
1

1

Bits, Bytes, and Integers

CSci 2021: Machine Architecture and Organization
Lectures #2-4, January 23rd-28th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Binary Representations

0.0V

0.5V

2.8V

3.3V

0 1 0

3

Encoding Byte Values

 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

4

Byte-Oriented Memory Organization

 Programs Refer to Virtual Addresses

 Conceptually very large array of bytes

 Actually implemented with hierarchy of different memory types

 System provides address space private to particular “process”

 Program being executed

 Program can clobber its own data, but not that of others

 Compiler + Run-Time System Control Allocation
 Where different program objects should be stored

 All allocation within single virtual address space

• • •

5

Machine Words

 Machine Has “Word Size”

 Nominal size of integer-valued data

 Including addresses

 Most current machines use 32 bits (4 bytes) words

 Limits addresses to 4GB

 Becoming too small for memory-intensive applications

 High-end systems use 64 bits (8 bytes) words

 Potential address space ≈ 1.8 X 1019 bytes

 x86-64 machines support 48-bit addresses: 256 Terabytes

 Machines support multiple data formats

 Fractions or multiples of word size

 Always integral number of bytes

6

Word-Oriented Memory Organization

 Addresses Specify Byte
Locations
 Address of first byte in word

 Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

2

7

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer 4 4 8

8

Byte Ordering

 How should bytes within a multi-byte word be ordered in
memory?

 Conventions

 Big Endian: Sun, PPC Mac, Internet convention

 Least significant byte has highest address

 Little Endian: x86, VAX

 Least significant byte has lowest address

9

Byte Ordering Example

 Big Endian

 Least significant byte has highest address

 Little Endian

 Least significant byte has lowest address

 Example

 Variable x has 4-byte representation 0x01234567

 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

10

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly

 Text representation of binary machine code

 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

11

Examining Data Representations

 Code to Print Byte Representation of Data

 Casting pointer to unsigned char * creates byte array

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

void show_bytes(unsigned char *start, int len){

int i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

12

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((unsigned char *) &a, sizeof(int));

Result (Linux):

int a = 15213;

0xbffffcb8 0x6d

0xbffffcb9 0x3b

0xbffffcba 0x00

0xbffffcbb 0x00

3

13

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

(Covered later)

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

14

Representing Pointers

Different compilers & machines assign different locations to objects

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

D4

F8

FF

BF

0C

89

EC

FF

FF

7F

00

00

15

char S[6] = "18243";

Representing Strings

 Strings in C

 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

– Digit i has code 0x30+i

 String should be null-terminated

 Final character = 0

 Compatibility
 Byte ordering not an issue

Linux/Alpha Sun

31

38

32

34

33

00

31

38

32

34

33

00

16

Aside: ASCII table

0 1 2 3 4 5 6 7 8 9 a b c d e f

0x0_ \0 ^A ^B ^C ^D ^E ^F ^G ^H \t \n ^K ^L ^M ^N ^O

0x1_ ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ESC FS GS RS US

0x2_ SPC ! " # $ % & ' () * + , - . /

0x3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4_ @ A B C D E F G H I J K L M N O

0x5_ P Q R S T U V W X Y Z [\] ^ _

0x6_ ` a b c d e f g h I j k l m n o

0x7_ p q r s t u v w x y z { | } ~ DEL

17

Today: Bits, Bytes, and Integers

 Representing information as bits

 (Logistics interlude)

 Bit-level manipulations

 Integers

 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

18

Homework turn-in process

 For full credit: turn in at the beginning of class on the due
date
 On-time = 3:35pm, or when I start lecturing, whichever is later

 Yes, this means you have to come to class on time (that day)

 We strongly recommend typing your assignments on a
computer, not hand-writing

 Late submissions only will be online using the Moodle

 Do not turn in paper assignments at other times
 This helps us stay organized

4

19

2021-dedicated VMs now available

 SSH into: xA-B.cselabs.umn.edu

 Where A is 21, 22, or 23

 And B is 01, 02, 03, 04, or 05

 E.g., x22-02.cselabs.umn.edu

 32-bit version of Ubuntu Linux version 14.04

 Do not run graphical programs (Firefox, etc.) on these
machines (it would be slow anyway)

 If you prefer to use other CSE Labs Linux machines, give
the -m32 option to GCC to get 32-bit binaries

20

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And (math: ∧)

 A&B = 1 when both A=1 and B=1

Or (math: ∨)

 A|B = 1 when either A=1 or B=1

Not (math: ¬)

 ~A = 1 when A=0

Exclusive-Or “xor” (math: ⊕)

 A^B = 1 when either A=1 or B=1, but not both

21

Application of Boolean Algebra

 Applied to Digital Systems by Claude Shannon

 1937 MIT Master’s Thesis

 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

A&~B | ~A&B

A&~B

~A&B = A^B

22

General Boolean Algebras

 Operate on Bit Vectors

 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01101001

| 01010101

01101001

^ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

23

Representing & Manipulating Sets

 Representation

 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }
24

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

5

25

Contrast: Logic Operations in C

 Contrast to Logical Operators

 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination (AKA “short-circuit evaluation”)

 Examples (char data type)
 !0x41 → 0x00

 !0x00 → 0x01

 !!0x41 → 0x01

 0x69 && 0x55 → 0x01

 0x69 || 0x55 → 0x01

 p && *p (avoids null pointer access)

26

Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift

 Fill with 0’s on left

 Arithmetic shift

 Replicate most significant bit on right

 Undefined Behavior

 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

27

Exercise break: flip case

 Fill in the blanks, using bitwise operators

/* Convert lowercase to uppercase and vice-versa,

return any other characters unchanged */

char flip_case(char c){

if (c >= 'A' && c <= 'Z') {

/* 0x41 through 0x5A */

return _______________;

} else if (c >= 'a' && c <= 'z') {

/* 0x61 through 0x7A */

return _______________;

} else {

return c;

}

}

c | 0x20

c & ~0x20

28

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

29

Encoding Integers

short int x = 15213;

short int y = -15213;

 C short 2 bytes long

 Sign Bit

 For 2’s complement, most significant bit indicates sign

 0 for nonnegative

 1 for negative

B2T (X)  xw1 2
w1

 xi 2
i

i0

w2

B2U(X)  xi 2
i

i0

w1



Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

30

Encoding Example (Cont.)
x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight 15213 -15213

1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

6

31

Numeric Ranges
 Unsigned Values

 UMin = 0

000…0

 UMax = 2w – 1

111…1

 Two’s Complement Values

 TMin = –2w–1

100…0

 TMax = 2w–1 – 1

011…1

 Other Values

 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

32

Values for Different Word Sizes

 Observations

 |TMin | = TMax + 1

 Asymmetric range

 UMax = 2 * TMax + 1

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming

 #include <limits.h>

 Declares constants, e.g.,

 ULONG_MAX

 LONG_MAX

 LONG_MIN

 Values platform specific

33

Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative
values

 Uniqueness
 Every bit pattern represents

unique integer value

 Each representable integer has
unique bit encoding

  Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned
integer

 T2B(x) = B2T-1(x)

 Bit pattern for two’s comp
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

34

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

35

Announcement interlude: Lab 1 out

 Lab 0 (Hello, world) is due tonight

 Lab 1 on data representation is out

 Basic idea: puzzles implementing operations with other
operations
 E.g., implement logical right shift using only arithmetic right shift

 Most problems relate to bitwise operations and two’s
complement rules
 I.e., you can start working on them now

 Increasing difficulty, try the easier ones first

 Two questions relating to floating point

36

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

7

37

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

38

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

39

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

ux 
x x  0

x  2
w

x  0





Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

40

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

 2’s Comp.  Unsigned
 Ordering Inversion

 Negative  Big Positive

41

Signed vs. Unsigned in C

 Constants

 By default are considered to be signed integers

 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;

42

== unsigned

< signed

> unsigned

> signed

< unsigned

> signed

> unsigned

< unsigned

> signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=

 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

8

43

Code Security Example

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find
vulnerabilities in programs

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

44

Typical Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

45

Malicious Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Declaration of library function memcpy */

void *memcpy(void *dest, void *src, size_t n);

46

Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

47

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

48

Sign Extension

 Task:

 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:

 X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk

9

49

Sign Extension Example

 Converting from smaller to larger integer data type

 C automatically performs sign extension

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

50

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)

 Unsigned: zeros added (“zero extension”)

 Signed: sign extension

 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated

 Result reinterpreted

 Unsigned: mod operation

 Signed: similar to mod

 For small numbers yields expected behaviour

51

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

52

Negation: Complement & Increment

 Claim: Following Holds for 2’s Complement
~x + 1 == -x

 Complement
 Observation: ~x + x == 1111…111 == -1

 Where would we fill in gaps for a more complete proof?

 Note: operation can apply to unsigned as well

 Two values for which x and -x have the same sign

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

53

Complement & Increment Examples

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

~x -15214 C4 92 11000100 10010010

~x+1 -15213 C4 93 11000100 10010011

y -15213 C4 93 11000100 10010011

x = 15213

 Decimal Hex Binary
0 0 00 00 00000000 00000000

~0 -1 FF FF 11111111 11111111

~0+1 0 00 00 00000000 00000000

x = 0

54

Unsigned Addition

 Standard Addition Function

 Ignores carry output

 Implements Modular Arithmetic

s = UAddw(u , v) = u + v mod 2w

UAddw(u,v) 
u  v u  v  2w

u  v  2w u  v  2w




• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

10

55

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition

 4-bit integers u, v

 Compute true sum
Add4(u , v)

 Values increase linearly
with u and v

 Forms planar surface

Add4(u , v)

u

v

56

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around

 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

57

Mathematical Properties

 Modular Addition Forms an Abelian Group

 Closed under addition

0  UAddw(u , v)  2w –1

 Commutative

UAddw(u , v) = UAddw(v , u)

 Associative

UAddw(t, UAddw(u , v)) = UAddw(UAddw(t, u), v)

 0 is additive identity

UAddw(u , 0) = u

 Every element has additive inverse

 Let UCompw (u) = 2w – u
UAddw(u , UCompw (u)) = 0

58

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior

 Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

 Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

59

TAdd Overflow

 Functionality

 True sum requires w+1
bits

 Drop off MSB

 Treat remaining bits as
2’s comp. integer

–2w –1–1

–2w

0

2w –1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

60

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values

 4-bit two’s comp.

 Range from -8 to +7

 Wraps Around

 If sum  2w–1

 Becomes negative

 At most once

 If sum < –2w–1

 Becomes positive

 At most once

TAdd4(u , v)

u

v

PosOver

NegOver

11

61

Characterizing TAdd

 Functionality

 True sum requires w+1 bits

 Drop off MSB

 Treat remaining bits as 2’s
comp. integer

TAddw (u,v) 

u  v  2
w1

u  v  TMin w

u  v TMin w  u  v  TMax w

u  v  2
w1

TMax w  u  v









(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w

62

Mathematical Properties of TAdd

 Isomorphic Group to unsigneds with UAdd

 TAddw(u , v) = U2T(UAddw(T2U(u), T2U(v)))

 Since both have identical bit patterns

 Two’s Complement Under TAdd Forms a Group

 Closed, Commutative, Associative, 0 is additive identity

 Every element has additive inverse

TComp w(u) 
u u  TMinw

TMinw u  TMinw





63

Exercise break: ten’s complement
 Before digital computers, there were mechanical

computers that used base 10

 There’s an analog of two’s complement called ten’s
complement that works in decimal

 Suppose we have an adding machine with 10 decimal
digits, 104 instead of 232.

 What should be the ten’s complement representation of
-21?

 I.e., we want a number x so that adding x is the same as
subtracting 21, when you only have 4 digits

64

Ten’s complement answer

 We want x ≡ -21 mod 10000, or x + 21 + 10000k = 0 for
integer k

 x = 10000 - 21 = 9979

 (The equivalent of ~ is called nines’ complement:

~21 = 9978)

65

Signed/Unsigned Overflow Differences

 Unsigned:

 Overflow if carry out of last
position

 Also just called “carry” (C)

 Signed:

 Result wrong if input signs are
the same but output sign is
different

 In CPUs, unqualified
“overflow” usually means
signed (O or V)

u

v

UAdd(u , v)

u

v

< 0> 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

Carry Out

u

v

< 0> 0

< 0

> 0

TAdd(u , v)

Sign Bit Set

66

Multiplication

 Computing Exact Product of w-bit numbers x, y

 Either signed or unsigned

 Ranges

 Unsigned: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

 Up to 2w bits

 Two’s complement min: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

 Up to 2w–1 bits

 Two’s complement max: x * y ≤ (–2w–1) 2 = 22w–2

 Up to 2w bits, but only for (TMinw)2

 Maintaining Exact Results

 Would need to keep expanding word size with each product computed

 Done in software by “arbitrary precision” arithmetic packages

12

67

Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order w bits

 Implements Modular Arithmetic

UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

68

Code Security Example #2

 SUN XDR library

 Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

ele_src

malloc(ele_cnt * ele_size)

69

XDR Code

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {

/*

* Allocate buffer for ele_cnt objects, each of ele_size bytes

* and copy from locations designated by ele_src

*/

void *result = malloc(ele_cnt * ele_size);

if (result == NULL)

/* malloc failed */

return NULL;

void *next = result;

int i;

for (i = 0; i < ele_cnt; i++) {

/* Copy object i to destination */

memcpy(next, ele_src[i], ele_size);

/* Move pointer to next memory region */

next += ele_size;

}

return result;

}

70

XDR Vulnerability

 What if:
 ele_cnt = 220 + 1

 ele_size = 4096 = 212

 Allocation = ??

 How can I make this function secure?

malloc(ele_cnt * ele_size)

71

Signed Multiplication in C

 Standard Multiplication Function

 Ignores high order w bits

 Some of which are different for signed
vs. unsigned multiplication

 Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

72

Power-of-2 Multiply with Shift

 Operation
 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8

 u << 5 - u << 3 == u * 24

 Most machines shift and add faster than multiply

 Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

13

73

leal (%eax,%eax,2), %eax

sall $2, %eax

Compiled Multiplication Code

 C compiler automatically generates shift/add code when
multiplying by constant

int mul12(int x)

{

return x*12;

}

t <- x+x*2

return t << 2;

C Function

Compiled Arithmetic Operations Explanation

74

Background: Rounding in Math

 How to round to the nearest integer?

 Cannot have both:
 round(x + k) = round(x) + k (k integer), “translation invariance”

 round(-x) = -round(x) “negation invariance”

  x , read “floor”: always round down (to -∞):

  2.0  = 2,  1.7 = 1,  -2.2  = -3

  x , read “ceiling”: always round up (to +∞):

  2.0 = 2,  1.7 = 2,  -2.2 = -2

 C integer operators mostly use round to zero, which is like
floor for positive and ceiling for negative

75

Divison in C

 Integer division /: rounds towards 0

 Choice (settled in C99) is historical, via FORTRAN and most CPUs

 Division by zero: undefined, usually fatal

 Unsigned division: no overflow possible

 Signed division: overflow almost impossible
 Exception: TMin/-1 is un-representable, and so undefined

 On x86 this too is a default-fatal exception

76

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
 u >> k gives  u / 2k 

 Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0

77

shrl $3, %eax

Compiled Unsigned Division Code

 Uses logical shift for unsigned

 For Java Users
 Logical shift written as >>>

unsigned udiv8(unsigned x)

{

return x/8;

}

Logical shift

return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

78

Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
 x >> k gives  x / 2k 

 Uses arithmetic shift

 Rounds wrong direction when u < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011

y >> 1 -7606.5 -7607 E2 49 11100010 01001001

y >> 4 -950.8125 -951 FC 49 11111100 01001001

y >> 8 -59.4257813 -60 FF C4 11111111 11000100

14

79

Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
 Want  x / 2k  (Round Toward 0)

 Compute as  (x+2k-1)/ 2k 

 In C: (x + (1<<k)-1) >> k

 Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k

1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
80

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

81

testl %eax, %eax

js L4

L3:

sarl $3, %eax

ret

L4:

addl $7, %eax

jmp L3

Compiled Signed Division Code

 Uses arithmetic shift for int

 For Java Users
 Arith. shift written as >>

int idiv8(int x)

{

return x/8;

}

if x < 0

x += 7;

Arithmetic shift

return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

82

Remainder operator

 Written as % in C

 x % y is the remainder after division x / y

 E.g., x % 10 is the lowest digit of non-negative x

 Behavior for negative values matches /’s rounding toward
zero
 b*(a / b) + (a % b) = a

 I.e. sign of remainder matches sign of dividend

 (Some other languages have other conventions: sign of
result equals sign of divisor, sometimes distinguished as
“modulo”, or always positive)

83

Arithmetic: Basic Rules

 Addition:

 Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

 Unsigned: addition mod 2w

 Mathematical addition + possible subtraction of 2w

 Signed: modified addition mod 2w (result in proper range)

 Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
 Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level

 Unsigned: multiplication mod 2w

 Signed: modified multiplication mod 2w (result in proper range)

84

Arithmetic: Basic Rules

 Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

 Left shift
 Unsigned/signed: multiplication by 2k

 Always logical shift

 Right shift
 Unsigned: logical shift, div (division + round to zero) by 2k

 Signed: arithmetic shift

 Positive numbers: div (division + round to zero) by 2k

 Negative numbers: div (division + round away from zero) by 2k

Use biasing to fix

15

85

Today: Integers

 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

86

Properties of Unsigned Arithmetic

 Unsigned Multiplication with Addition Forms
Commutative Ring
 Addition is commutative group

 Closed under multiplication

0  UMultw(u , v)  2w –1

 Multiplication Commutative

UMultw(u , v) = UMultw(v , u)

 Multiplication is Associative

UMultw(t, UMultw(u , v)) = UMultw(UMultw(t, u), v)

 1 is multiplicative identity

UMultw(u , 1) = u

 Multiplication distributes over addtion

UMultw(t, UAddw(u , v)) = UAddw(UMultw(t, u), UMultw(t, v))

87

Properties of Two’s Comp. Arithmetic
 Isomorphic Algebras

 Unsigned multiplication and addition

 Truncating to w bits

 Two’s complement multiplication and addition

 Truncating to w bits

 Both Form Rings
 Isomorphic to ring of integers mod 2w

 Comparison to (Mathematical) Integer Arithmetic
 Both are rings

 Integers obey ordering properties, e.g.,

u > 0  u + v > v

u > 0, v > 0  u · v > 0

 These properties are not obeyed by two’s comp. arithmetic

TMax + 1 == TMin

15213 * 30426 == -10030 (16-bit words)
88

Why Should I Use Unsigned?

 Don’t Use Just Because Number Nonnegative

 Easy to make mistakes

unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

 Can be very subtle

#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

 Do Use When Performing Modular Arithmetic
 E.g., used in multiprecision arithmetic

 Do Use When Using Bits to Represent Sets
 Logical right shift, no sign extension

89

Integer C Puzzles

• x < 0  ((x*2) < 0)

• ux >= 0

• x & 7 == 7  (x<<30) < 0

• ux > -1

• x > y  -x < -y

• x * x >= 0

• x > 0 && y > 0  x + y > 0

• x >= 0  -x <= 0

• x <= 0  -x >= 0

• (x|-x)>>31 == -1

• ux >> 3 == ux/8

• x >> 3 == x/8

• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

