Binary Representations

Bits, Bytes, and Integers

3.3V
CSci 2021: Machine Architecture and Organization

Lectures #2-4, January 23rd-28th, 2015 2.8V

Your instructor: Stephen McCamant 0.5V
0.0v

Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai

Encoding Byte Values Byte-Oriented Memory Organization
. <« ° s
m Byte = 8 bits o oeo\‘;.\o’b Qe-‘ & o
= Binary 00000000 to 11111111, o [0 [0000 (TTTTT —~~ TTTTTT]
® Decimal: O10 to 25510 111 jooo1
_ 2 [2 [0010
® Hexadecimal 0016 to FFis 3 [0011
« Base 16 number representation 4 g gg m Programs Refer to Virtual Addresses
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 0110 = Conceptually very large array of bytes
= Write FA1D37B16 in C as ;3 Ooéé = Actually implemented with hierarchy of different memory types
— OxFA1D37B . 90 g% = System provides address space private to particular “process”
— 0xfald37b 011 = Program being executed
‘[; gg = Program can clobber its own data, but not that of others
? E 1(1) m Compiler + Run-Time System Control Allocation
= Where different program objects should be stored
= All allocation within single virtual address space
3
Machine Words Word-Oriented Memory Organization
= Machine Has “Word Size” m Addresses Specify Byte va\'lzor!zilts \?/‘:erdns EyEs Stk
= Nominal size of integer-valued data Locations | | oooo
= Including addresses = Address of first byte in word Adar | [oool
® Most current machines use 32 bits (4 bytes) words ® Addresses of successive words differ go00 Addr | U
a o - 0003
= Limits addresses to 4GB gy (E2HB1) e B (-3 0000 : 0004
= Becoming too small for memory-intensive applications Addr 0005
= High-end systems use 64 bits (8 bytes) words 0004 : 0006
= Potential address space = 1.8 X 10%° bytes |1 || 0007
= x86-64 machines support 48-bit addresses: 256 Terabytes Addr — gggi
= Machines support multiple data formats - | 0010
= Fractions or multiples of word size Adar 1 1 go11
= Always integral number of bytes 0008 : 0012
Addr || o013
0012 0014
: 0015

A L1 L

Data Representations

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 1012 10/16
pointer 4 4 8

Byte Ordering Example

= Big Endian
= |east significant byte has highest address
m Little Endian
= |east significant byte has lowest address
m Example
= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103

C Data Type Typical 32- Intel IA32 x86-64
1 1 1

[I [o1]23]45]67] I

Little Endian 0x100 0x101 0x102 0x103

[| [67] 45] 23] 01] |

Examining Data Representations

m Code to Print Byte Representation of Data
= (Casting pointer to unsigned char * creates byte array

void show_bytes (unsigned char *start, int len)({
int i;
for (i = 0; i < len; i++)
printf (“$p\t0x%.2x\n" start+i, start[i]);
printf("\n") ;
}

Printf directives:
%p: Print pointer

%x: Print Hexadecimal

Byte Ordering

m How should bytes within a multi-byte word be ordered in

memory?
m Conventions
= Big Endian: Sun, PPC Mac, Internet convention
= Least significant byte has highest address
= Little Endian: x86, VAX
= Least significant byte has lowest address

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code

= Generated by program that reads the machine code
m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 00 QO 00 00 cmpl §6x0,0x28(%ebx)

m Deciphering Numbers

= Value: Ox12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 0000 12 ab
" Reverse: ab 12 00 00

show_bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");

show _bytes ((unsigned char *) &a, sizeof (int));

Result (Linux):

int a = 15213;

Oxbffffcb8 0x6d
Oxbffffcb9 0x3b
Oxbffffcba 0x00
Oxbffffcbb 0x00

Decimal: 15213
Representing Integers [sinay: o011 1011 0110 1101

Hex: 3 B 6 D

intA=15213; long int C = 15213;
1A32, x86-64 Sun

1A32 x86-64 Sun

int B =-15213;
IA32, x86-64 Sun

I~

Two’s complement representation
(Covered later)

Representing Strings

‘ char S[6] = "18243"; I
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format Linux/Alpha Sun
= Standard 7-bit encoding of character set 31 31
= Character “0” has code 0x30 38 38
— Digit i has code 0x30+i 32 32
= String should be null-terminated 34 32
= Final character =0 33 33
m Compatibility 00 00

= Byte ordering not an issue

Today: Bits, Bytes, and Integers

(Logistics interlude)
Bit-level manipulations

Representing Pointers

int B
int *P

15213;
&B;

x86-64

Different compilers & machines assign different locations to objects

Aside: ASCII table

L Jo 1t J2 3 14 |5 Je 17 8 19 Ja b Jc d le [f |
0x0o_ 0 “A "B *C D *E " G "H t W K L M N "0
OX1_ " AQ AR AS AT AU A/ AW AX Ay Az ESC FS G5 RS US

Ox2_ 1 " # § % & ' () * + . - .
0x3. 0 1 2 3 4 5 6 7 8 9 ; 2 |3 |2 |9
x4 @ A B C D E F G H I J K L M N O
x5 P Q R S T UV WX Y Z [\] * _
0x6_ a b ¢ d e f g h | j k | m n o
X7 p g r s t u v w x y z { | } ~ ™

Homework turn-in process

m For full credit: turn in at the beginning of class on the due
date
= On-time = 3:35pm, or when | start lecturing, whichever is later
= Yes, this means you have to come to class on time (that day)
m We strongly recommend typing your assignments on a
computer, not hand-writing
m Late submissions only will be online using the Moodle
m Do not turn in paper assignments at other times
= This helps us stay organized

2021-dedicated VMs now available

m SSH into: xA-B.cselabs.umn.edu
= Where Ais 21, 22, or 23
= And Bis 01, 02, 03, 04, or 05
® E.g., x22-02.cselabs.umn.edu
m 32-bit version of Ubuntu Linux version 14.04
m Do not run graphical programs (Firefox, etc.) on these
machines (it would be slow anyway)
m If you prefer to use other CSE Labs Linux machines, give
the -m32 option to GCC to get 32-bit binaries

Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis
= Reason about networks of relay switches
= Encode closed switch as 1, open switch as 0

AS~B)
= Connection when
A -B
o—_ >0 ag-B|-AB
A_B
~A&B = A"B

Representing & Manipulating Sets
m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

" a=1ifj EA

+ 01101001 {0,3,5,6}
76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,57}

And (math: A)
= A&B = 1 when both A=1 and B=1 = A|B = 1 when either A=1 or B=1

Boolean Algebra

n Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

Or (math: V)

&f0 1 o1
oo o oo 1
1]0 1 111 1

Not (math: 1)
= ~“A =1when A=0

Exclusive-Or “

xor” (math: @)

= A?B = 1 when either A=1 or B=1, but not both

A

0 1

T
-

o0 1
0 1(1 0

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise
01101001 01101001 01101001

& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bit-Level Operations in C

m Operations &, |, ~, " Available in C
= Apply to any “integral” data type
= long, int, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 — OxBE
» ~010000012 — 101111102
~0x00 — OxFF
= ~000000002 — 111111112
0x69 & 0x55 — 0x41
= 011010012 & 010101012 — 010000012
0x69 | 0x55 — 0x7D
= 011010012| 010101012 — 011111012

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&,||,!
= View 0 as “False”
= Anything nonzero as “True”
= Always return O or 1
= Early termination (AKA “short-circuit evaluation”)
m Examples (char data type)
= 10x41 — 0x00
10x00 — 0x01
110x41 — 0x01

0x69 && 0x55 — 0x01
0x69 || 0x55 — 0x01
p &&*p

(avoids null pointer access)

Exercise break: flip case

/* Convert lowercase to uppercase and vice-versa,
return any other characters unchanged */
char flip_case (char c){
if (c >= 'A' && c <= '2') {
/* 0x41 through O0x5A */
return _ C 0x20 ;
} else if (c >= 'a' && c <= 'z') {
/* 0x61 through Ox7A */
return _c & ~0x20;
} else {
return c;

}

m Fill in the blanks, using bitwise operators

Encoding Integers

Unsigned Two’s Complement
w-1 w-2
RUWX) = yx-2' BT(X) = -x,,-2""+Yx 2
i=0 i=0
short int x = 15213;
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
x 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Shift Operations

m Left Shift: x <<y Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000
— Throw away extra bits on left Log. >> 2 | 00011000
= Fill with 0’s on right
a - Arith. >> 2| 00011000
m Right Shift: x >>y
= Shift bit-vector X right y positions
= Throw away extra bits on right Argument x| 10100010
= Logical shift << 3 00010000
= Fill with 0’s on left Log. >> 2 | 00101000
= Arithmetic shift -
Arith. >> 2| 11101000

= Replicate most significant bit on right

m Undefined Behavior
= Shift amount < 0 or 2 word size

Today: Bits, Bytes, and Integers

[]
[]
m Integers
= Representation: unsigned and signed
.
.
.
u

Encoding Example (Cont.)

15213: 00111011 01101101

L]
wn

y -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1
2] 0 0| 1 2]
4 1 4 0 0l
8| 1 8| 0 0l
16 0 0| 1 16|
32 1 32 0 0l
64 1 64 0 0l
128 0 0 1 128
256 1 256 0 0l
512 1 512 0 0l
1024] 0 0| 1 1024
2048 1 2048 0 0l
4096 1 4096 0 0l
8192 1 8192 0 0l
16384 0 0| 1 16384}
-32768] 0 0l 1 -32768
Sum 15213 -15213

Numeric Ranges

= Unsigned Values

m Two’s Complement Values

Sl e = TMin = -t
000...0 100..0
L] = w_
e 2Rt = TMax = 2wi-1
il 011..1
m Other Values
= Minus 1
BISTE]
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
=il -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 00000000

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 3
1110 14 -2
1111 15 -1

m Equivalence
= Same encodings for nonnegative
values
m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding
m = Can Invert Mappings
= U2B(x) = B2U(x)
= Bit pattern for unsigned
integer
= T2B(x) = B2T!(x)
= Bit pattern for two’s comp
integer

Announcement interlude: Lab 1 out

m Lab 0 (Hello, world) is due tonight
m Lab 1 on data representation is out

m Basic idea: puzzles implementing operations with other
operations
= E.g., implement logical right shift using only arithmetic right shift
m Most problems relate to bitwise operations and two’s
complement rules
= |.e., you can start working on them now
m Increasing difficulty, try the easier ones first
m Two questions relating to floating point

Values for Different Word Sizes

w
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 " ULONG_MAX
" LONG_MAX
= LONG_MIN

= Values platform specific

Today: Bits, Bytes, and Integers

m Integers

= Conversion, casting

Mapping Between Signed & Unsigned

Two’s Complement

T2U

P

Unsigned

ux

Maintain Same Bit Pattern

u2t

Maintain Same Bit Pattern

Unsigned

128 7“——- ux

Two’s Complement

(T —

= Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

Mapping Signed <> Unsigned

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Signed
0
1
2
B
4
: 20—
; [UzT—
-8
-7
-6
-5
-4
=3
-2
=il

Unsigned

oloNlafulslwlnv R

11
12
13
14
15

Relation between Signed & Unsigned

Two’s Complement

Unsigned
T2U
x 128 |~~{B2U | — ux
Maintain Same Bit Pattern
w-1 0
ux [+[+[+[oo T+[+[+]
x [+ (X +[+[+
T {x x>0
ux o
x+2" x<0
Large negative weight

becomes

Large positive weight

Signed vs. Unsigned in C

m Constants

= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 42949672590

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls

tx = ux;
uy = ty;

Bits

Signed

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

Mapping Signed <> Unsigned

+/- 16

Unsigned
0

olo|lglo|o|lslw|n|k

i
o

\4

1100

1101

1110

1111

= Ordering Inversion

Conversion Visualized

m 2’s Comp. — Unsigned

= Negative — Big Positive

2’s Complement
Range

TMax

-1
-2

TMin

Casting Surprises

m Expression Evaluation

-
Y

-
w

"
~

i
()

UMax
UMax -1

TMax +1

TMax Range

= |f there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned

= Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648 ,
= Constant,
0

=i

=i
2147483647
2147483647V
=i
(unsigned)-1

2147483647
2147483647

Constant,

ou

0

ou

-2147483647-1
-2147483647-1

2

-2

2147483648V

(int) 2147483648U

<

V AV V A V V

TMAX = 2,147,483,647
Relation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned
signed

Unsigned

Evaluation

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf [KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_ from kernel (void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find
vulnerabilities in programs

[
Ma|ICIOUS Usage /* Declaration of library function memcpy */
void *memcpy (void *dest, void *src, size_t n);
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf [KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;
}
#define MSIZE 528
void getstuff() {
char mybuf [MSIZE];
copy_from kernel (mybuf, -MSIZE);
}
5

Today: Bits, Bytes, and Integers

]
]
m Integers
.
.
= Expanding, truncating
.
u

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf [KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

#define MSIZE 528
void getstuff() {
char mybuf [MSIZE] ;

copy_from_kernel (mybuf, MSIZE);
printf (“$s\n”, mybuf) ;

Summary
Casting Signed ¢ Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
® intiscasttounsigned!!

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
= Rule:

= Make k copies of sign bit:

.
= X7 Xy Xt s Xe1 s Xu 00 Xo

—
k copies of MSB 3 w
x O~ TT
X' ITTTTTIT e TT17

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Today: Bits, Bytes, and Integers

[]
[]
m Integers
.
.
.
= Addition, negation, multiplication, shifting
]

Complement & Increment Examples

x =15213
Decimal [Hex Binary

x 15213(3B 6D| 00111011 01101101

~X -15214| C4 92| 11000100 10010010

~x+1 -15213| C4 93| 11000100 10010011

y -15213| C4 93| 11000100 10010011
x=0

Decimal Hex Binary

0 0f 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added (“zero extension”)
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
Unsigned/signed: bits are truncated

Result reinterpreted

Unsigned: mod operation

Signed: similar to mod

For small numbers yields expected behaviour

Negation: Complement & Increment
m Claim: Following Holds for 2’s Complement
~x + 1 == -x

m Complement
® QObservation: ~x + x == 1111..111 == -1

x [1]ofo[1[1]1[of1]
+ ~x [o[1]1]ofo[o[1]0]
-1

m Where would we fill in gaps for a more complete proof?
m Note: operation can apply to unsigned as well
m Two values for which x and -x have the same sign

Unsigned Addition

Operands: w bits u OOTT -+ TTT]
+ v oo
utrvlDITTT «ee TTT]

Discard Carry: wbits ~ UAdd (u,v) [T11 _«ee TT11]

True Sum: w+1 bits

= Standard Addition Function
® |Ignores carry output
= Implements Modular Arithmetic
s = UAdd,(u,v) = u+v mod2¥

+ +v<2”
Uddd, vy = "V TS
ut+v=2" u+v>2"

Visualizing (Mathematical) Integer Addition Visualizing Unsigned Addition

= Integer Addition Add,(u, v) = Wraps Around Overflow
= 4-bit integers u, v Integer Addiion = |ftrue sum > 2% \
= Compute true sum = Atmost once UAdd,(u, v)
Add,(u, v)
= Values increase linearly
with uand v True Sum
= Forms planar surface w1
Overflow
pAd —_ :I:
0
Modular Sum
55
. - » A
Mathematical Properties Two’s Complement Addition
= Modular Addition Forms an Abelian Group Operands: w bits w OIT <+ TTT]
® Closed under addition + vy [ITT <=« TTT]
0 <UAdd,(u,v) <2%-1 True Sum: w+1 bits utv OOTTT — 1T
Commutative Discard Carry: whits TAdd,(u,v) [T T T sve+ TTT]1
UAdd,(u,v) = UAdd,(v, u)
® Associative
UAdd,,(t, UAdd, (u, v)) = UAdd,(UAdd,(t, u), v) m TAdd and UAdd have Identical Bit-Level Behavior
® 0is additive identity = Signed vs. unsigned addition in C:
UAdd,,(u,0) = u int s, t, u, v;
= Every element has additive inverse s = (int) ((unsigned) u + (unsigned) v);
= Let UComp,, (u) =2"-u © ‘= “ v
UAdd,,(u, UComp,, (u)) = 0 = Willgive s ==
s
o a.m ’ anpg
TAdd Overflow Visualizing 2’s Complement Addition
NegOver
m Functionality True Sum
, m Values \
= True sum requires w+1 @iz w1
e Posover a4 Result = 4-bit two’s comp. TAdd,(u, v)
= Drop off MSB 0100..0 qw-1 oA " Range from -8 to +7
= Treat remaining bits as m Wraps Around
2's comp. integer Oe2-0 0 000..0 = Ifsum> 2!

= Becomes negative
100..0 = At most once
= If sum<—2%1

1011.1 _Hjw-1_q

1000..0 —ow NegOver

bbb oON a2 O ®

= Becomes positive
= At most once o

u 6 PosOver

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v) |
= True sum requires w+1 bits >0
= Drop off MSB v
= Treat remaining bits as 2’s <0
comp. integer /

/<Ou>0

Negative Overflow

Ju +v+ 2w u+v<TMin,, (NegOver)
TAdd,,(u,v) = u+v TMin ,, <u+v < TMax ,,

Lu +y— 2W TMax,, <u+V (PosOver)

Exercise break: ten’s complement
m Before digital computers, there were mechanical
computers that used base 10

m There’s an analog of two’s complement called ten’s
complement that works in decimal

m Suppose we have an adding machine with 10 decimal
digits, 10 instead of 232,

m What should be the ten’s complement representation of
-21?

m l.e., we want a number x so that adding x is the same as
subtracting 21, when you only have 4 digits

Signed/Unsigned Overflow Differences

= Unsigned: UAdd(u, v) Carry Out
= Overflow if carry out of last y
position v
= Also just called “carry” (C) TAdd(u, v
= Signed: u <0
= Result wrong if input signs are v 50
the same but output sign is
different >0 0
= |n CPUs, unqualified TAdd(u , v) Negative Overfiow :I St set
ign Bit Se
“overflow” usually means <0 €
signed (O or V) v
>0

>0 <0

Positive Overflow

Mathematical Properties of TAdd

m Isomorphic Group to unsigneds with UAdd
= TAdd,(u, v) = U2T(UAdd,(T2U(u), T2U(v)))
= Since both have identical bit patterns

m Two’s Complement Under TAdd Forms a Group
= Closed, Commutative, Associative, O is additive identity
= Every element has additive inverse

—u u# TMin

TComp () = {T]\/Iinw u="TMin,,

Ten’s complement answer

= We want x = -21 mod 10000, or x + 21 + 10000k = 0 for
integer k
= x=10000 - 21 = 9979
m (The equivalent of ~ is called nines’ complement:
~21 = 9978)

Multiplication

m Computing Exact Product of w-bit numbers x, y
= Either signed or unsigned
m Ranges
= Unsigned: 0<sx*y<(2w—1)2 = 22w—2w 4+]
= Up to 2w bits
= Two’s complement min: x * y > (-2%-1)*(2w-1-1) = —22w-24 pw-1
= Up to 2w-1 bits
= Two’s complement max: x * y < (-2w1) 2 = 22w-2
= Up to 2w bits, but only for (TMin,,)?
= Maintaining Exact Results
= Would need to keep expanding word size with each product computed
= Done in software by “arbitrary precision” arithmetic packages

11

Unsigned Multiplication in C

w OTT——+"TTT1
* v OTT -+ " TTT]

Operands: w bits

TrueProduct: 2*w bits " VT T T eee " TTTTTTT eee TTT1

Discard w bits: w bits Ul v

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic
UMult,(u,v)= u -v mod2%

XDR Code

void* copy_elements (void *ele_src[], int ele_cnt, size_t ele_size) {
/*
* Allocate buffer for ele_cnt objects, each of ele_size bytes
* and copy from locations designated by ele_src
<
void *result = malloc(ele_cnt * ele size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int i;
for (i = 0; i < ele_cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele_src[i], ele_size);
/* Move pointer to next memory region */
next += ele_size;
}

return result;

Signed Multiplication in C

w OIT -+ TTT1
* v OTT +++ TTT]

Operands: w bits

TrueProduct: 2*w bits ¢ " V[T T T eee TTTTTTT eee TTT1]

TMult,(u,v) (TTT ==+ TTT1

Discard w bits: w bits

m Standard Multiplication Function
= Ignores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
= Lower bits are the same

Code Security Example #2

m SUN XDR library
= Widely used library for transferring data between machines

[void* copy_elements (void *ele_src[], int ele_cnt, size_t ele size);

ele_src

: e |

malloc(ele_cnt * ele_size)

XDR Vulnerability

malloc(ele_cnt * ele_size)

m What if:
" ele cnt =220+1
" ele_size = 4096 ==

= Allocation=7??

= How can | make this function secure?

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

w OTT = TTT]
* ok [0 == TOMMI0[= 10[0]

Operands: w bits

True Product: w+k bits ¢ 2K [T 1T __+es T T T 10l ~ J0l0]
Discard k bits: w bits UMult,(«,29 [“eee TTTT0[e+ T0[0]
TMult,(u , 2%)
m Examples
"u<<3 = u*8
"u<<5-u<<3 == u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically

12

Compiled Multiplication Code

C Function

int mull2 (int x)
{
return x*12;

}

Compiled Arithmetic Operations

Explanation

leal (%eax,%eax,2), %eax
sall $2, %eax

t <- x+x*2
return t << 2;

= C compiler automatically generates shift/add code when

multiplying by constant

Divison in C

= Integer division /: rounds towards 0

= Choice (settled in C99) is historical, via FORTRAN and most CPUs

m Division by zero: undefined, usually fatal
m Unsigned division: no overflow possible
m Signed division: overflow almost impossible

= Exception: TMin/-1 is un-representable, and so undefined
= On x86 this too is a default-fatal exception

Compiled Unsigned Division Code

C Function

unsigned udiv8 (unsigned x)
{

return x/8;

}

Compiled Arithmetic Operations

shrl $3, %eax

m Uses logical shift for unsigned
m ForJava Users
= Logical shift written as >>>

Logical shift
return x >> 3;

Background: Rounding in Math

m Cannot have both:
= round(x + k) = round(x) + k (k integer), “translation invariance”
= round(-x) = -round(x) “negation invariance”

] |_xJ, read “floor”: always round down (to -<):
ml2.0]l=2[1.7]=1,[-2.2]=3

m [x], read “ceiling”: always round up (to +e):

m[2.0]=21.7]=2,[-2.2]=-2

m Cinteger operators mostly use round to zero, which is like

How to round to the nearest integer?

floor for positive and ceiling for negative

Unsigned Power-of-2 Divide with Shift

= Quotient of Unsigned by Power of 2
= u > kgives Lu / 2¢]

= Uses logical shift

k
y = 1TTewTT] BinaryPoint

Operands:

B | 2k [OQI - JOITIOT - TOIOI

7
Division: w/2k [0 e TOTOT T T we TJIT e TT1
Result: |_u / ZkJ [O e TOTOT T T e T1]
Division Computed Hex Binary

x 15213 15213 3B 6D| 00111011 01101101
x >> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

" x >> kgives |_x

/ 2]

® Uses arithmetic shift
= Rounds wrong direction whenu < 0

I's
x LI T eee TTT eee TT1] Binary Point

Signed Power-of-2 Divide with Shift

= Quotient of Signed by Power of 2

Operands:

| 2k [O e« JOITIOT e« TOI0]

7
Division: x/2k [T eos TTTTT oo TJT eee TT1
Result: RoundDown(x/2¥) [T ses TT T 1T eee]
Division | Computed Hex Binary

y -15213 -15213 C4 93] 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4) 11111111 11000100

13

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want [x / 2€] (Round Toward 0)
= Computeas | (x+2¢-1)/ 2¢]
= InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k
Dividend: y [OLI e TTOT - TOIO]
+0k_1 [0 0TI == T111
[T T AT e 1]7] Binary Point
Divisor: | 2k [Q e« TOT]QT - TO[0]
VA
[w/2r] O TEAEATT e T e TAIA]

Biasing has no effect

Compiled Signed Division Code

C Function

int idiv8(int x)

{
return x/8;

}

Compiled Arithmetic Operations Explanation
testl %eax, %eax if x <0
s L4 x +=7;

L3: # Arithmetic shift
sarl $3, %eax return x >> 3;
ret

L4:
addl $7, %eax m Uses arithmetic shift for int
j L.
mp 13 m ForJava Users

= Arith. shift written as >>

Arithmetic: Basic Rules

= Addition:
= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level
® Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2w
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2w

m Multiplication:
= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Correct Power-of-2 Divide (Cont.)
Case 2: Rounding
k
Dividend: x

+2k—1

Incremented by 1 Binary Point

Divisor: | 2k [0 e J0I1]0] - 10]0

[x/2¢] A MO T = T =TT

{

Incremented by 1

Biasing adds 1 to final result

Remainder operator

Written as % in C
x % yis the remainder after divisionx / y
E.g., x % 10 is the lowest digit of non-negative x

Behavior for negative values matches /’s rounding toward
zero

" b*¥(a / b) + (a $b) =a
m l.e. sign of remainder matches sign of dividend
m (Some other languages have other conventions: sign of
result equals sign of divisor, sometimes distinguished as
“modulo”, or always positive)

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

u Left shift
= Unsigned/signed: multiplication by 2%
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2%
= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

14

Today: Integers

Summary

Properties of Two’s Comp. Arithmetic

m Isomorphic Algebras
= Unsigned multiplication and addition
= Truncating to w bits
= Two’s complement multiplication and addition
= Truncating to w bits
= Both Form Rings
= |somorphic to ring of integers mod 2%
m Comparison to (Mathematical) Integer Arithmetic
= Both are rings
= Integers obey ordering properties, e.g.,
u>0 = u+tv>v
u>0,v>0 = u-v>0
= These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)

o

Integer C Puzzles

* x<0 = ((x*2)<0)
e ux>=0
+ x&7== = (x<<30) <0
o ux>-1
* x>y = X<y
* x*x>=0
Initialization * x>08&y>0 = x+y>0
int x = foo(); o 2e=0 = x<=0
e x<=0 = x>=0
inty = bar(); o (x|X)>>31 ==-
unsigned ux = x; o ux>>3==ux/8
unsigned uy = y; © x>>3==x8
* x&(x1)!=0

Properties of Unsigned Arithmetic

m Unsigned Multiplication with Addition Forms
Commutative Ring
Addition is commutative group

Closed under multiplication
0 <UMult,(u,v) < 2%-1
Multiplication Commutative
UMult,(u,v) = UMult,(v, u)
Multiplication is Associative
UMult,(t, UMult,(u, v)) = UMult,(UMult,(t, u), v)
1 is multiplicative identity
UMult,(u, 1) = u
Multiplication distributes over addtion
UMult,(t, UAdd,,(u, v)) = UAdd,(UMult,(t, u), UMult,(t, v))

Why Should | Use Unsigned?

m Don’t Use Just Because Number Nonnegative
= Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+l];
= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

m Do Use When Performing Modular Arithmetic
= E.g., used in multiprecision arithmetic
m Do Use When Using Bits to Represent Sets

= Logical right shift, no sign extension

15

