needs more multiplying
) Array of pointers to arrays

| Different, more flexible layout
| Each access needs more loads

Structs and unions

IT) Struct groups objects of different types and
sizes, in order

) Fields often accessed using displacement from
a pointer

) Alignment requirements — padding

| Most primitive values aligned to their size

® Pad between elements, when next needs more
alignment

| Pad at end, to round off total size

) Unions: "like structs where every offset is 0"

| Used to save space if only one needed at a time
| Can also reveal storage details

x86-64

) C long and pointers increase to 64-bits

) 32-bit reqgisters widen to 64-bit ("r"), plus 8
more
| 64-bit operations specified with q suffix
| 32-bit operations still possible, usually zero-extend
result

) Frame pointer usually not used

) First six (i.e, most) parameters passed in
registers




Buffer overflows

IC) Local arrays stored on the stack

I£) C compilers usually do not check limits of array
accesses
i) Too much buffer data can overwrite a return
address
| Changes what code will execute
) Various nefarious uses
IC) Various partial defenses:

| Randomize stack location
5 Non-executable stack
| Stack canary checking

Outline

Number representation problems

Overflow

) Which of these combinations can describe the

same additions?
® No unsigned overflow, no signed overflow:
B Unsigned overflow, no signed overflow:
® Unsigned overflow, positive overflow:
® Unsigned overflow, negative overflow:
® No unsigned overflow, positive overflow:
® No unsigned overflow, negative overflow:

Overflow

) Which of these combinations can describe the

same additions?
® No unsigned overflow, no signed overflow: 0000 +
0000 = 0000
8 Unsigned overflow, no signed overflow:
® Unsigned overflow, positive overflow:
® Unsigned overflow, negative overflow:
® No unsigned overflow, positive overflow:
® No unsigned overflow, negative overflow:

Overflow

) Which of these combinations can describe the

same additions?

5 No unsigned overflow, no signed overflow: 0000 +
0000 = 0000

B Unsigned overflow, no signed overflow: 1111 + 0001
=0000

B Unsigned overflow, positive overflow:

® Unsigned overflow, negative overflow:

® No unsigned overflow, positive overflow:

® No unsigned overflow, negative overflow:

Overflow

) Which of these combinations can describe the

same additions?

® No unsigned overflow, no signed overflow: 0000 +
0000 = 0000

® Unsigned overflow, no signed overflow: 1111 + 0001
= 0000

® Unsigned overflow, positive overflow: can't happen

® Unsigned overflow, negative overflow:

® No unsigned overflow, positive overflow:

® No unsigned overflow, negative overflow:




Overflow

) Which of these combinations can describe the

same additions?

® No unsigned overflow, no signed overflow: 0000 +
0000 = 0000

B Unsigned overflow, no signed overflow: 1111 + 0001
=0000

B Unsigned overflow, positive overflow: can't happen

® Unsigned overflow, negative overflow: 1000 + 1000
= 0000

® No unsigned overflow, positive overflow:

® No unsigned overflow, negative overflow:

Overflow

) Which of these combinations can describe the

same additions?

® No unsigned overflow, no signed overflow: 0000 +
0000 = 0000

® Unsigned overflow, no signed overflow: 1111 + 0001
= 0000

® Unsigned overflow, positive overflow: can't happen

® Unsigned overflow, negative overflow: 1000 + 1000
= 0000

5 No unsigned overflow, positive overflow: 0100 +
0100 = 1000

® No unsigned overflow, negative overflow:

Overflow

) Which of these combinations can describe the

same additions?

® No unsigned overflow, no signed overflow: 0000 +
0000 = 0000

® Unsigned overflow, no signed overflow: 1111 + 0001
=0000

® Unsigned overflow, positive overflow: can't happen

B Unsigned overflow, negative overflow: 1000 + 1000
=0000

5 No unsigned overflow, positive overflow: 0100 +
0100 = 1000

® No unsigned overflow, negative overflow: can't
happen

Outline

Machine code problems

Working with ordering

Which of these conditions are the same?

x <y X >y x <=y X >=y
y<x y > x y <=x y >=x
Nx<y) x>y tx<=y &>y
Iy <x) Iy >x) !(y<=x) I(y>x

Working with ordering

Which of these conditions are the same?

Ax <y Bx >y Cx <=y Dx >=y
By < x Ay > x Dy <= x Cy >=x

Dix<y) Clx>y Blx<=y Allxo>=
Ct(y <x) Dit(y >x) Al(y <=x) Bl(y >=

y)
X)




