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Bits, Bytes, and Integers

CSci 2021: Machine Architecture and Organization
Lectures #2-4, January 23rd-28th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai
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Binary Representations

0.0V

0.5V

2.8V

3.3V

0 1 0
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Encoding Byte Values

 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Byte-Oriented Memory Organization

 Programs Refer to Virtual Addresses

 Conceptually very large array of bytes

 Actually implemented with hierarchy of different memory types

 System provides address space private to particular “process”

 Program being executed

 Program can clobber its own data, but not that of others

 Compiler + Run-Time System Control Allocation
 Where different program objects should be stored

 All allocation within single virtual address space

• • •
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Machine Words

 Machine Has “Word Size”

 Nominal size of integer-valued data

 Including addresses

 Most current machines use 32 bits (4 bytes) words

 Limits addresses to 4GB

 Becoming too small for memory-intensive applications

 High-end systems use 64 bits (8 bytes) words

 Potential address space ≈ 1.8 X 1019 bytes

 x86-64 machines support 48-bit addresses: 256 Terabytes

 Machines support multiple data formats

 Fractions or multiples of word size

 Always integral number of bytes
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Word-Oriented Memory Organization

 Addresses Specify Byte 
Locations
 Address of first byte in word

 Addresses of successive words differ 
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

0000

0004

0008

0012

0000

0008



2

7

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer 4 4 8
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Byte Ordering

 How should bytes within a multi-byte word be ordered in 
memory?

 Conventions

 Big Endian: Sun, PPC Mac, Internet convention

 Least significant byte has highest address

 Little Endian: x86, VAX

 Least significant byte has lowest address
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Byte Ordering Example

 Big Endian

 Least significant byte has highest address

 Little Endian

 Least significant byte has lowest address

 Example

 Variable x has 4-byte representation 0x01234567

 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Address Instruction Code Assembly Rendition

8048365: 5b                   pop    %ebx

8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly

 Text representation of binary machine code

 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00
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Examining Data Representations

 Code to Print Byte Representation of Data

 Casting pointer to unsigned char * creates byte array

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

void show_bytes(unsigned char *start, int len){

int i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}
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show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((unsigned char *) &a, sizeof(int));

Result (Linux):

int a = 15213;

0xbffffcb8 0x6d

0xbffffcb9 0x3b

0xbffffcba 0x00

0xbffffcbb 0x00
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Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

(Covered later)

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32
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Representing Pointers

Different compilers & machines assign different locations to objects

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

D4

F8

FF

BF

0C

89

EC

FF

FF

7F

00

00
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char S[6] = "18243";

Representing Strings

 Strings in C

 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

– Digit i has code 0x30+i

 String should be null-terminated

 Final character = 0

 Compatibility
 Byte ordering not an issue

Linux/Alpha Sun

31

38

32

34

33

00

31

38

32

34

33

00
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Aside: ASCII table

0 1 2 3 4 5 6 7 8 9 a b c d e f

0x0_ \0 ^A ^B ^C ^D ^E ^F ^G ^H \t \n ^K ^L ^M ^N ^O

0x1_ ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ESC FS GS RS US

0x2_ SPC ! " # $ % & ' ( ) * + , - . /

0x3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4_ @ A B C D E F G H I J K L M N O

0x5_ P Q R S T U V W X Y Z [ \ ] ^ _

0x6_ ` a b c d e f g h I j k l m n o

0x7_ p q r s t u v w x y z { | } ~ DEL
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Today: Bits, Bytes, and Integers

 Representing information as bits

 (Logistics interlude)

 Bit-level manipulations

 Integers

 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary
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Homework turn-in process

 For full credit: turn in at the beginning of class on the due 
date
 On-time = 3:35pm, or when I start lecturing, whichever is later

 Yes, this means you have to come to class on time (that day)

 We strongly recommend typing your assignments on a 
computer, not hand-writing

 Late submissions only will be online using the Moodle

 Do not turn in paper assignments at other times
 This helps us stay organized
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2021-dedicated VMs now available

 SSH into: xA-B.cselabs.umn.edu

 Where A is 21, 22, or 23

 And B is 01, 02, 03, 04, or 05

 E.g., x22-02.cselabs.umn.edu

 32-bit version of Ubuntu Linux version 14.04

 Do not run graphical programs (Firefox, etc.) on these 
machines (it would be slow anyway)

 If you prefer to use other CSE Labs Linux machines, give 
the -m32 option to GCC to get 32-bit binaries
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Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And (math: ∧)

 A&B = 1 when both A=1 and B=1

Or (math: ∨)

 A|B = 1 when either A=1 or B=1

Not (math: ¬)

 ~A = 1 when A=0

Exclusive-Or “xor” (math: ⊕)

 A^B = 1 when either A=1 or B=1, but not both
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Application of Boolean Algebra

 Applied to Digital Systems by Claude Shannon

 1937 MIT Master’s Thesis

 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

A&~B | ~A&B

A&~B

~A&B = A^B
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General Boolean Algebras

 Operate on Bit Vectors

 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01101001

| 01010101

01101001

^ 01010101 ~ 01010101

01000001 01111101 00111100 10101010
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Representing & Manipulating Sets

 Representation

 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 &    Intersection 01000001 { 0, 6 }

 |     Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }
24

Bit-Level Operations in C

 Operations &,  |,  ~,  ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012
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Contrast: Logic Operations in C

 Contrast to Logical Operators

 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination (AKA “short-circuit evaluation”)

 Examples (char data type)
 !0x41 →  0x00

 !0x00 →  0x01

 !!0x41 →  0x01

 0x69 && 0x55 →  0x01

 0x69 || 0x55 →  0x01

 p && *p (avoids null pointer access)

26

Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift

 Fill with 0’s on left

 Arithmetic shift

 Replicate most significant bit on right

 Undefined Behavior

 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Exercise break: flip case

 Fill in the blanks, using bitwise operators

/* Convert lowercase to uppercase and vice-versa,

return any other characters unchanged */

char flip_case(char c){

if (c >= 'A' && c <= 'Z') {

/* 0x41 through 0x5A */

return _______________;

} else if (c >= 'a' && c <= 'z') {

/* 0x61 through 0x7A */

return _______________;

} else {

return c;

}

}

c | 0x20

c & ~0x20
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary
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Encoding Integers

short int x =  15213;

short int y = -15213;

 C short 2 bytes long

 Sign Bit

 For 2’s complement, most significant bit indicates sign

 0 for nonnegative

 1 for negative

B2T (X )  xw1 2
w1

 xi 2
i

i0

w2

B2U(X )  xi 2
i

i0

w1



Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

y -15213 C4 93 11000100 10010011 
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Encoding Example (Cont.)
x =      15213: 00111011 01101101

y =     -15213: 11000100 10010011

Weight 15213 -15213 

1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
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Numeric Ranges
 Unsigned Values

 UMin = 0

000…0

 UMax = 2w – 1

111…1

 Two’s Complement Values

 TMin = –2w–1

100…0

 TMax = 2w–1 – 1

011…1

 Other Values

 Minus 1

111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 

TMax 32767 7F FF 01111111 11111111 

TMin -32768 80 00 10000000 00000000 

-1 -1 FF FF 11111111 11111111 

0 0 00 00 00000000 00000000 
 

Values for W = 16

32

Values for Different Word Sizes

 Observations

 |TMin | = TMax + 1

 Asymmetric range

 UMax = 2 * TMax + 1 

 W 

 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 
 
 

 C Programming

 #include <limits.h>

 Declares constants, e.g.,

 ULONG_MAX

 LONG_MAX

 LONG_MIN

 Values platform specific
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Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative 
values

 Uniqueness
 Every bit pattern represents 

unique integer value

 Each representable integer has 
unique bit encoding

  Can Invert Mappings
 U2B(x)  =  B2U-1(x)

 Bit pattern for unsigned 
integer

 T2B(x)  =  B2T-1(x)

 Bit pattern for two’s comp 
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary
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Announcement interlude: Lab 1 out

 Lab 0 (Hello, world) is due tonight

 Lab 1 on data representation is out

 Basic idea: puzzles implementing operations with other 
operations
 E.g., implement logical right shift using only arithmetic right shift

 Most problems relate to bitwise operations and two’s 
complement rules
 I.e., you can start working on them now

 Increasing difficulty, try the easier ones first

 Two questions relating to floating point

36

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

ux 
x x  0

x  2
w

x  0





Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized

 2’s Comp.  Unsigned
 Ordering Inversion

 Negative  Big Positive
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Signed vs. Unsigned in C

 Constants

 By default are considered to be signed integers

 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;

42

== unsigned

< signed

> unsigned

> signed

< unsigned

> signed

> unsigned

< unsigned

> signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=

 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1 

2147483647U -2147483647-1 

-1 -2 

(unsigned)-1 -2 

2147483647 2147483648U 

2147483647 (int) 2147483648U 
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Code Security Example

 Similar to code found in FreeBSD’s implementation of 
getpeername

 There are legions of smart people trying to find 
vulnerabilities in programs

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}
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Typical Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

45

Malicious Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Declaration of library function memcpy */

void *memcpy(void *dest, void *src, size_t n);

46

Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

47

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary
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Sign Extension

 Task:

 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:

 X  =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk
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Sign Extension Example

 Converting from smaller to larger integer data type

 C automatically performs sign extension

short int x =  15213;

int ix = (int) x; 

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

50

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)

 Unsigned: zeros added (“zero extension”)

 Signed: sign extension

 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated

 Result reinterpreted

 Unsigned: mod operation

 Signed: similar to mod

 For small numbers yields expected behaviour
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary
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Negation: Complement & Increment

 Claim: Following Holds for 2’s Complement
~x + 1 == -x

 Complement
 Observation: ~x + x == 1111…111 == -1

 Where would we fill in gaps for a more complete proof?

 Note: operation can apply to unsigned as well

 Two values for which x and -x have the same sign

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1
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Complement & Increment Examples

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

~x -15214 C4 92 11000100 10010010 

~x+1 -15213 C4 93 11000100 10010011 

y -15213 C4 93 11000100 10010011 
 

x = 15213

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 

~0 -1 FF FF 11111111 11111111 

~0+1 0 00 00 00000000 00000000 
 

x = 0

54

Unsigned Addition

 Standard Addition Function

 Ignores carry output

 Implements Modular Arithmetic

s = UAddw(u , v) = u + v mod 2w

UAddw(u,v) 
u  v u  v  2w

u  v  2w u  v  2w




• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)
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Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition

 4-bit integers u, v

 Compute true sum 
Add4(u , v)

 Values increase linearly 
with u and v

 Forms planar surface

Add4(u , v)

u

v
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Visualizing Unsigned Addition

 Wraps Around

 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

57

Mathematical Properties

 Modular Addition Forms an Abelian Group

 Closed under addition

0  UAddw(u , v)  2w –1

 Commutative

UAddw(u , v) = UAddw(v , u)

 Associative

UAddw(t, UAddw(u , v)) = UAddw(UAddw(t, u ), v)

 0 is additive identity

UAddw(u , 0) = u

 Every element has additive inverse

 Let UCompw (u ) = 2w – u
UAddw(u , UCompw (u )) = 0

58

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior

 Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

 Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

59

TAdd Overflow

 Functionality

 True sum requires w+1
bits

 Drop off MSB

 Treat remaining bits as 
2’s comp. integer

–2w –1–1

–2w

0

2w –1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

60
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-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0
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Visualizing 2’s Complement Addition

 Values

 4-bit two’s comp.

 Range from -8 to +7

 Wraps Around

 If sum  2w–1

 Becomes negative

 At most once

 If sum < –2w–1

 Becomes positive

 At most once

TAdd4(u , v)

u

v

PosOver

NegOver
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Characterizing TAdd

 Functionality

 True sum requires w+1 bits

 Drop off MSB

 Treat remaining bits as 2’s 
comp. integer

TAddw (u,v) 

u  v  2
w1

u  v  TMin w

u  v TMin w  u  v  TMax w

u  v  2
w1

TMax w  u  v









(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w

62

Mathematical Properties of TAdd

 Isomorphic Group to unsigneds with UAdd

 TAddw(u , v) =  U2T(UAddw(T2U(u ), T2U(v)))

 Since both have identical bit patterns

 Two’s Complement Under TAdd Forms a Group

 Closed, Commutative, Associative, 0 is additive identity

 Every element has additive inverse

TComp w(u) 
u u  TMinw

TMinw u  TMinw





63

Exercise break: ten’s complement
 Before digital computers, there were mechanical 

computers that used base 10

 There’s an analog of two’s complement called ten’s 
complement that works in decimal

 Suppose we have an adding machine with 10 decimal 
digits, 104 instead of 232. 

 What should be the ten’s complement representation of  
-21?

 I.e., we want a number x so that adding x is the same as 
subtracting 21, when you only have 4 digits

64

Ten’s complement answer

 We want x ≡ -21 mod 10000, or x + 21 + 10000k = 0 for 
integer k

 x = 10000 - 21 = 9979

 (The equivalent of ~ is called nines’ complement: 

~21 = 9978) 

65

Signed/Unsigned Overflow Differences

 Unsigned:

 Overflow if carry out of last 
position

 Also just called “carry” (C)

 Signed:

 Result wrong if input signs are 
the same but output sign is 
different

 In CPUs, unqualified 
“overflow” usually means 
signed (O or V)

u

v

UAdd(u , v)

u

v

< 0> 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

Carry Out

u

v

< 0> 0

< 0

> 0

TAdd(u , v)

Sign Bit Set

66

Multiplication

 Computing Exact Product of w-bit numbers x, y

 Either signed or unsigned

 Ranges

 Unsigned: 0 ≤ x * y ≤ (2w – 1) 2 =  22w – 2w+1 + 1

 Up to 2w bits

 Two’s complement min: x * y ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1

 Up to 2w–1 bits

 Two’s complement max: x * y ≤ (–2w–1) 2 =  22w–2

 Up to 2w bits, but only for (TMinw)2

 Maintaining Exact Results

 Would need to keep expanding word size with each product computed

 Done in software by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order w bits

 Implements Modular Arithmetic

UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

68

Code Security Example #2

 SUN XDR library

 Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

ele_src

malloc(ele_cnt * ele_size)

69

XDR Code

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {

/*

* Allocate buffer for ele_cnt objects, each of ele_size bytes

* and copy from locations designated by ele_src

*/

void *result = malloc(ele_cnt * ele_size);

if (result == NULL)

/* malloc failed */

return NULL;

void *next = result;

int i;

for (i = 0; i < ele_cnt; i++) {

/* Copy object i to destination */

memcpy(next, ele_src[i], ele_size);

/* Move pointer to next memory region */

next += ele_size;

}

return result;

}

70

XDR Vulnerability

 What if:
 ele_cnt = 220 + 1

 ele_size = 4096 = 212

 Allocation = ??

 How can I make this function secure?

malloc(ele_cnt * ele_size)

71

Signed Multiplication in C

 Standard Multiplication Function

 Ignores high order w bits

 Some of which are different for signed 
vs. unsigned multiplication

 Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

72

Power-of-2 Multiply with Shift

 Operation
 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8

 u << 5 - u << 3 == u * 24

 Most machines shift and add faster than multiply

 Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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leal (%eax,%eax,2), %eax

sall $2, %eax

Compiled Multiplication Code

 C compiler automatically generates shift/add code when 
multiplying by constant

int mul12(int x)

{

return x*12;

}

t <- x+x*2

return t << 2;

C Function

Compiled Arithmetic Operations Explanation

74

Background: Rounding in Math

 How to round to the nearest integer?

 Cannot have both:
 round(x + k) = round(x) + k (k integer), “translation invariance”

 round(-x) = -round(x) “negation invariance”

  x , read “floor”: always round down (to -∞):

  2.0  = 2,  1.7 = 1,  -2.2  = -3

  x , read “ceiling”: always round up (to +∞):

  2.0 = 2,  1.7 = 2,  -2.2 = -2

 C integer operators mostly use round to zero, which is like 
floor for positive and ceiling for negative

75

Divison in C

 Integer division /: rounds towards 0

 Choice (settled in C99) is historical, via FORTRAN and most CPUs

 Division by zero: undefined, usually fatal

 Unsigned division: no overflow possible

 Signed division: overflow almost impossible
 Exception: TMin/-1 is un-representable, and so undefined

 On x86 this too is a default-fatal exception

76

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
 u >> k gives   u / 2k 

 Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 

x >> 1 7606.5 7606 1D B6 00011101 10110110 

x >> 4 950.8125 950 03 B6 00000011 10110110 

x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u

2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0

77

shrl $3, %eax

Compiled Unsigned Division Code

 Uses logical shift for unsigned

 For Java Users 
 Logical shift written as >>>

unsigned udiv8(unsigned x)

{

return x/8;

}

# Logical shift

return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

78

Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
 x >> k gives   x / 2k 

 Uses arithmetic shift

 Rounds wrong direction when u < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
y -15213 -15213 C4 93 11000100 10010011 

y >> 1 -7606.5 -7607 E2 49  11100010 01001001 

y >> 4 -950.8125 -951 FC 49 11111100 01001001 

y >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
 Want   x / 2k  (Round Toward 0)

 Compute as   (x+2k-1)/ 2k 

 In C: (x + (1<<k)-1) >> k

 Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k

1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
80

Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

81

testl %eax, %eax

js L4

L3:

sarl $3, %eax

ret

L4:

addl $7, %eax

jmp L3

Compiled Signed Division Code

 Uses arithmetic shift for int

 For Java Users 
 Arith. shift written as >>

int idiv8(int x)

{

return x/8;

}

if x < 0

x += 7;

# Arithmetic shift

return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

82

Remainder operator

 Written as % in C

 x % y is the remainder after division x / y

 E.g.,  x % 10 is the lowest digit of non-negative x

 Behavior for negative values matches /’s rounding toward 
zero
 b*(a / b) + (a % b) = a

 I.e. sign of remainder matches sign of dividend

 (Some other languages have other conventions: sign of 
result equals sign of divisor, sometimes distinguished as 
“modulo”, or always positive)

83

Arithmetic: Basic Rules

 Addition:

 Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

 Unsigned: addition mod 2w

 Mathematical addition + possible subtraction of 2w

 Signed: modified addition mod 2w (result in proper range)

 Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
 Unsigned/signed: Normal multiplication followed by truncate, 

same operation on bit level

 Unsigned: multiplication mod 2w

 Signed: modified multiplication mod 2w (result in proper range)

84

Arithmetic: Basic Rules

 Unsigned ints, 2’s complement ints are isomorphic rings: 
isomorphism = casting

 Left shift
 Unsigned/signed: multiplication by 2k

 Always logical shift

 Right shift
 Unsigned: logical shift, div (division + round to zero) by 2k

 Signed: arithmetic shift

 Positive numbers: div (division + round to zero) by 2k

 Negative numbers: div (division + round away from zero) by 2k

Use biasing to fix
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Today: Integers

 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

86

Properties of Unsigned Arithmetic

 Unsigned Multiplication with Addition Forms 
Commutative Ring
 Addition is commutative group

 Closed under multiplication

0  UMultw(u , v)  2w –1

 Multiplication Commutative

UMultw(u , v) = UMultw(v , u)

 Multiplication is Associative

UMultw(t, UMultw(u , v)) = UMultw(UMultw(t, u ), v)

 1 is multiplicative identity

UMultw(u , 1) = u

 Multiplication distributes over addtion

UMultw(t, UAddw(u , v)) = UAddw(UMultw(t, u ), UMultw(t, v))

87

Properties of Two’s Comp. Arithmetic
 Isomorphic Algebras

 Unsigned multiplication and addition

 Truncating to w bits

 Two’s complement multiplication and addition

 Truncating to w bits

 Both Form Rings
 Isomorphic to ring of integers mod 2w

 Comparison to (Mathematical) Integer Arithmetic
 Both are rings

 Integers obey ordering properties, e.g.,

u > 0  u + v > v

u > 0, v > 0  u · v > 0

 These properties are not obeyed by two’s comp. arithmetic

TMax + 1 == TMin

15213 * 30426 == -10030 (16-bit words)
88

Why Should I Use Unsigned?

 Don’t Use Just Because Number Nonnegative

 Easy to make mistakes

unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

 Can be very subtle

#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

 Do Use When Performing Modular Arithmetic
 E.g., used in multiprecision arithmetic

 Do Use When Using Bits to Represent Sets
 Logical right shift, no sign extension
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Integer C Puzzles

• x < 0  ((x*2) < 0)

• ux >= 0

• x & 7 == 7  (x<<30) < 0

• ux > -1

• x > y  -x < -y

• x * x >= 0

• x > 0 && y > 0  x + y > 0

• x >= 0  -x <= 0

• x <= 0  -x >= 0

• (x|-x)>>31 == -1

• ux >> 3 == ux/8

• x >> 3 == x/8

• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization


