
– 1 –

Instruction Set Architecture

CSci 2021: Machine Architecture and Organization
Lecture #16, February 25th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

– 2 –

Instruction Set Architecture

Assembly Language View

 Processor state

 Registers, memory, …

 Instructions

 addl, pushl, ret, …

 How instructions are encoded

as bytes

Layer of Abstraction

 Above: how to program machine

 Processor executes instructions

in a sequence

 Below: what needs to be built

 Use variety of tricks to make it

run fast

 E.g., execute multiple

instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

– 3 –

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

ZF SF OF

Y86 Processor State

 Program Registers

 Same 8 as with IA32. Each 32 bits

 Condition Codes

 Single-bit flags set by arithmetic or logical instructions

» ZF: Zero SF:Negative OF: Overflow

 Program Counter

 Indicates address of next instruction

 Program Status

 Indicates either normal operation or some error condition

 Memory

 Byte-addressable storage array

 Words stored in little-endian byte order

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

– 4 –

Y86 Instruction Set #1
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

– 5 –

Y86 Instructions

Format

 1–6 bytes of information read from memory

 Can determine instruction length from first byte

 Not as many instruction types, and simpler encoding than with

IA32

 Each accesses and modifies some part(s) of the program

state

– 6 –

Y86 Instruction Set #2
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

rrmovl 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6

– 7 –

Y86 Instruction Set #3
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0
addl 6 0

subl 6 1

andl 6 2

xorl 6 3

– 8 –

Y86 Instruction Set #4
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

– 9 –

Encoding Registers

Each register has 4-bit ID

 Same encoding as in IA32

Register ID 15 (0xF) indicates “no register”

 Will use this in our hardware design in multiple places

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

0

1

2

3

6

7

4

5

– 10 –

Instruction Example

Addition Instruction

 Add value in register rA to that in register rB

 Store result in register rB

 Note that Y86 only allows addition to be applied to register data

 Set condition codes based on result

 e.g., addl %eax,%esi Encoding: 60 06

 Two-byte encoding

 First indicates instruction type

 Second gives source and destination registers

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

– 11 –

Arithmetic and Logical Operations

 Refer to generically as
“OPl”

 Encodings differ only by

“function code”

 Low-order 4 bytes in first

instruction word

 Set condition codes as

side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xorl rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

– 12 –

Move Operations

 Like the IA32 movl instruction

 Simpler format for memory addresses

 Give different names to keep them distinct

rrmovl rA, rB 2 0 rA rB
Register --> Register

Immediate --> Register
irmovl V, rB 3 0 8 rB V

Register --> Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mrmovl D(rB), rA 5 0 rA rB D

– 13 –

Move Instruction Examples

irmovl $0xabcd, %edx movl $0xabcd, %edx 30 82 cd ab 00 00

IA32 Y86 Y86 Encoding

rrmovl %esp, %ebx movl %esp, %ebx 20 43

mrmovl -12(%ebp),%ecxmovl -12(%ebp),%ecx 50 15 f4 ff ff ff

rmmovl %esi,0x41c(%esp)movl %esi,0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax,%edx)

—movl (%ebp,%eax,4),%ecx

40 64 1c 04 00 00

– 14 –

Conditional Move Instructions

 Refer to generically as
“cmovXX”

 Encodings differ only by

“function code”

 Based on values of

condition codes

 Variants of rrmovl

instruction

 (Conditionally) copy value

from source to destination

register

rrmovl rA, rB

Move Unconditionally

cmovle rA, rB

Move When Less or Equal

cmovl rA, rB

Move When Less

cmove rA, rB

Move When Equal

cmovne rA, rB

Move When Not Equal

cmovge rA, rB

Move When Greater or Equal

cmovg rA, rB

Move When Greater

2 0 rA rB

2 1 rA rB

2 2 rA rB

2 3 rA rB

2 4 rA rB

2 5 rA rB

2 6 rA rB

– 15 –

Jump Instructions

 Refer to generically as
“jXX”

 Encodings differ only by

“function code”

 Based on values of

condition codes

 Same as IA32 counterparts

 Encode full destination

address

 Unlike PC-relative

addressing seen in IA32

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

– 16 –

Y86 Program Stack

 Region of memory holding

program data

 Used in Y86 (and IA32) for

supporting procedure calls

 Stack top indicated by %esp

 Address of top stack element

 Stack grows toward lower

addresses

 Top element is at highest

address in the stack

 When pushing, must first

decrement stack pointer

 After popping, increment stack

pointer
%esp

•

•

•

Increasing

Addresses

Stack “Top”

Stack
“Bottom”

– 17 –

Stack Operations

 Decrement %esp by 4

 Store word from rA to memory at %esp

 Like IA32

 Read word from memory at %esp

 Save in rA

 Increment %esp by 4

 Like IA32

pushl rA A 0 rA F

popl rA B 0 rA F

– 18 –

Subroutine Call and Return

 Push address of next instruction onto stack

 Start executing instructions at Dest

 Like IA32

 Pop value from stack

 Use as address for next instruction

 Like IA32

call Dest 8 0 Dest

ret 9 0

– 19 –

Miscellaneous Instructions

 Don’t do anything

 Stop executing instructions

 IA32 has comparable instruction, but can’t execute it in

user mode

 We will use it to stop the simulator

 Encoding ensures that program hitting memory

initialized to zero will halt

nop 1 0

halt 0 0

– 20 –

Status Conditions

 Normal operation

 Halt instruction encountered

 Bad address (either instruction or data)

encountered

 Invalid instruction encountered

Desired Behavior

 If AOK, keep going

 Otherwise, stop program execution

Mnemonic Code

ADR 3

Mnemonic Code

INS 4

Mnemonic Code

HLT 2

Mnemonic Code

AOK 1

– 21 –

Administrative Break

• Assignment II: due beginning of Friday’s lecture

• Late submission period shortened to end Sunday at noon

• Full solutions also posted Sunday at noon

• Friday lecture: quiz 1 review session

• Quiz 1: in class Monday

• Open book, any paper notes or printouts allowed

• No electronics, calculators, phones, etc.

• Buffer lab: starts Friday

– 22 –

Writing Y86 Code

Try to Use C Compiler as Much as Possible

 Write code in C

 Compile for IA32 with gcc –O1 –S

 Older versions of GCC do better (less optimization)

 Use module avail to find what versions are available

 Transliterate into Y86

Coding Example

 Find number of elements in null-terminated list

int len1(int a[]);

5043

6125

7395

0

a

 3

– 23 –

Y86 Code Generation Example

First Try

 Write typical array code

 Compile with gcc34 –O1 -S

Problem

 Hard to do array indexing on

Y86

 Since don’t have scaled

addressing modes/* Find number of elements in

null-terminated list */

int len1(int a[])

{

int len;

for (len = 0; a[len]; len++)

;

return len;

}

L5:

incl %eax

cmpl $0, (%edx,%eax,4)

jne L5

– 24 –

Y86 Code Generation Example #2

Second Try

 Write with pointer code

 Compile with gcc34 –O1 -S

Result

 Don’t need to do indexed

addressing

/* Find number of elements in

null-terminated list */

int len2(int a[])

{

int len = 0;

while (*a++)

len++;

return len;

}

.L11:

incl %ecx

movl (%edx), %eax

addl $4, %edx

testl %eax, %eax

jne .L11

– 25 –

Y86 Code Generation Example #3

IA32 Code

 Setup

Y86 Code

 Setup

len2:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %edx

movl $0, %ecx

movl (%edx), %eax

addl $4, %edx

testl %eax, %eax

je .L13

len2:

pushl %ebp # Save %ebp

rrmovl %esp, %ebp # New FP

pushl %esi # Save

irmovl $4, %esi # Constant 4

pushl %edi # Save

irmovl $1, %edi # Constant 1

mrmovl 8(%ebp), %edx # Get a

irmovl $0, %ecx # len = 0

mrmovl (%edx), %eax # Get *a

addl %esi, %edx # a++

andl %eax, %eax # Test *a

je Done # If zero, goto Done

 Need constants 1 & 4

 Store in callee-save registers

 Use andl to test register

– 26 –

Y86 Code Generation Example #4

IA32 Code

 Loop

Y86 Code

 Loop

.L11:

incl %ecx

movl (%edx), %eax

addl $4, %edx

testl %eax, %eax

jne .L11

Loop:

addl %edi, %ecx # len++

mrmovl (%edx), %eax # Get *a

addl %esi, %edx # a++

andl %eax, %eax # Test *a

jne Loop # If !0, goto Loop

– 27 –

Y86 Code Generation Example #5

IA32 Code

 Finish

Y86 Code

 Finish

.L13:

movl %ecx, %eax

leave

ret

Done:

rrmovl %ecx, %eax # return len

popl %edi # Restore %edi

popl %esi # Restore %esi

rrmovl %ebp, %esp # Restore SP

popl %ebp # Restore FP

ret

– 28 –

Y86 Sample Program Structure #1

 Program starts at

address 0

 Must set up stack

 Where located

 Pointer values

 Make sure don’t

overwrite code!

 Must initialize data

init: # Initialization

. . .

call Main

halt

.align 4 # Program data

array:

. . .

Main: # Main function

. . .

call len2

. . .

len2: # Length function

. . .

.pos 0x100 # Placement of stack

Stack:

– 29 –

Y86 Program Structure #2

 Program starts at

address 0

 Must set up stack

 Must initialize data

 Can use symbolic

names

init:

irmovl Stack, %esp # Set up SP

irmovl Stack, %ebp # Set up FP

call Main # Execute main

halt # Terminate

Array of 4 elements + terminating 0

.align 4

array:

.long 0x000d

.long 0x00c0

.long 0x0b00

.long 0xa000

.long 0

– 30 –

Y86 Program Structure #3

Set up call to len2

 Follow IA32 procedure conventions

 Push array address as argument

Main:

pushl %ebp

rrmovl %esp,%ebp

irmovl array,%edx

pushl %edx # Push array

call len2 # Call len2(array)

rrmovl %ebp,%esp

popl %ebp

ret

– 31 –

Assembling Y86 Program

 Generates “object code” file len.yo

 Actually looks like disassembler output

unix> yas len.ys

0x000: | .pos 0

0x000: 30f400010000 | init: irmovl Stack, %esp # Set up stack pointer

0x006: 30f500010000 | irmovl Stack, %ebp # Set up base pointer

0x00c: 8028000000 | call Main # Execute main program

0x011: 00 | halt # Terminate program

|

| # Array of 4 elements + terminating 0

0x014: | .align 4

0x014: | array:

0x014: 0d000000 | .long 0x000d

0x018: c0000000 | .long 0x00c0

0x01c: 000b0000 | .long 0x0b00

0x020: 00a00000 | .long 0xa000

0x024: 00000000 | .long 0

– 32 –

Simulating Y86 Program

 Instruction set simulator

 Computes effect of each instruction on processor state

 Prints changes in state from original

unix> yis len.yo

Stopped in 50 steps at PC = 0x11. Status 'HLT', CC Z=1 S=0 O=0

Changes to registers:

%eax: 0x00000000 0x00000004

%ecx: 0x00000000 0x00000004

%edx: 0x00000000 0x00000028

%esp: 0x00000000 0x00000100

%ebp: 0x00000000 0x00000100

Changes to memory:

0x00ec: 0x00000000 0x000000f8

0x00f0: 0x00000000 0x00000039

0x00f4: 0x00000000 0x00000014

0x00f8: 0x00000000 0x00000100

0x00fc: 0x00000000 0x00000011

– 33 –

CISC Instruction Sets
 Complex Instruction Set Computer

 Dominant style through mid-80’s

Stack-oriented instruction set

 Use stack to pass arguments, save program counter

 Explicit push and pop instructions

Arithmetic instructions can access memory

 addl %eax, 12(%ebx,%ecx,4)

 requires memory read and write

 Complex address calculation

Condition codes

 Set as side effect of arithmetic and logical instructions

Philosophy

 Add instructions to perform “typical” programming tasks

– 34 –

RISC Instruction Sets
 Reduced Instruction Set Computer

 Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)

Fewer, simpler instructions

 Might take more to get given task done

 Can execute them with small and fast hardware

Register-oriented instruction set

 Many more (typically 32) registers

 Use for arguments, return pointer, temporaries

Only load and store instructions can access memory

 Similar to Y86 mrmovl and rmmovl

No Condition codes

 Test instructions return 0/1 in register

– 35 –

MIPS Registers

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

$11

$12

$13

$14

$15

$0

$at

$v0

$v1

$a0

$a1

$a2

$a3

$t0

$t1

$t2

$t3

$t4

$t5

$t6

$t7

Constant 0

Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16

$17

$18

$19

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$30

$31

$s0

$s1

$s2

$s3

$s4

$s5

$s6

$s7

$t8

$t9

$k0

$k1

$gp

$sp

$s8

$ra

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer

Callee Save Temp

Return Address

– 36 –

MIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000

R-R

Op Ra Rb Immediate

R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset

Branch

beq $3,$2,dest # Branch when $3 = $2

– 37 –

CISC vs. RISC

Original Debate

 Strong opinions!

 CISC proponents---easy for compiler, fewer code bytes

 RISC proponents---better for optimizing compilers, can make

run fast with simple chip design

Current Status

 For desktop processors, choice of ISA not a technical issue

 With enough hardware, can make anything run fast

 Code compatibility more important

 For embedded processors, RISC makes sense

 Smaller, cheaper, less power

 Most cell phones use ARM processor

– 38 –

Summary

Y86 Instruction Set Architecture

 Similar state and instructions as IA32

 Simpler encodings

 Somewhere between CISC and RISC

How Important is ISA Design?

 Less now than before

 With enough hardware, can make almost anything go fast

 Intel has evolved from IA32 to x86-64

 Uses 64-bit words (including addresses)

 Adopted some features found in RISC

» More registers (16)

» Less reliance on stack

