Bits, Bytes, and Integers

CSci 2021: Machine Architecture and Organization Lectures #2-4, January 23rd-28th, 2015

Your instructor: Stephen McCamant

Based on slides originally by: Randy Bryant, Dave O'Hallaron, Antonia Zhai

Binary Representations

Encoding Byte Values

Byte = 8 bits

- Binary 000000002 to 11111112
- Decimal: 010 to 25510
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Byte-Oriented Memory Organization

- Programs Refer to Virtual Addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular "process"
 Program being executed
 - Program can clobber its own data, but not that of others
- Compiler + Run-Time System Control Allocation
 - Where different program objects should be storedAll allocation within single virtual address space

Machine Words

Machine Has "Word Size"

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - · Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte
 - Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
 - 2-bit) 01 8 (64-bit)

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Byte Ordering

How should bytes within a multi-byte word be ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac, Internet convention
 Least significant byte has highest address
- Little Endian: x86, VAX
- Least significant byte has lowest address

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

- Least significant byte has lowest address
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endian		0×100	0x101	0x102	0x103		
		01	23	45	67]
Little Endia	ın	0x100	0x101	0x102	0x103		
		67	45	23	01		
							Ξ.

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assem	bly Rendition
8048365:	5b	pop	%ebx
8048366:	81 c3 ab 12 00 00	add	<pre>\$0x12ab,%ebx</pre>
804836c:	83 bb 28 00 00 00 00	cmpl	\$0x0,0x28(%ebx)
DecipheriValue:	ng Numbers	0x1	l2ab
Pad to 32	bits:	0x00001	l 2ab
 Split into 	bytes:	00 00 1	2 ab

Examining Data Representations show_bytes Execution Example Code to Print Byte Representation of Data int a = 15213; printf("int a = 15213;\n"); Casting pointer to unsigned char * creates byte array show_bytes((unsigned char *) &a, sizeof(int)); void show_bytes(unsigned char *start, int len){ oid snow_Dytes(unsigned char 'start, int len/ int i; for (i = 0; i < len; i++) printf("\splt0x%.2x\n",start+i, start[i]); printf("\n"); Result (Linux): int a = 15213; 0xbffffcb8 0x6d 0xbffffcb9 0x3b 0xbffffcba 0x00 Printf directives: 0xbffffcbb 0x00 %p: Print pointer %x: Print Hexadecimal

2

Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 Standard 7-bit encoding of character set
- Character "0" has code 0x30
- Character "0" has code t
- Digit *i* has code 0x30+*i*String should be null-terminated
- Final character = 0
- Compatibility
- Byte ordering not an issue

Lin	ux/Alp	ha	Sun	
	31	••	31	
	38	••	38	
	32	← →	32	
	34	← →	34	
	33	••	33	
	00	••	00	

char S[6] = "18243";

Aside: ASCII table

	0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
0x0_	\0	^A	^B	^C	^D	^E	^F	^G	^H	\t	\n	^K	^L	^M	^N	^0
0x1_	^P	^Q	^R	^S	^T	^U	^V	^W	۸χ	۸γ	^Z	ESC	FS	GS	RS	US
0x2_	SPC	!	•	#	\$	%	&	1	()	*	+	,	-		1
0x3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0x4_	@	А	В	С	D	Е	F	G	Н	1	J	Κ	L	М	Ν	0
0x5_	Ρ	Q	R	S	Т	U	٧	W	Х	Y	Ζ	[١]	۸	_
0x6_	•	а	b	с	d	е	f	g	h	1	j	k	1	m	n	0
0x7_	р	q	r	s	t	u	v	w	х	у	z	{	1	}	~	DEL
UX/_	p	q	r	S	τ	u	v	W	х	у	z	{	1	}	~	

Today: Bits, Bytes, and Integers

- Representing information as bits
- (Logistics interlude)
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Homework turn-in process

- For full credit: turn in at the beginning of class on the due date
 - On-time = 3:35pm, or when I start lecturing, whichever is later
 - Yes, this means you have to come to class on time (that day)
- We strongly recommend typing your assignments on a computer, not hand-writing
- Late submissions only will be online using the Moodle
- Do not turn in paper assignments at other times
 This helps us stay organized

2021-dedicated VMs now available

SSH into: xA-B.cselabs.umn.edu

- Where A is 21, 22, or 23
- And B is 01, 02, 03, 04, or 05
- E.g., x22-02.cselabs.umn.edu
- 32-bit version of Ubuntu Linux version 14.04
- Do not run graphical programs (Firefox, etc.) on these machines (it would be slow anyway)
- If you prefer to use other CSE Labs Linux machines, give the -m32 option to GCC to get 32-bit binaries

Boolean Algebra

~ 0 1

1 0

Developed by George Boole in 19th Century

		opea	by deorge boold	1	· · · ·	icon y
• 4	Algeb	raic r	epresentation of logi	ic		
	En	code	"True" as 1 and "Fals	e" as 0		
And (n	nath	n: A)		Or (ma	th:	∨)
• A&B =	1 w	hen b	oth A=1 and B=1	• A B = 3	1 wh	en either A=1 or B=1
&	0	1		1	0	1
0	0	0		0	0	1
1	0	1		1	1	1
Not (m	hath	: ר)	Exclus	sive-Or "	xor	" (math: 🕀)
∎ ~A = 1	whe	en A=	0 • A^B =	= 1 when e	eithe	er A=1 or B=1, but not both
~				^	0	1

0 0 1

1 1 0

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

General Boolean Algebras

Operate on Bit Vectors

Operations	applied	bitwise

01101001	01101001	01101001	~ 01010101
01000001	01111101	00111100	10101010

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_j = 1$ if $j \in A$
 - 01101001 {0, 3, 5, 6}
 - 7<u>65</u>4<u>3</u>210
 - 01010101 { 0, 2, 4, 6 }
 - 7<mark>6543210</mark>
- Operations

• &	Intersection	01000001	{0,6}
• 1	Union	01111101	{0, 2, 3, 4, 5, 6}
• ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
• ~	Complement	10101010	{ 1, 3, 5, 7 }

Contrast: Logic Operations in C

Contrast to Logical Operators

- &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination (AKA "short-circuit evaluation")
- Examples (char data type)
 - $!0x41 \rightarrow 0x00$
 - !0x00 → 0x01
 - III0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)

Shift Operations

Left Shift: x << y</p>

- Shift bit-vector x left y positions - Throw away extra bits on left · Fill with 0's on right
- Right Shift: x >> y
- Shift bit-vector x right y positions Throw away extra bits on right
- Logical shift
- Fill with 0's on left Arithmetic shift
- Replicate most significant bit on right
- Undefined Behavior
- Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Exercise break: flip case

Fill in the blanks, using bitwise operators

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- - Representation: unsigned and signed Conversion, casting

 - Expanding, truncating Addition, negation, multiplication, shifting
- Summary

E

ncodir	coding Example (Cont.)								
	x = y =	15213: -15213:	0011 1100	1011 0100	0110 1001	1101 0011			
	Weight	15213			-1521	3			
	1	1	1		1	1			
	2	0	0		1	2			
	4	1	4		0	0			
	8	1	8		0	0			
	16	0	0		1	16			
	32	1	32		0	0			
	64	1	64		0	0			
	128	0	0		1	128			
	256	1	256		0	0			
	512	1	512		0	0			
	1024	0	0		1	1024			
	2048	1	2048		0	0			
	4096	1	4096		0	0			
	8192	1	8192		0	0			
	16384	0	0		1	16384			
	-32768	0	0		1	-32768			
	Sum		15213			-15213			

Values for Different Word Sizes

	vv			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Programming

|TMin| = TMax + 1
 Asymmetric range
 UMax = 2 * TMax + 1

Observations

- #include <limits.h>
- Declares constants, e.g.,
- ULONG_MAX
 - LONG MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

B2U(X) B2T(X)

0

1

2

4

6

7

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Equivalence

- Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- ⇒ Can Invert Mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - T2B(x) = B2T⁻¹(x)
 - Bit pattern for two's comp
 - integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Announcement interlude: Lab 1 out

- Lab 0 (Hello, world) is due tonight
- Lab 1 on data representation is out
- Basic idea: puzzles implementing operations with other operations
- E.g., implement logical right shift using only arithmetic right shift
 Most problems relate to bitwise operations and two's
 - complement rules
 - I.e., you can start working on them now
- Increasing difficulty, try the easier ones first
- Two questions relating to floating point

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Relation between Signed & Unsigned

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
 Unsigned if have "U" as suffix
 - 0U, 4294967259U

Casting

- Explicit casting between signed & unsigned same as U2T and T2U int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls
 tx = ux;

uy = ty;

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2.147.483.648. TMAX = 2.147.483.647

		,	
Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

/* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
<pre>int copy_from_kernel(void *user_dest, int maxlen) {</pre>
/* Byte count len is minimum of buffer size and maxlen */
<pre>int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
<pre>memcpy(user_dest, kbuf, len);</pre>
return len;
}

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

/* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf(KSIZE); /* Copy at most maxlen bytes from kernel region to user buffer */ int copy_from_kernel(void *user_dest, int maxlen) { /* Byte count len is minimum of buffer size and maxlen */ int len = KSIZE < maxlen ? KSIZE : maxlen; memcpy(user_dest, kbuf, len); return len; } #define MSIZE 528 void getstuff() { copy_from_kernel(mybuf, MSIZE); printf("%s\n", mybuf); } </pre>

Malicious Usage /* Declaration of library function memopy */ void *memopy(void *dest, void *src, size_t n);

/* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;</pre>

#define MSIZE 528

void getstuff() { char mybuf[MSIZE]; copy_from_kernel(mybuf, -MSIZE); . . . }

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:
 - $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$

Sign Extension Example

short	int x =	15213;	
int	ix =	(int) x;	
short	int y =	-15213;	
int	iy =	(int) y;	

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

Converting from smaller to larger integer data type

C automatically performs sign extension

Summary:

Expanding, Truncating: Basic Rules

Expanding (e.g., short int to int)

- Unsigned: zeros added ("zero extension")
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary

Negation: Complement & Increment

- Claim: Following Holds for 2's Complement ~x + 1 == -x
- Complement
 - Observation: ~x + x == 1111...111 == -1
 - x 10011101
 - + ~x 01100010
 - -1 11111111
- Where would we fill in gaps for a more complete proof?
- Note: operation can apply to unsigned as well
- Two values for which x and -x have the same sign

Complement & Increment Examples

x = 15213

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
~x	-15214	C4 92	11000100 10010010	
~x+1	-15213	C4 93	11000100 10010011	
У	-15213	C4 93	11000100 10010011	

x = 0

	Decimal	Hex	x Binary	
0	0	00 00	0000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	0000000 00000000	

Unsigned Addition Operands: w bits True Sum: w+1 bits Discard Carry: w bits • Standard Addition Function • Ignores carry output • Implements Modular Arithmetic $s = UAdd_w(u, v) = u + v \mod 2^w$ $Uddd_w(u, v) = \begin{cases} u + v & u + v < 2^w \\ u + v - 2^w & u + v > 2^w \end{cases}$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum
- Add₄(*u* , *v*)
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition
 0 ≤ UAdd_w(u, v) ≤ 2^w −1
 - Commutative
 - $UAdd_w(u, v) = UAdd_w(v, u)$
 - Associative
 - UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v) • **0** is additive identity
 - $UAdd_w(u, 0) = u$
 - Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ UAdd_w(u, UComp_w(u)) = 0

Two's Complement Addition

Operands: w bits	<i>u</i> ••••
True Sum: w+1 bits	$\begin{array}{c c} + v & \hline \\ \hline \\ u + v & \hline \\ \hline \\ \end{array}$
Discard Carry: w bits	$TAdd_w(u, v)$ •••
TAdd and UAdd Signed vs. unsig int s, t, u, s = (int) ((t = u + v Will give s == 	have Identical Bit-Level Behavior ned addition in C: v; unsigned) u + (unsigned) v); t

10

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))
 Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

 $TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$

Exercise break: ten's complement

- Before digital computers, there were mechanical computers that used base 10
- There's an analog of two's complement called ten's complement that works in decimal
- Suppose we have an adding machine with 10 decimal digits, 10⁴ instead of 2³².
- What should be the ten's complement representation of -21?
- I.e., we want a number x so that adding x is the same as subtracting 21, when you only have 4 digits

Ten's complement answer

- We want x = -21 mod 10000, or x + 21 + 10000k = 0 for integer k
- x = 10000 21 = 9979
- (The equivalent of ~ is called nines' complement: ~21 = 9978)

Signed/Unsigned Overflow Differences

Unsigned:

- Overflow if carry out of last position
- Also just called "carry" (C)
- Signed:
 - Result wrong if input signs are the same but output sign is different
 - In CPUs, unqualified "overflow" usually means signed (O or V)

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned
- Ranges
 - Unsigned: 0 ≤ x * y ≤ (2^w − 1)² = 2^{2w} − 2^{w+1} + 1
 Up to 2w bits
 - Two's complement min: x * y ≥ (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}
 Up to 2w-1 bits
 - Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (TMin_w)²
- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Code Security Example #2

SUN XDR library

Widely used library for transferring data between machines

XDR Code

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) { /*

- * Allocate buffer for ele_cnt objects, each of ele_size bytes * and copy from locations designated by ele_src */ return NULL; void *next = result; vold *next = result; int i; for (i = 0; i < ele_cnt; i++) { /* Copy object i to destination */ memcpy(next, ele_src[i], ele_size); /* Move pointer to next memory region */ next += ele_size;
- , return result;

XDR Vulnerability

malloc(ele_cnt * ele_size)

- What if:
 - $= 2^{20} + 1$ ele_cnt
 - = 2¹² = 4096 ele_size
 - Allocation = ??
- How can I make this function secure?

Ignores high order w bits

- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Compiled Multiplication Code

Background: Rounding in Math

- How to round to the nearest integer?
- Cannot have both:
 - round(x + k) = round(x) + k (k integer), "translation invariance"
 round(-x) = -round(x) "negation invariance"
- Lx _, read "floor": always round down (to -∞):
 L 2 . 0] = 2, L 1 . 7] = 1, L -2 . 2] = -3
- [x], read "ceiling": always round up (to +∞):
- [2.0]=2, [1.7]=2, [-2.2]=-2
- C integer operators mostly use round to zero, which is like floor for positive and ceiling for negative

Divison in C

- Integer division /: rounds towards 0
 Choice (settled in C99) is historical, via FORTRAN and most CPUs
- Division by zero: undefined, usually fatal
- Unsigned division: no overflow possible
- Signed division: overflow almost impossible
 - Exception: TMin/-1 is un-representable, and so undefined
 - On x86 this too is a default-fatal exception

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - u >> k gives [u / 2^k]

			k		D'
Operands:	1	2^k 0 ···	• 0110	··· 00 /	Binary Po
vision:	u	/ 2 ^k 0	• 000	<mark>⊥…</mark> [
lesult:	Lu/	2 ^k] 0	• 10101	····	
esult:	L u /		• 10101	Pin	201
esult:	L u /	² ^k ↓ 0 ····	• 000	 Bin:	ary
esult:	Division 15213 7606 5	¹ 2 ^k ↓ 0 ••• Computed 15213 7606	Hex 3B 6D 1D B6	 Bin: 00111011 00011101	ary 01101101 10110110
$\frac{x}{x \rightarrow 1}$	Division 15213 7606.5 950.8125	Computed 15213 7606 950	Hex 3B 6D 1D B6 03 B6	Bin: 00111011 00011101 00000011	ary 01101101 10110110 10110110

Compiled Unsigned Division Code

Correct Power-of-2 Divide (Cont.)

Compiled Signed Division Code

Remainder operator

Written as % in C

- x % y is the remainder after division x / y
- E.g., x % 10 is the lowest digit of non-negative x
- Behavior for negative values matches /'s rounding toward zero

b*(a / b) + (a % b) = a

- I.e. sign of remainder matches sign of dividend
- (Some other languages have other conventions: sign of result equals sign of divisor, sometimes distinguished as "modulo", or always positive)

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

 Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication
 0 ≤ UMult_w(u, v) ≤ 2^w-1
 - Multiplication Commutative
 UMult_w(u, v) = UMult_w(v, u)
 - Multiplication is Associative
 - $UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)$
 - 1 is multiplicative identity
 - UMult_w(u, 1) = u Multiplication distributes over addtion
 - $UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
- Truncating to w bits
- Two's complement multiplication and addition
 Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 u > 0 ⇒ u + v > v
 - $\begin{array}{ll} u > 0 & \Rightarrow & u + v > v \\ u > 0, v > 0 & \Rightarrow & u \cdot v > 0 \end{array}$
 - These properties are not obeyed by two's comp. arithmetic
 - TMax + 1 == TMin
 - 15213 * 30426 == -10030 (16-bit words)

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes unsigned i;
 - for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];
 - Can be very subtle
 - #define DELTA sizeof(int)
 int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

- Do Use When Performing Modular Arithmetic
 E.g., used in multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 Logical right shift, no sign extension

Integer C Puzzles

	 ux >= 0 x & 7 == 7 ux > -1 x > y 	⇒ (x<<30) < 0
	• x * x >= 0	
Initialization	 x > 0 && y > 0 	⇒ x + y > 0
int x = foo()	• x >= 0	⇒ -x <= 0
int x = 100(),	• x <= 0	⇒ -x >= 0
int y = bar();	• (x -x)>>31 == -1	
unsigned ux = x;	 ux >> 3 == ux/8 	
unsigned uv = v	 x >> 3 == x/8 	
unsigned dy = y,	• x & (x-1) != 0	