
1/22/2015

1

1

Course Overview and Introduction

CSci 2021: Machine Architecture and Organization
Lecture #1, January 21st, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Overview

 Course theme

 Four realities

 How the course fits into the CS curriculum

 Logistics

3

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & EE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

4

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 → 1600000000

 50000 * 50000 → ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

5

Code Security Example
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

6

Typical Usage
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

1/22/2015

2

7

Malicious Usage

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

8

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

9

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But, assembly is key to machine-level execution model
 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the lingua franca

10

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

11

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits

of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *lo)

{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)

:

: "%edx", "%eax");

}

12

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

1/22/2015

3

13

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14, then segmentation fault

 Result is architecture specific

14

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14, then segmentation fault

Location accessed by

fun(i)

Explanation: Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

15

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?

 Program in Java, Ruby or ML

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

16

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

17

The Memory Mountain

6
4

M

8
M

1
M 1
2

8
K 1

6
K

2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

s
3
2

Size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7

2.67 GHz

32 KB L1 d-cache

256 KB L2 cache

8 MB L3 cache

18

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

1/22/2015

4

19

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

20

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

21

Role within Computer Science

CSci 4203
Computer

Architecture

CSci 5161
Compilers

CSci 4211
Networks

CSci 5271
Security

CSci 1[19][13]3
Programming, data structures

CSci 4061
OSes

Machine Architecture and Organization
Underlying principles for hardware and
software

CSci
2021

CSci 5204
Adv. Computer

Architecture

Machine
Code

Virtual
Memory CPUs, Logic

22

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture (CSci 4203)

 Design pipelined processor in Verilog

 Compilers (CSci 5161)

 Write compiler for simple language

 2021 is Programmer-Centric
 Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer

 Including, enable you to write programs that are more reliable and
efficient

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

23

Textbooks

 Required: Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective, Second Edition”

(CS:APP2e), Prentice Hall, 2011

 http://csapp.cs.cmu.edu

 Paper version recommended

 Tests are open book, open notes, any paper, no electronics

 Used quite heavily

 How to solve labs

 Practice problems typical of exam problems

 Optional: a book about C
 Labs, homework, and tests require reading and writing code in C

 Some possible suggestions listed on the course home page

24

Course Components

 Lectures: Higher level concepts

 Discussion (AKA Recitation) Sections
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (5)
 The heart of the course, fun but often time-consuming

 About 2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Homework Assignments (5)

 Practice thinking and writing, similar to tests, partially graded

 Two Quizzes and One Final Exam

 Test your understanding of concepts & mathematical principles

http://csapp.cs.cmu.edu/

1/22/2015

5

25

Electronic Resources

 Class Web Page:
 http://www-users.cs.umn.edu/classes/Spring-2015/csci2021/

 Complete schedule of lectures, exams, and assignments

 Copies of lectures, assignments, exams, solutions

 Clarifications to assignments

 Moodle Page
 Discussion forums

 Online turn-in of labs

 Where to send electronic questions?

1. Moodle forum

2. Responsible TA for a homework or lab

3. cs2021s15-staff@cs.umn.edu (general mailing list)

26

Policies: Assignments, Labs, And Exams

 Groups? No.
 You must work alone on all assignments

 Hand-in process
 Labs due online, by 11:55pm on a weekday evening

 Homeworks due on paper, by start of class on course days

 Conflicts
 There will be no makeup quizzes

 One excused missed quiz will be replaced by more weight on final

 Appealing grades
 Within 7 days of completion of grading

 Following procedure described in syllabus

 Note, we will regrade the whole assignment/exam

27

Facilities

 Do labs using CSELabs Linux machines
 Accessible from on-campus labs or remotely (SSH)

 Get an account if you don’t have one already, login with UMN account
name and password

 Some VMs specially for us are in preparation

 Working on your own machines may sometimes be possible, but is not
supported by course staff

 Grade based on how it runs on our machines, so be sure to test there

28

Timeliness

 Late labs and homeworks
 Lose 15% for each day or fraction late

 No credit after 3 days

 Catastrophic events
 Major illness, death in family, …, (full list in syllabus)

 Are an exception, and can be excused

 Advice
 The course is fast-paced

 Once you start running late, it’s really hard to catch up

29

Cheating

 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line by line

 Copying code from previous course or from elsewhere on WWW

 Only allowed to use code we supply, or from CS:APP website

 What is NOT cheating?
 Explaining how to use systems or tools

 Helping others with high-level design issues

 Penalty for cheating:

 Minimum: 0 grade on assignment or exam, report to campus OSCAI

 Detection of cheating:

 We do check

 Our tools for doing this are better than most cheaters think!

30

Policies: Grading

 Tests (60%): weighted 10%, 10%, 40% (final)

 Labs (30%)

 Homework Assignments (10%)

 Guaranteed:

 ≥ 90%: A-

 ≥ 80%: B-

 ≥ 70%: C-

 Curve:
 Will likely apply, in your favor only, so that grade distribution is similar to

historical averages.

mailto:cs2021s15-staff@cs.umn.edu

1/22/2015

6

31

Lab 0: Logistics Practice

 Learn how to log into Unix machine, edit and compile a
program

 “Hello, world”-style program that just prints a message

 Due on Moodle, Monday by 11:55pm

 Worth only one point (extra credit), but good to practice if you
haven’t work with C or Unix much before

 More details covered in tomorrow’s discussion sections

32

Data Representation

 Topics
 Bit-level operations

 Machine-level integers and floating-point

 C operators and things that can go wrong

 Assignments
 L1 (Data lab): Manipulating bits

33

Machine-level Program Representation

 Topics
 Assembly language programs

 Representation of C control and data structures

 E.g., what does a compiler do?

 Assignments
 L2 (Bomb lab): Defusing a binary bomb

 L3 (Buffer lab): Hacking a program that has a buffer overflow bug

34

CPU Architecture

 Topics
 The parts of a CPU and how they work together

 Related topic: optimizing to use CPU resources more efficiently

 Assignments
 L4 (Architecture lab): Modify a simplified CPU and some code that runs on

top of it

35

The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality

 How virtual memory works

 Assignments
 L5 (Cache lab): Building a cache simulator and optimizing for locality.

 Learn how to exploit locality in your programs.

36

Logic Design

 Topics
 A level below architecture: how to “program” with gates and wires

 Lowers abstraction all the way to how hardware works

 Basis for later courses in computer architecture

 Assignments
 No time for a lab, covered in final homework assignment

1/22/2015

7

37

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way
 Set a reasonable threshold for full credit

 Post intermediate results (anonymized) on Web page for glory!

38

Welcome
and Enjoy!

