
1

1

Exceptional Control Flow

CSci 2021: Machine Architecture and Organization
Lecture #15, February 23rd, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:

 From startup to shutdown, a CPU simply reads and executes 
(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

3

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:

 Jumps and branches

 Call and return

Both react to changes in program state

 Insufficient  for a useful system: 
Difficult to react to changes in system state 
 data arrives from a disk or a network adapter

 instruction divides by zero

 user hits Ctrl-C at the keyboard

 System timer expires

 System needs mechanisms for “exceptional control flow”

4

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
 Exceptions 

 change in control flow in response to a system event 
(i.e.,  change in system state)

 Combination of hardware and OS software

 Higher level mechanisms
 Process context switch

 Signals

 Nonlocal jumps: setjmp()/longjmp()

 Implemented by either:

 OS software (context switch and signals)

 C language runtime library (nonlocal jumps)

5

Today

 Non-local Jumps

 Hardware Exceptions

6

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for 
transferring control to an arbitrary location
 Controlled to way to break the procedure call / return discipline

 Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

 Must be called before longjmp

 Identifies a return site for a subsequent longjmp

 Called once, returns one or more times

 Implementation:
 Remember where you are by storing  the current register context, 

stack pointer,  and PC value in jmp_buf

 Return 0



2

7

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

 Meaning:

 return from the setjmp remembered by jump buffer j again ... 

 … this time returning i instead of 0

 Called after setjmp

 Called once, but never returns

 longjmp Implementation:

 Restore register context (stack pointer, base pointer, PC value) from 
jump buffer j

 Set %eax (the return value) to i

 Jump to the location indicated by the PC stored in jump buf j

8

setjmp/longjmp Example

#include <setjmp.h>

jmp_buf buf;

main() {

if (setjmp(buf) != 0) {

printf("back in main due to an error\n");

else

printf("first time through\n");

p1(); /* p1 calls p2, which calls p3 */

} 

...

p3() {

<error checking code>

if (error)

longjmp(buf, 1)

}   

9

Limitations of Nonlocal Jumps
 Works within stack discipline

 Can only long jump to environment of function that has been called 
but not yet completed

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{  . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp

10

Limitations of Long Jumps (cont.)
 Works within stack discipline

 Can only long jump to environment of function that has been called 
but not yet completed

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

11

Today

 Non-local Jumps

 Hardware Exceptions

12

Exceptions

 An exception is a transfer of control to the OS in response to 
some event (i.e., change in processor state)

 Examples: 
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

User Process OS

exception
exception processing
by exception handler

• return to I_current
• return to I_next
•abort

event I_current
I_next



3

13

0
1

2
...

n-1

Interrupt Vectors

 Each type of event has a 
unique exception number k

 k = index into exception table 
(a.k.a. interrupt vector)

 Handler k is called each time 
exception k occurs

Exception
Table

code for  
exception handler 0

code for 
exception handler 1

code for
exception handler 2

code for 
exception handler n-1

...

Exception 
numbers

14

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor

 Indicated by setting the processor’s interrupt pin

 Handler returns to “next” instruction

 Examples:

 I/O interrupts

 hitting Ctrl-C at the keyboard

 arrival of a packet from a network

 arrival of data from a disk

 Hard reset interrupt

 hitting the reset button

 Soft reset interrupt

 hitting Ctrl-Alt-Delete on a PC

15

Synchronous Exceptions
 Caused by events that occur as a result of executing an 

instruction:
 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable 

 Examples: page faults (recoverable), protection faults 
(unrecoverable), floating point exceptions

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 unintentional and unrecoverable

 Examples: parity error, machine check

 Aborts current program
16

Trap Example: Opening File
 User calls: open(filename, options)

 Function open executes system call instruction int

 OS must find or create file, get it ready for reading or writing

 Returns integer file descriptor

0804d070 <__libc_open>:

. . .

804d082: cd 80                int $0x80

804d084: 5b                   pop    %ebx

. . .

User Process OS

exception

open file

returns

int
pop

17

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory 
is currently on disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl   $0xd,0x8049d10

User Process OS

exception: page fault

Create page and 
load into memoryreturns

movl

18

Fault Example: Invalid Memory Reference

 Page handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl   $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process



4

19

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap

128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check Table 6-1:
http://download.intel.com/design/processor/manuals/253665.pdf

20

Putting It All Together: A Program 
That Restarts Itself When ctrl-c’d
#include <stdio.h> 

#include <signal.h> 

#include <setjmp.h> 

sigjmp_buf buf; 

void handler(int sig) { 

siglongjmp(buf, 1); 

} 

main() { 

signal(SIGINT, handler); 

if (!sigsetjmp(buf, 1))  

printf("starting\n"); 

else  

printf("restarting\n"); 

while(1) {

sleep(1);

printf("processing...\n");

}

} restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

21

Summary

 Nonlocal jumps provide exceptional control flow within 
process
 Within constraints of stack discipline 

 Exceptions

 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and faults)

http://download.intel.com/design/processor/manuals/253665.pdf

