
– 1 –

Instruction Set Architecture

CSci 2021: Machine Architecture and Organization
Lecture #16, February 25th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

– 2 –

Instruction Set Architecture

Assembly Language View

 Processor state

 Registers, memory, …

 Instructions

 addl, pushl, ret, …

 How instructions are encoded

as bytes

Layer of Abstraction

 Above: how to program machine

 Processor executes instructions

in a sequence

 Below: what needs to be built

 Use variety of tricks to make it

run fast

 E.g., execute multiple

instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

– 3 –

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

ZF SF OF

Y86 Processor State

 Program Registers

 Same 8 as with IA32. Each 32 bits

 Condition Codes

 Single-bit flags set by arithmetic or logical instructions

» ZF: Zero SF:Negative OF: Overflow

 Program Counter

 Indicates address of next instruction

 Program Status

 Indicates either normal operation or some error condition

 Memory

 Byte-addressable storage array

 Words stored in little-endian byte order

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

– 4 –

Y86 Instruction Set #1
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

– 5 –

Y86 Instructions

Format

 1–6 bytes of information read from memory

 Can determine instruction length from first byte

 Not as many instruction types, and simpler encoding than with

IA32

 Each accesses and modifies some part(s) of the program

state

– 6 –

Y86 Instruction Set #2
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

rrmovl 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6

– 7 –

Y86 Instruction Set #3
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0
addl 6 0

subl 6 1

andl 6 2

xorl 6 3

– 8 –

Y86 Instruction Set #4
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

– 9 –

Encoding Registers

Each register has 4-bit ID

 Same encoding as in IA32

Register ID 15 (0xF) indicates “no register”

 Will use this in our hardware design in multiple places

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

0

1

2

3

6

7

4

5

– 10 –

Instruction Example

Addition Instruction

 Add value in register rA to that in register rB

 Store result in register rB

 Note that Y86 only allows addition to be applied to register data

 Set condition codes based on result

 e.g., addl %eax,%esi Encoding: 60 06

 Two-byte encoding

 First indicates instruction type

 Second gives source and destination registers

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

– 11 –

Arithmetic and Logical Operations

 Refer to generically as
“OPl”

 Encodings differ only by

“function code”

 Low-order 4 bytes in first

instruction word

 Set condition codes as

side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xorl rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

– 12 –

Move Operations

 Like the IA32 movl instruction

 Simpler format for memory addresses

 Give different names to keep them distinct

rrmovl rA, rB 2 0 rA rB
Register --> Register

Immediate --> Register
irmovl V, rB 3 0 8 rB V

Register --> Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mrmovl D(rB), rA 5 0 rA rB D

– 13 –

Move Instruction Examples

irmovl $0xabcd, %edx movl $0xabcd, %edx 30 82 cd ab 00 00

IA32 Y86 Y86 Encoding

rrmovl %esp, %ebx movl %esp, %ebx 20 43

mrmovl -12(%ebp),%ecxmovl -12(%ebp),%ecx 50 15 f4 ff ff ff

rmmovl %esi,0x41c(%esp)movl %esi,0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax,%edx)

—movl (%ebp,%eax,4),%ecx

40 64 1c 04 00 00

– 14 –

Conditional Move Instructions

 Refer to generically as
“cmovXX”

 Encodings differ only by

“function code”

 Based on values of

condition codes

 Variants of rrmovl

instruction

 (Conditionally) copy value

from source to destination

register

rrmovl rA, rB

Move Unconditionally

cmovle rA, rB

Move When Less or Equal

cmovl rA, rB

Move When Less

cmove rA, rB

Move When Equal

cmovne rA, rB

Move When Not Equal

cmovge rA, rB

Move When Greater or Equal

cmovg rA, rB

Move When Greater

2 0 rA rB

2 1 rA rB

2 2 rA rB

2 3 rA rB

2 4 rA rB

2 5 rA rB

2 6 rA rB

– 15 –

Jump Instructions

 Refer to generically as
“jXX”

 Encodings differ only by

“function code”

 Based on values of

condition codes

 Same as IA32 counterparts

 Encode full destination

address

 Unlike PC-relative

addressing seen in IA32

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

– 16 –

Y86 Program Stack

 Region of memory holding

program data

 Used in Y86 (and IA32) for

supporting procedure calls

 Stack top indicated by %esp

 Address of top stack element

 Stack grows toward lower

addresses

 Top element is at highest

address in the stack

 When pushing, must first

decrement stack pointer

 After popping, increment stack

pointer
%esp

•

•

•

Increasing

Addresses

Stack “Top”

Stack
“Bottom”

– 17 –

Stack Operations

 Decrement %esp by 4

 Store word from rA to memory at %esp

 Like IA32

 Read word from memory at %esp

 Save in rA

 Increment %esp by 4

 Like IA32

pushl rA A 0 rA F

popl rA B 0 rA F

– 18 –

Subroutine Call and Return

 Push address of next instruction onto stack

 Start executing instructions at Dest

 Like IA32

 Pop value from stack

 Use as address for next instruction

 Like IA32

call Dest 8 0 Dest

ret 9 0

– 19 –

Miscellaneous Instructions

 Don’t do anything

 Stop executing instructions

 IA32 has comparable instruction, but can’t execute it in

user mode

 We will use it to stop the simulator

 Encoding ensures that program hitting memory

initialized to zero will halt

nop 1 0

halt 0 0

– 20 –

Status Conditions

 Normal operation

 Halt instruction encountered

 Bad address (either instruction or data)

encountered

 Invalid instruction encountered

Desired Behavior

 If AOK, keep going

 Otherwise, stop program execution

Mnemonic Code

ADR 3

Mnemonic Code

INS 4

Mnemonic Code

HLT 2

Mnemonic Code

AOK 1

– 21 –

Administrative Break

• Assignment II: due beginning of Friday’s lecture

• Late submission period shortened to end Sunday at noon

• Full solutions also posted Sunday at noon

• Friday lecture: quiz 1 review session

• Quiz 1: in class Monday

• Open book, any paper notes or printouts allowed

• No electronics, calculators, phones, etc.

• Buffer lab: starts Friday

– 22 –

Writing Y86 Code

Try to Use C Compiler as Much as Possible

 Write code in C

 Compile for IA32 with gcc –O1 –S

 Older versions of GCC do better (less optimization)

 Use module avail to find what versions are available

 Transliterate into Y86

Coding Example

 Find number of elements in null-terminated list

int len1(int a[]);

5043

6125

7395

0

a

 3

– 23 –

Y86 Code Generation Example

First Try

 Write typical array code

 Compile with gcc34 –O1 -S

Problem

 Hard to do array indexing on

Y86

 Since don’t have scaled

addressing modes/* Find number of elements in

null-terminated list */

int len1(int a[])

{

int len;

for (len = 0; a[len]; len++)

;

return len;

}

L5:

incl %eax

cmpl $0, (%edx,%eax,4)

jne L5

– 24 –

Y86 Code Generation Example #2

Second Try

 Write with pointer code

 Compile with gcc34 –O1 -S

Result

 Don’t need to do indexed

addressing

/* Find number of elements in

null-terminated list */

int len2(int a[])

{

int len = 0;

while (*a++)

len++;

return len;

}

.L11:

incl %ecx

movl (%edx), %eax

addl $4, %edx

testl %eax, %eax

jne .L11

– 25 –

Y86 Code Generation Example #3

IA32 Code

 Setup

Y86 Code

 Setup

len2:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %edx

movl $0, %ecx

movl (%edx), %eax

addl $4, %edx

testl %eax, %eax

je .L13

len2:

pushl %ebp # Save %ebp

rrmovl %esp, %ebp # New FP

pushl %esi # Save

irmovl $4, %esi # Constant 4

pushl %edi # Save

irmovl $1, %edi # Constant 1

mrmovl 8(%ebp), %edx # Get a

irmovl $0, %ecx # len = 0

mrmovl (%edx), %eax # Get *a

addl %esi, %edx # a++

andl %eax, %eax # Test *a

je Done # If zero, goto Done

 Need constants 1 & 4

 Store in callee-save registers

 Use andl to test register

– 26 –

Y86 Code Generation Example #4

IA32 Code

 Loop

Y86 Code

 Loop

.L11:

incl %ecx

movl (%edx), %eax

addl $4, %edx

testl %eax, %eax

jne .L11

Loop:

addl %edi, %ecx # len++

mrmovl (%edx), %eax # Get *a

addl %esi, %edx # a++

andl %eax, %eax # Test *a

jne Loop # If !0, goto Loop

– 27 –

Y86 Code Generation Example #5

IA32 Code

 Finish

Y86 Code

 Finish

.L13:

movl %ecx, %eax

leave

ret

Done:

rrmovl %ecx, %eax # return len

popl %edi # Restore %edi

popl %esi # Restore %esi

rrmovl %ebp, %esp # Restore SP

popl %ebp # Restore FP

ret

– 28 –

Y86 Sample Program Structure #1

 Program starts at

address 0

 Must set up stack

 Where located

 Pointer values

 Make sure don’t

overwrite code!

 Must initialize data

init: # Initialization

. . .

call Main

halt

.align 4 # Program data

array:

. . .

Main: # Main function

. . .

call len2

. . .

len2: # Length function

. . .

.pos 0x100 # Placement of stack

Stack:

– 29 –

Y86 Program Structure #2

 Program starts at

address 0

 Must set up stack

 Must initialize data

 Can use symbolic

names

init:

irmovl Stack, %esp # Set up SP

irmovl Stack, %ebp # Set up FP

call Main # Execute main

halt # Terminate

Array of 4 elements + terminating 0

.align 4

array:

.long 0x000d

.long 0x00c0

.long 0x0b00

.long 0xa000

.long 0

– 30 –

Y86 Program Structure #3

Set up call to len2

 Follow IA32 procedure conventions

 Push array address as argument

Main:

pushl %ebp

rrmovl %esp,%ebp

irmovl array,%edx

pushl %edx # Push array

call len2 # Call len2(array)

rrmovl %ebp,%esp

popl %ebp

ret

– 31 –

Assembling Y86 Program

 Generates “object code” file len.yo

 Actually looks like disassembler output

unix> yas len.ys

0x000: | .pos 0

0x000: 30f400010000 | init: irmovl Stack, %esp # Set up stack pointer

0x006: 30f500010000 | irmovl Stack, %ebp # Set up base pointer

0x00c: 8028000000 | call Main # Execute main program

0x011: 00 | halt # Terminate program

|

| # Array of 4 elements + terminating 0

0x014: | .align 4

0x014: | array:

0x014: 0d000000 | .long 0x000d

0x018: c0000000 | .long 0x00c0

0x01c: 000b0000 | .long 0x0b00

0x020: 00a00000 | .long 0xa000

0x024: 00000000 | .long 0

– 32 –

Simulating Y86 Program

 Instruction set simulator

 Computes effect of each instruction on processor state

 Prints changes in state from original

unix> yis len.yo

Stopped in 50 steps at PC = 0x11. Status 'HLT', CC Z=1 S=0 O=0

Changes to registers:

%eax: 0x00000000 0x00000004

%ecx: 0x00000000 0x00000004

%edx: 0x00000000 0x00000028

%esp: 0x00000000 0x00000100

%ebp: 0x00000000 0x00000100

Changes to memory:

0x00ec: 0x00000000 0x000000f8

0x00f0: 0x00000000 0x00000039

0x00f4: 0x00000000 0x00000014

0x00f8: 0x00000000 0x00000100

0x00fc: 0x00000000 0x00000011

– 33 –

CISC Instruction Sets
 Complex Instruction Set Computer

 Dominant style through mid-80’s

Stack-oriented instruction set

 Use stack to pass arguments, save program counter

 Explicit push and pop instructions

Arithmetic instructions can access memory

 addl %eax, 12(%ebx,%ecx,4)

 requires memory read and write

 Complex address calculation

Condition codes

 Set as side effect of arithmetic and logical instructions

Philosophy

 Add instructions to perform “typical” programming tasks

– 34 –

RISC Instruction Sets
 Reduced Instruction Set Computer

 Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)

Fewer, simpler instructions

 Might take more to get given task done

 Can execute them with small and fast hardware

Register-oriented instruction set

 Many more (typically 32) registers

 Use for arguments, return pointer, temporaries

Only load and store instructions can access memory

 Similar to Y86 mrmovl and rmmovl

No Condition codes

 Test instructions return 0/1 in register

– 35 –

MIPS Registers

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

$11

$12

$13

$14

$15

$0

$at

$v0

$v1

$a0

$a1

$a2

$a3

$t0

$t1

$t2

$t3

$t4

$t5

$t6

$t7

Constant 0

Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16

$17

$18

$19

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$30

$31

$s0

$s1

$s2

$s3

$s4

$s5

$s6

$s7

$t8

$t9

$k0

$k1

$gp

$sp

$s8

$ra

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer

Callee Save Temp

Return Address

– 36 –

MIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000

R-R

Op Ra Rb Immediate

R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset

Branch

beq $3,$2,dest # Branch when $3 = $2

– 37 –

CISC vs. RISC

Original Debate

 Strong opinions!

 CISC proponents---easy for compiler, fewer code bytes

 RISC proponents---better for optimizing compilers, can make

run fast with simple chip design

Current Status

 For desktop processors, choice of ISA not a technical issue

 With enough hardware, can make anything run fast

 Code compatibility more important

 For embedded processors, RISC makes sense

 Smaller, cheaper, less power

 Most cell phones use ARM processor

– 38 –

Summary

Y86 Instruction Set Architecture

 Similar state and instructions as IA32

 Simpler encodings

 Somewhere between CISC and RISC

How Important is ISA Design?

 Less now than before

 With enough hardware, can make almost anything go fast

 Intel has evolved from IA32 to x86-64

 Uses 64-bit words (including addresses)

 Adopted some features found in RISC

» More registers (16)

» Less reliance on stack

