Floating Point

CSci 2021: Machine Architecture and Organization Lectures #5-6, January 30th-February 2nd, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

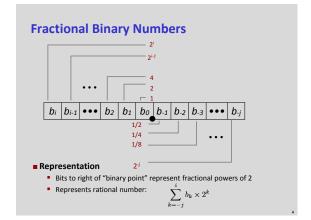
Randy Bryant, Dave O'Hallaron, Antonia Zhai

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?



Fractional Binary Numbers: Examples

■ Value	Representation	
5 3/4	101.112	
2 7/8	10.1112	
1 7/16	1.01112	

- Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0ϵ

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

■ Value Representation

- 1/3 0.0101010101[01]...₂
- **1/5** 0.001100110011[0011]...2
- 1/10 0.0001100110011[0011]...₂

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation Numerical Form: (-1)^s M 2^E Sign bit s determines whether number is negative or positive Significand M normally a fractional value in range [1.0,2.0). Exponent E weights value by power of two Encoding MSB s is sign bit s exp field encodes E (but is not equal to E) frac field encodes M (but is not equal to M)

Normalized (Normal) Values

frac

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - Exp: unsigned value exp

s exp

- $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (*M* = 2.0 ε)
 - Get extra leading bit for "free"

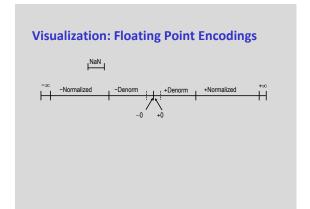
Normalized Encoding Example ■ Value: Float F = 15213.0; • 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³ Significand M = 1.11011011011012 1101101101101 frac= Exponent Bias = 127 140 = 10001100, Exp = Result: 0 10001100 11011011011010000000000

Denormalized Values

- Condition: exp = 000...0
- Exponent value: **E** = -**Bias** + 1 (instead of **E** = 0 **Bias**)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
- exp = 000...0, frac = 000...0
 - Represents zero value
- Note distinct values: +0 and -0 (why?)
- exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

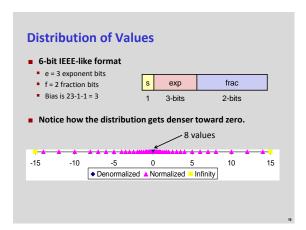
- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(−1), ∞ − ∞, ∞ × 0

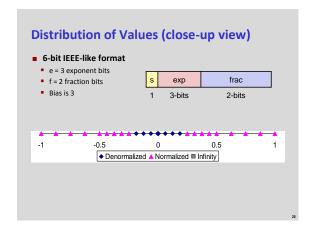


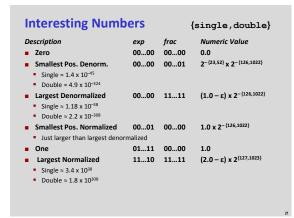
Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties Rounding, addition, multiplication Floating point in C Summary

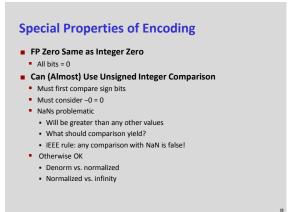
Tiny Floating Point Example | S | exp | frac | | 1 | 4-bits | 3-bits | | 8-bit Floating Point Representation | the sign bit is in the most significant bit | | the next four bits are the exponent, with a bias of 7 | | the last three bits are the frac | | Same general form as IEEE Format | | normalized, denormalized | | representation of 0, NaN, infinity

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers					
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

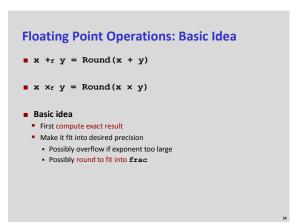








Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties Rounding, normalization, addition, multiplication Floating point in C Summary



Rounding

■ Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
 Towards zero 	\$1	\$1	\$1	\$2	-\$1
 Round down (-∞) 	\$1	\$1	\$1	\$2	- \$2
 Round up (+∞) 	\$2	\$2	\$2	\$3	-\$1
 Nearest Even (default) 	\$1	\$2	\$2	\$2	- \$2

- What are the different modes good for?
 - Towards zero: compatible with C integer behavior
 - Round down/up: maintain conservative intervals
 - Nearest even: unbiased, minimal error

Closer Look at Round-To-Even

- Default Rounding Mode
 - All you get in C without doing something special
 - All others are statistically biased
 - · Sum of set of positive numbers will consistently be over- or under-
- Applying to Other Decimal Places / Bit Positions
- When exactly halfway between two possible values
 - · Round so that least significant remaining digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2
- Examples
- Round to nearest 1/4 (2 bits right of binary point)

Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Exercise break: FP and money?

- Your sandwich shop uses single-precision floating point for sales amounts
- Need to apply a Minneapolis sales tax of 7.75%, rounded up to the nearest cent
- On \$4.00 purchase, compute:
 - round_up(4.00 * 0.0775 * 100) = 32 cents
 - Correct tax is 31 cents
- What went wrong?
 - Note: 0.0775 = 31/400 exactly

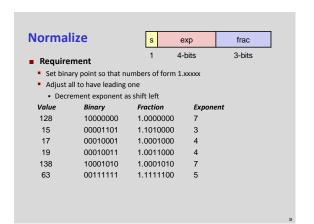
FP and money: what went wrong?

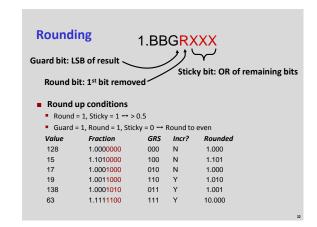
- 0.0775 = 31/400 cannot be represented exactly in binary
- 400 is not a power of 2
- Actual representation with be like 0.0775 ± ε
 - For single-precision, closest is 0.0775 + ϵ
- $4.00*(0.775+\epsilon)*100=31+\epsilon$
- round_up(31 + ∈) = 32
- Similar problems can happen with double precision or other rounding modes
 - Real Minnesota law is a more complex rule
- Better choices:
 - Store cents or smaller fractions as an integer, or
 - Special libraries for decimal arithmetic

Normalization Example: int to float Steps

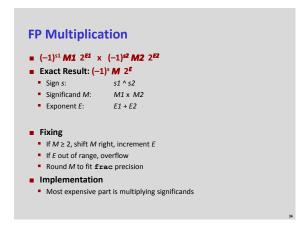
- Normalize to have leading 1
- frac exp 4-bits 3-bits
- Round to fit within fraction Postnormalize to deal with effects of rounding
- Case Study
 - Convert 8-bit unsigned numbers to tiny floating point format **Example Numbers**

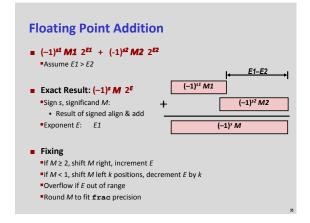
128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

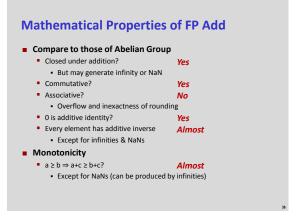




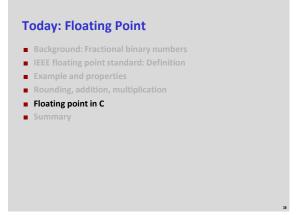
Postnormalize Issue Rounding may have caused overflow Handle by shifting right once & incrementing exponent Value Rounded Exp Adjusted Result 128 1.000 7 128 15 1.101 3 15 17 1.000 4 16 19 1.010 4 20 138 1.001 134 10.000 1.000/6 5 64 63



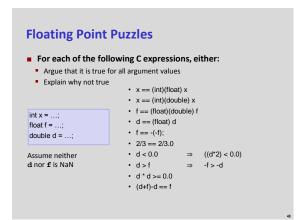




Mathematical Properties of FP Mult ■ Compare to Commutative Ring Closed under multiplication? Yes But may generate infinity or NaN Multiplication Commutative? Yes • Multiplication is Associative? • Possibility of overflow, inexactness of rounding 1 is multiplicative identity? • Multiplication distributes over addition? Possibility of overflow, inexactness of rounding Monotonicity • $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$? Almost · Except for infinities & NaNs



Floating Point in C ■ C Has Two Basic Sizes ■float single precision ■double double precision (less common: long double) ■ Conversions/Casting ■Casting between int, float, and double changes bit representation ■ double/float → int ■ Truncates fractional part ■ Like rounding toward zero ■ Not defined when out of range or NaN: x86 sets to TMin ■ int → double ■ Exact conversion, as long as int has ≤ 53 bit word size ■ int → float ■ Will round according to rounding mode



Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties Rounding, addition, multiplication Floating point in C Summary

Summary IEEE Floating Point has clear mathematical properties Represents numbers of form M x 2^E One can reason about operations independent of implementation As if computed with perfect precision and then rounded Not the same as real arithmetic Violates associativity/distributivity Makes life difficult for compilers & serious numerical applications programmers