Instruction Set Architecture

CSci 2021: Machine Architecture and Organization
Lecture #16, February 25th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai

Y86 Processor State

T e SFmymems
Seax Sesi CEiss 1
Secx Sedi DMEM: Memory
hedx esp PC
$ebx. $ebp. []

m Program Registers
® Same 8 as with IA32. Each 32 bits
m Condition Codes
® Single-bit flags set by arithmetic or logical instructions
» ZF: Zero SF:Negative OF: Overflow
= Program Counter
® Indicates address of next instruction
= Program Status
® Indicates either normal operation or some error condition
= Memory
® Byte-addressable storage array
® Words stored in little-endian byte order

Y86 Instructions

Format
m 1-6 bytes of information read from memory
@ Can determine instruction length from first byte
e Not as many instruction types, and simpler encoding than with
IA32
m Each accesses and modifies some part(s) of the program
state

Instruction Set Architecture

Assembly Language View

m Processor state Application
® Registers, memory, ... Program

= Instructions

® addl, pushl, ret, ... Clamplias e

® How instructions are encoded ISA
as bytes
CPU
Layer of Abstraction Design
= Above: how to program machine Circuit
® Processor executes instructions Design

in a sequence

= Below: what needs to be built
® Use variety of tricks to make it

Chip
Layout

run fast
® E.g., execute multiple
instructions simultaneously

Y86 Instruction Set #1

nop

cmovXX 1A, 1B
imovi V, B [3]0]e[m] v]
rmmovi 1A, D(B) [[o[ra]r8] D]

o [a[8] D]

nrmovl D(B), rA [5

0Pl 1A, 1B

3xx Dest [7]m] Dest]

call Dest [s]o] Dest]

ret

pushl 1A [2]0]m]¢]
e Boon

Y86 Instruction Set #2

Byte 0
cmovle
halt
cmovl
nop
cmovXX 1A, 1B e
cmovne
irmovi Vv, B [3]o]s]m] v]
cmovge
zmmovl rA, D(B) [4 o [ra[8] D]
cmovg
mrmovl D(rB), rA [5 [oJra]r8] D]
OP1 1A, 1B
3xx Dest [7]m] Dest]
call Dest [s]o] Dest]

ret

pushl rA

popl rA

[ra[€]
[l e

Y86 Instruction Set #3

halt addl

nop

——

irmovi v, B [3]o] s]e] v]

subl

andl

xorl

rmmovl rA, D(B) [4]o[ra]r] D]

memovl D(1B), A [5 [0 [rafrm] D]

oime o[
XX Dest [7]m] Dest]
call Dest [e]0] Dest]
ret

pushl rA

ol 18 BEnn

Encoding Registers

Each register has 4-bit ID

%eax
secx
sedx
Sebx

%esi
$edi
%esp
%ebp

w[n|H| o
[LIENEXI Y

m Same encoding as in 1A32

Register ID 15 (OxF) indicates “no register”
= Will use this in our hardware design in multiple places

Arithmetic and Logical Operations

Instruction Code Function Code .
Add m Refer to generically as

“op1”
adar A, 8 [6]o]mlrm] | = Encodings differ only by
“function code”

® Low-order 4 bytes in first

| subl rA, 1B H | instruction word

m Set condition codes as

Subtract (rA from rB)

And side effect
wa a5 [|
Exclusive-Or

wori A, 8 [¢[3LAlD) |

Y86 Instruction Set #4

nop

cmovXX rA, rB

irmovi v, B [3]o]s]m] v]
rmmovl 1A, D(B) [[o[ra]rs] D]
me
memovl D(1B), A [5 [0 [ralr] D]
OP1 rA, 1B
XX Dest [7]m] Dest
call Dest [s]0] Dest

sop 1A Lo [wle]

Instruction Example

Addition Instruction
Generic Form

Encoded Representation
agal A, 18 [6[o[AlE] /|/

= Add value in register rA to that in register rB
® Store result in register rB
© Note that Y86 only allows addition to be applied to register data

= Set condition codes based on result
m e.g, addl %eax,%esi Encoding: 60 06

= Two-byte encoding
@ First indicates instruction type
® Second gives source and destination registers

—10-

Move Operations

Register --> Register

| rrmovl rA, rB En

| semoviv, 18 [3]0[8]E] v | | Immediate --> Register
| mmov1 1A, D (B)[2] 0 [rAlrB])] Register --> Memory
| mrmov1 D (1B), rA [5] 0 [rAlrB])] Memory --> Register

m Like the IA32 mov1 instruction
m Simpler format for memory addresses
= Give different names to keep them distinct

—12-

Move Instruction Examples

1A32 Y86 Y86 Encoding
movl $0xabcd, %edx irmovl $0xabcd, %edx 30 82 cd ab 00 00
movl %esp, %ebx rrmovl %esp, %ebx 20 43

movl -12(%ebp) , $ecx mrmovl -12(%ebp),%ecx 50 15 f4 £f ff ff
movl %esi,Ox4lc (%esp) rmmovl %esi,Ox4lc(%esp) 40 64 1c 04 00 00

movl $0xabecd, (%eax) —

movl %eax, 12(%eax,%edx) —_

movl (%ebp,%eax,4),%ecx -

Jump Instructions

Jump Unconditionally

—13-

| jmp Dest [7]0] Dest

] I = Refer to generically as

Jump When Less or Equal

“§XX”

| jleDest [7]1] Dest

] I = Encodings differ only by
“function code”

Jump When Less

| jiDest [7]2] Dest

I I = Based on values of
condition codes

Jump When Equal

| jeDest [7]3] Dest

= Same as IA32 counterparts
I = Encode full destination

Jump When Not Equal

address

| jne Dest [7]4] Dest

] I @ Unlike PC-relative

Jump When Greater or Equal

| jgeDest [7]5] Dest

addressing seen in 1A32

Jump When Greater

| jgDest [7]6] Dest

Stack Operations

| puenioa |

m Decrement $esp by 4

—15-

m Store word from rA to memory at $esp

m Like IA32

|

| popl rA

= Read word from memory at $esp

m Save inrA
= Increment $esp by 4
m Like IA32

17—

Conditional Move Instructions

Move Unconditionally

m Refer to generically as
“cmovXX”

= Encodings differ only by
“function code”

| rrmovl rA rB

2| 0 [rA[rB]|

Move When Less or Equal

| cmovle rA, 1B

Move When Less

= Based on values of

2] 1]ralrB| I
2| 2|rAlIB I 8
IJJJJ condition codes
m Variants of rrmovl
[2[3]ralr8] I instruction

| cmovlrA, B

Move When Equal

| cmove rA, B

Move When Not Equal

® (Conditionally) copy value
2| 4|rAlIB

| cmovne rA, rB from source to destination
Move When Greater or Equal

register

| cmovge rA, B

2| 5|rA|rB
2| 6|rA|rB

Move When Greater

| cmovg rA, 1B

—14-

Y86 Program Stack

Stack . .
“Bottom” = Region of memory holding

program data

= Used in Y86 (and 1A32) for
supporting procedure calls

= Stack top indicated by $esp

. ® Address of top stack element

Increasing

P " © = Stack grows toward lower

. addresses

® Top element is at highest
address in the stack

©® When pushing, must first
decrement stack pointer

® After popping, increment stack
pointer

[~ %esp
Stack “Top”

—16—

Subroutine Call and Return

call Dest [8]0] Dest] |

m Push address of next instruction onto stack
m Start executing instructions at Dest
m Like IA32

| e |

m Pop value from stack
m Use as address for next instruction
m Like IA32

—18—

Miscellaneous Instructions

o]

= Don’t do anything

nat

m Stop executing instructions

= |A32 has comparable instruction, but can’t execute it in
user mode

= We will use it to stop the simulator

= Encoding ensures that program hitting memory
initialized to zero will halt

—19-

Administrative Break

» Assignment II: due beginning of Friday’s lecture
- Late submission period shortened to end Sunday at noon
- Full solutions also posted Sunday at noon

» Friday lecture: quiz 1 review session

¢ Quiz 1: in class Monday
- Open book, any paper notes or printouts allowed
- No electronics, calculators, phones, etc.

< Buffer lab: starts Friday

—21-

Y86 Code Generation Example

First Try Problem
= Write typical array code m Hard to do array indexing on
Y86
® Since don’t have scaled
/* Find number of elements in addressing modes
null-terminated list */
int lenl(int a[]) L=k
{ incl $eax
int len; cmpl $0, (%edx,%eax,4)
for (len = 0; a[len]; lent+) HO=RES
return len;
}

= Compile with gee34 -01 -s

—23—

Status Conditions

Mnemonic = Normal operation
1

Gl
AOK

= Halt instruction encountered
HL 2

T

" m Bad address (either instruction or data)

ADR 3

= Invalid instruction encountered
4

1
INS
Desired Behavior

= If AOK, keep going
= Otherwise, stop program execution

—20-

Writing Y86 Code

Try to Use C Compiler as Much as Possible
= Write code in C
= Compile for IA32 with gcc -01 -S
@ Older versions of GCC do better (less optimization)
® Use module avail to find what versions are available

= Transliterate into Y86

Coding Example

= Find number of elements in null-terminated list
int lenl (int a[]);

a —| 5043

6125

7395
0

—22-

Y86 Code Generation Example #2

Second Try Result
= Write with pointer code = Don’t need to do indexed
addressing
/* Find number of elements in
null-terminated list */
int len2(int a[]) sl
{ incl %ecx
int len = 0; movl (%edx) , %eax
while (*a++) addl $4, %edx
lent++; testl %eax, %eax
return len; jne .L11
}

= Compile with gee34 -01 -s

—24-

Y86 Code Generation Example #3

IA32 Code Y86 Code
= Setup m Setup
len2: len2:
pushl %ebp pushl %ebp # Save %ebp
movl %esp, %ebp rrmovl %esp, %ebp # New FP
pushl %esi # save
irmovl $4, %esi # Constant 4
pushl %edi # Save
irmovl $1, %edi # Constant 1

movl 8(%ebp), %edx
movl $0, %ecx
movl (%edx), %eax
addl $4, %edx
testl %eax, %eax
je .1L13

mrmovl 8 (%ebp), %edx # Get a

irmovl $0, %ecx # len = 0
mrmovl (%edx), %eax # Get *a
addl %esi, %edx # at++
andl %eax, %eax # Test *a
je Done # If zero, goto Done

= Need constants 1 & 4

= Use andl to test register

IA32 Code

Y86 Code
= Loop = Loop

Y86 Code Generation Example #4

.L11: Loop:
addl %edi, %ecx
mrmovl (%edx),

addl %esi, %edx
andl %eax, %eax
If '0, goto Loop

incl %ecx

movl (%edx), %eax
addl $4, %edx
testl %eax, %eax

jne .L11 jne Loop

%eax # Get *a

len++

at++
Test *a

m Store in callee-save registers

—25-

Y86 Code Generation Example #5

IA32 Code Y86 Code
= Finish m Finish
.L13: Done:
movl %ecx, %eax rrmovl %ecx, %eax # return len
popl %edi # Restore %edi
popl %esi # Restore %esi
leave rrmovl %ebp, %esp # Restore SP
popl %ebp # Restore FP
ret ret

—27-

Y86 Program Structure #2

init:
irmovl Stack, %esp # Set up SP

m Program starts at

irmovl Stack, %ebp # Set up FP address 0
call Main # Execute main
halt # Terminate = Must set up stack

Array of 4 elements + terminating 0
.align 4
array:
.long 0x000d
.long 0x00cO
.long 0x0b00
.long 0xa000
.long 0

= Must initialize data

= Can use symbolic
names

—29—

—26—

Y86 Sample Program Structure #1

init:
call Main
halt
.align 4
array:
Main:
call len2
len2:

.pos 0x100
Stack:

Initialization

Program data

Main function

Length function

Placement of stack

m Program starts at
address 0
m Must set up stack
® Where located
® Pointer values
© Make sure don’t
overwrite code!

m Must initialize data

—28-

Y86 Program Structure #3

Main:
pushl %$ebp
rrmovl %esp, $ebp

irmovl array, $edx

pushl %$edx

call len2

rrmovl %ebp, $esp
popl %ebp

ret

Push array
Call len2(array)

Set up call to len2

= Follow IA32 procedure conventions
= Push array address as argument

—30-

Assembling Y86 Program

unix> yas len.ys |

m Generates “object code” file len.yo
® Actually looks like disassembler output

0x014: 04000000
0x018: c0000000
0x0lc: 000b0000
0x020: 00a00000
0x024: 00000000

.long 0x000d
.long 0x00cO
.long 0x0b00
.long 0xa000
.long 0

0x000: | .pos 0
0x000: 30£400010000 | init: irmovl Stack, %esp # Set up stack pointer
0x006: 30£500010000 | irmovl Stack, %ebp # Set up base pointer
0x00c: 8028000000 | call Main # Execute main program
0x011: 00 | halt # Terminate program

|

| # Array of 4 elements + terminating 0
0x014: | .align 4
0x014: | array:

|

|

|

|

|

31—
CISC Instruction Sets
= Complex Instruction Set Computer
= Dominant style through mid-80’s
Stack-oriented instruction set
= Use stack to pass arguments, save program counter
= Explicit push and pop instructions
Arithmetic instructions can access memory
m addl %eax, 12 (%ebx,%ecx,4)
® requires memory read and write
® Complex address calculation
Condition codes
= Set as side effect of arithmetic and logical instructions
Philosophy
= Add instructions to perform “typical” programming tasks
_33-
MIPS Registers
so [so]] Constanto 16 [ss0 | 7]
$1 [sat | | Reserved Temp. $17 [¢s1
52 $v0 Return Values 18 $s2 Callee Save
$3 svi || $19 | $s3 Temporaries:
$4 | sa0 $20 | $s4 Lﬂvaey Nr;tr)ltn k;en =
35 fal Procedure arguments y2L $s5 called procedures
$6 $a2 $22 $s6
$7 | sa3 | | 23 [ss7 | |
38 $t0 524 $t8 Caller Save Temp
$9 $tl $25 | $t9
$10 | st2 Caller Save $26 | sx0 7| Reserved for
Temporaries: Operating Sys
£aa $t3 May be overwritten by 2l LA .
$12 | $t4 called procedures $28 [sgp | _| Global Pointer
$13 | $t5 $29 | $sp Stack Pointer
s14 | ste $30 | ss8 | | Callee Save Temp
$15 | st7 $31 | sza | | Return Address
35—

Simulating Y86 Program

unix> yis len.yo |

= |nstruction set simulator
® Computes effect of each instruction on processor state
® Prints changes in state from original

Stopped in 50 steps at PC = 0x11. Status 'HLT', CC Z=1 $=0 0=0
Changes to registers:

%eax: 0x00000000 0x00000004
$ecx: 0x00000000 0x00000004
$edx: 0x00000000 0x00000028
%esp: 0x00000000 0x00000100
%ebp: 0x00000000 0x00000100

Changes to memory:

0x00ec: 0x00000000 0x000000£8
0x00£0: 0x00000000 0x00000039
0x00£4: 0x00000000 0x00000014
0x00£8: 0x00000000 0x00000100
0x00fc: 0x00000000 0x00000011

—32-

RISC Instruction Sets

= Reduced Instruction Set Computer
= Internal project at IBM, later popularized by Hennessy
(Stanford) and Patterson (Berkeley)
Fewer, simpler instructions
= Might take more to get given task done
m Can execute them with small and fast hardware
Register-oriented instruction set
= Many more (typically 32) registers
m Use for arguments, return pointer, temporaries
Only load and store instructions can access memory
= Similar to Y86 mrmovl and rmmovl
No Condition codes
m Test instructions return 0/1 in register

—34-

MIPS Instruction Examples

R-R

[op | mra [®mo [Rra [oo0000 [F |
addu $3,8$2,8$1 # Register add: $3 = $2+$1

R-l

| Op | Ra | Rb | Immediate |

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # shift left: $3 = $2 << 2
Branch
[op | Rra [mo] Offset |
beq $3,$2,dest # Branch when $3 = $2
Load/Store
[op | Rra | mo] Offset |
1w $3,16($2) # Load Word: $3 = M[$2+16]
sw $3,16($2) # Store Word: M[$2+16] = $3

—36—

CISC vs. RISC

Original Debate
= Strong opinions!
m CISC proponents---easy for compiler, fewer code bytes
m RISC proponents---better for optimizing compilers, can make
run fast with simple chip design
Current Status

m For desktop processors, choice of ISA not a technical issue
® With enough hardware, can make anything run fast
® Code compatibility more important
m For embedded processors, RISC makes sense
® Smaller, cheaper, less power
® Most cell phones use ARM processor

—37—

Summary

Y86 Instruction Set Architecture
= Similar state and instructions as IA32
= Simpler encodings
= Somewhere between CISC and RISC

How Important is ISA Design?
= Less now than before
® With enough hardware, can make almost anything go fast
= Intel has evolved from IA32 to x86-64
® Uses 64-bit words (including addresses)
® Adopted some features found in RISC
» More registers (16)
» Less reliance on stack

—38—

