1/22/2015

Overview

u Course theme
u Four realities

Course Overview and Introduction m How the course fits into the CS curriculum

m Logistics

CSci 2021: Machine Architecture and Organization

Lecture #1, January 21st, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai
Course Theme: Great Reality #1:
Abstraction Is Good But Don’t Forget Reality Ints are not Integers, Floats are not Reals
m Most CS courses emphasize abstraction m Example 1: Is x? 2 0?

= Abstract data types = Float’s: Yes! [1% 1307, | [e [mamr. s

mn

= Asymptotic analysis

e 08 | g | e
m These abstractions have limits ,r-—jﬁ—{:@* Al %&‘}gﬂ% =

® Especially in the presence of bugs hoaa aadl . . PPN
" Need to understand details of underlying implementations ﬁ ﬁ g% ﬁ

= Int’s:
u Useful outcomes = 40000 * 40000 -> 1600000000
= Become more effective programmers = 50000 * 50000 - ??
= Able to find and eliminate bugs efficiently m Example 2:Is (x +y) +z = x + (y +2)?
= Able to understand and tune for program performance = Unsigned & Signed Int’s: Yes!
= Prepare for later “systems” classes in CS & EE = Float's:
= Compilers, Operating Systems, Networks, Computer Architecture, « (1e20 +-1e20) +3.14 > 3.14

Embedded Syst
mbedded Systems + 1e20 +(-1e20 + 3.14) --> ??

Source: xked.com/571

Code Security Example Typical Usage

/* Kernel memory region holding user-accessible data */ /* Kernel memory region holding user-accessible data */
#define KSIZE 1024 #define KSIZE 1024
char kbuf[KSIZE]; char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */ /* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel(void *user_dest, int maxlen) { int copy_ from kernel (void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */ /* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen; int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len); memcpy (user_dest, kbuf, len);
return len; return len;
} }

= Similar to code found in FreeBSD’s implementation of #define MSIZE 528

getpeername void getstuff() {
. . . aee h. ’buf [MSIZE] ;
u There are legions of smart people trying to find vulnerabilities S, o P (g, T
in programs printf (“$s\n”, mybuf);

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel(void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff() {
char mybuf [MSIZE] ;
copy_from kernel (mybuf, -MSIZE);

Great Reality #2:
You’ve Got to Know Assembly

m Chances are, you'll never write programs in assembly
= Compilers are much better & more patient than you are
u But, assembly is key to machine-level execution model
= Behavior of programs in presence of bugs
= High-level language models break down
® Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
= Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state
= Creating / fighting malware
= x86 assembly is the lingua franca

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility

u Inserts assembly code into machine code generated by
compiler

0;
0;

static unsigned cyc_hi =

static unsigned cyc_lo =

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

)

void access_counter (unsigned *hi, unsigned *lo)

{
asm("rdtsc; movl %%edx,%0; movl %%eax, 1"

. n=gn (*hi), "=zt (*1o)

: "sedx", "%eax");

1/22/2015

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties
m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
= |nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity
= Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs
m Observation
= Need to understand which abstractions apply in which contexts
= |mportant issues for compiler writers and serious application programmers

Assembly Code Example

m Time Stamp Counter
= Special 64-bit register in Intel-compatible machines
® Incremented every clock cycle
® Read with rdtsc instruction
m Application
= Measure time (in clock cycles) required by procedure

double t;

start_counter() ;

P();

t = get _counter() ;

printf ("P required %f clock cycles\n", t);

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

= Memory is not unbounded
® |t must be allocated and managed
® Many applications are memory dominated
m Memory referencing bugs especially pernicious
= Effects are distant in both time and space
m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) - SR

fun(1l) - 3.14

fun(2) - 3.1399998664856

fun(3) - 2.00000061035156

fun(4) - 3.14, then segmentation fault

u Result is architecture specific

Memory Referencing Errors

u C and C++ do not provide any memory protection
= Out of bounds array references
= |nvalid pointer values
= Abuses of malloc/free
m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated
= How can | deal with this?
= Program in Java, Ruby or ML
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

. Intel Core i7
The Memory Mountain 267 Ghz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

S

A /5

s WsniySeasy

Sty
Wil

o

s —

&S copyji

L]
[vem [

L7

Stride (x8 bytes) g size (bytes)

1/22/2015

Memory Referencing Bug Example

double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) - 3.14
fun(l) - 3.14
fun(2) - 3.1399998664856
fun(3) - 2.00000061035156
fun(4) - 3.14, then segmentation fault
Explanation: [Saved State 4
d7 ... d4 3
d3..do 2 Locam.)naccessed by
fun (1)
a[1] 1
a[0] 0

Memory System Performance Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
intij; intij;

for (i = 0; i < 2048; i++) or (j = 0; j < 2048; j++)

for (= 0;] < 2048; j++) == for (= 0; i < 2048; i++)
dsti][j] = src[il[i]; dsti][j] = src[illi];
}

21 times slower
m Hierarchical memory organization

(Pentium 4)
m Performance depends on access patterns

® Including how step through multi-dimensional array

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
= Must understand system to optimize performance
= How programs compiled and executed
® How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

50000
—

arson Best code (K. Goto)

25000

12500

Triple loop
° —_—
o 2250 4.500 750 9.000

m Standard desk p , vendor , using optimization flags

= Both implementations have exactly the same operations count (2n%)
= What is going on?

Role within Computer Science

CSci 5204 -
Csci 4211 cscis271 e Csci 5161
Networks Security p Compilers
Csci 2061 Csci 4203 /
. Computer Machine
Architecture Code
Virtual

Memory CPUs, Logic

Machine Architecture and Organization
Underlying principles for hardware and
software

csci 1[19)[13]13
, data structures

Textbooks

m Required: Randal E. Bryant and David R. O’Hallaron,

“Computer Systems: A Programmer’s Perspective, Second Edition”
(CS:APP2e), Prentice Hall, 2011

= http://csapp.cs.cmu.edu

Paper version recommended
= Tests are open book, open notes, any paper, no electronics

Used quite heavily
= How to solve labs
= Practice problems typical of exam problems

m Optional: a book about C
= Labs, homework, and tests require reading and writing code in C
= Some possible suggestions listed on the course home page

1/22/2015

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50000
—
37500
Multiple threads: 4x

25000
12500

1 Vector instructions: 4x

o . Memory hierarchy and other optimizations: 20X
0 2,250 4,500 6,750 8,000

matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

m Effect: fewer register spills, L1/L2 cache misses, and TLB misses

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture (CSci 4203)
= Design pipelined processor in Verilog
= Compilers (CSci 5161)
= Write compiler for simple language
m 2021 is Programmer-Centric

= Purpose is to show how by knowing more about the underlying system,
one can be more effective as a programmer

® |ncluding, enable you to write programs that are more reliable and
efficient

® Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

Course Components

m Lectures: Higher level concepts
m Discussion (AKA Recitation) Sections

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

m Labs (5)
= The heart of the course, fun but often time-consuming
® About 2 weeks each
= Provide in-depth understanding of an aspect of systems
® Programming and measurement
m Homework Assignments (5)
® Practice thinking and writing, similar to tests, partially graded
= Two Quizzes and One Final Exam
= Test your understanding of concepts & mathematical principles

http://csapp.cs.cmu.edu/

Electronic Resources

m Class Web Page:
= http://www-users.cs.umn.edu/classes/Spring-2015/csci2021/
= Complete schedule of lectures, exams, and assignments
= Copies of lectures, assignments, exams, solutions
= Clarifications to assignments
um Moodle Page
= Discussion forums
= Online turn-in of labs
u Where to send electronic questions?
1. Moodle forum
2. Responsible TA for a homework or lab

3. s2021s15-staff@cs.umn.edu (general mailing list)

Facilities

u Do labs using CSELabs Linux machines
= Accessible from on-campus labs or remotely (SSH)
= Get an account if you don’t have one already, login with UMN account
name and password
= Some VMs specially for us are in preparation

= Working on your own machines may sometimes be possible, but is not
supported by course staff
= Grade based on how it runs on our machines, so be sure to test there

Cheating

m What is cheating?

= Sharing code: by copying, retyping, looking at, or supplying a file

® Coaching: helping your friend to write a lab, line by line

= Copying code from previous course or from elsewhere on WWW

= Only allowed to use code we supply, or from CS:APP website

u What is NOT cheating?

= Explaining how to use systems or tools

® Helping others with high-level design issues
u Penalty for cheating:

® Minimum: 0 grade on assignment or exam, report to campus OSCAI
u Detection of cheating:

= We do check

= Our tools for doing this are better than most cheaters think!

1/22/2015

Policies: Assignments, Labs, And Exams

= Groups? No.

® You must work alone on all assignments
= Hand-in process

® Labs due online, by 11:55pm on a weekday evening

® Homeworks due on paper, by start of class on course days
u Conflicts

= There will be no makeup quizzes

= One excused missed quiz will be replaced by more weight on final
m Appealing grades

= Within 7 days of completion of grading

= Following procedure described in syllabus
= Note, we will regrade the whole assignment/exam

Timeliness

m Late labs and homeworks
= Lose 15% for each day or fraction late
® No credit after 3 days
m Catastrophic events
= Major illness, death in family, ..., (full list in syllabus)
® Are an exception, and can be excused
m Advice
® The course is fast-paced
® Once you start running late, it’s really hard to catch up

Policies: Grading

m Tests (60%): weighted 10%, 10%, 40% (final)
m Labs (30%)
m Homework Assignments (10%)

= Guaranteed:
= >90%: A-
= >80%: B-
= >70%: C-

m Curve:
= Will likely apply, in your favor only, so that grade distribution is similar to
historical averages.

mailto:cs2021s15-staff@cs.umn.edu

1/22/2015

Lab 0: Logistics Practice Data Representation
m Learn how to log into Unix machine, edit and compile a u Topics
program = Bit-level operations
u “Hello, world”-style program that just prints a message * Machine-level integers and floating-point

= Due on Moodle, Monday by 11:55pm = C operators and things that can go wrong

= Worth only one point (extra credit), but good to practice if you
haven’t work with C or Unix much before

u More details covered in tomorrow’s discussion sections

m Assignments
= L1 (Data lab): Manipulating bits

Machine-level Program Representation CPU Architecture
u Topics u Topics
= Assembly language programs ® The parts of a CPU and how they work together
= Representation of C control and data structures = Related topic: optimizing to use CPU resources more efficiently

= E.g., what does a compiler do?

m Assignments

m Assignments = L4 (Architecture lab): Modify a simplified CPU and some code that runs on

= L2 (Bomb lab): Defusing a binary bomb top of it

= |3 (Buffer lab): Hacking a program that has a buffer overflow bug

6 u

The Memory Hierarchy Logic Design
u Topics u Topics

= Memory technology, memory hierarchy, caches, disks, locality = Alevel below architecture: how to “program” with gates and wires

® How virtual memory works = Lowers abstraction all the way to how hardware works

= Basis for later courses in computer architecture

m Assignments
= |5 (Cache lab): Building a cache simulator and optimizing for locality. m Assignments
= Learn how to exploit locality in your programs. = No time for a lab, covered in final homework assignment

1/22/2015

