
1/22/2015

1

1

Course Overview and Introduction

CSci 2021: Machine Architecture and Organization
Lecture #1, January 21st, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Overview

 Course theme

 Four realities

 How the course fits into the CS curriculum

 Logistics

3

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & EE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

4

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 → 1600000000

 50000 * 50000 → ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

5

Code Security Example
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

6

Typical Usage
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

1/22/2015

2

7

Malicious Usage

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

8

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

9

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But, assembly is key to machine-level execution model
 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the lingua franca

10

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

11

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits

of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *lo)

{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)

:

: "%edx", "%eax");

}

12

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

1/22/2015

3

13

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14, then segmentation fault

 Result is architecture specific

14

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14, then segmentation fault

Location accessed by

fun(i)

Explanation: Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

15

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?

 Program in Java, Ruby or ML

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

16

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

17

The Memory Mountain

6
4

M

8
M

1
M 1
2

8
K 1

6
K

2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

s
3
2

Size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7

2.67 GHz

32 KB L1 d-cache

256 KB L2 cache

8 MB L3 cache

18

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

1/22/2015

4

19

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

20

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

21

Role within Computer Science

CSci 4203
Computer

Architecture

CSci 5161
Compilers

CSci 4211
Networks

CSci 5271
Security

CSci 1[19][13]3
Programming, data structures

CSci 4061
OSes

Machine Architecture and Organization
Underlying principles for hardware and
software

CSci
2021

CSci 5204
Adv. Computer

Architecture

Machine
Code

Virtual
Memory CPUs, Logic

22

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture (CSci 4203)

 Design pipelined processor in Verilog

 Compilers (CSci 5161)

 Write compiler for simple language

 2021 is Programmer-Centric
 Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer

 Including, enable you to write programs that are more reliable and
efficient

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

23

Textbooks

 Required: Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective, Second Edition”

(CS:APP2e), Prentice Hall, 2011

 http://csapp.cs.cmu.edu

 Paper version recommended

 Tests are open book, open notes, any paper, no electronics

 Used quite heavily

 How to solve labs

 Practice problems typical of exam problems

 Optional: a book about C
 Labs, homework, and tests require reading and writing code in C

 Some possible suggestions listed on the course home page

24

Course Components

 Lectures: Higher level concepts

 Discussion (AKA Recitation) Sections
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (5)
 The heart of the course, fun but often time-consuming

 About 2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Homework Assignments (5)

 Practice thinking and writing, similar to tests, partially graded

 Two Quizzes and One Final Exam

 Test your understanding of concepts & mathematical principles

http://csapp.cs.cmu.edu/

1/22/2015

5

25

Electronic Resources

 Class Web Page:
 http://www-users.cs.umn.edu/classes/Spring-2015/csci2021/

 Complete schedule of lectures, exams, and assignments

 Copies of lectures, assignments, exams, solutions

 Clarifications to assignments

 Moodle Page
 Discussion forums

 Online turn-in of labs

 Where to send electronic questions?

1. Moodle forum

2. Responsible TA for a homework or lab

3. cs2021s15-staff@cs.umn.edu (general mailing list)

26

Policies: Assignments, Labs, And Exams

 Groups? No.
 You must work alone on all assignments

 Hand-in process
 Labs due online, by 11:55pm on a weekday evening

 Homeworks due on paper, by start of class on course days

 Conflicts
 There will be no makeup quizzes

 One excused missed quiz will be replaced by more weight on final

 Appealing grades
 Within 7 days of completion of grading

 Following procedure described in syllabus

 Note, we will regrade the whole assignment/exam

27

Facilities

 Do labs using CSELabs Linux machines
 Accessible from on-campus labs or remotely (SSH)

 Get an account if you don’t have one already, login with UMN account
name and password

 Some VMs specially for us are in preparation

 Working on your own machines may sometimes be possible, but is not
supported by course staff

 Grade based on how it runs on our machines, so be sure to test there

28

Timeliness

 Late labs and homeworks
 Lose 15% for each day or fraction late

 No credit after 3 days

 Catastrophic events
 Major illness, death in family, …, (full list in syllabus)

 Are an exception, and can be excused

 Advice
 The course is fast-paced

 Once you start running late, it’s really hard to catch up

29

Cheating

 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line by line

 Copying code from previous course or from elsewhere on WWW

 Only allowed to use code we supply, or from CS:APP website

 What is NOT cheating?
 Explaining how to use systems or tools

 Helping others with high-level design issues

 Penalty for cheating:

 Minimum: 0 grade on assignment or exam, report to campus OSCAI

 Detection of cheating:

 We do check

 Our tools for doing this are better than most cheaters think!

30

Policies: Grading

 Tests (60%): weighted 10%, 10%, 40% (final)

 Labs (30%)

 Homework Assignments (10%)

 Guaranteed:

 ≥ 90%: A-

 ≥ 80%: B-

 ≥ 70%: C-

 Curve:
 Will likely apply, in your favor only, so that grade distribution is similar to

historical averages.

mailto:cs2021s15-staff@cs.umn.edu

1/22/2015

6

31

Lab 0: Logistics Practice

 Learn how to log into Unix machine, edit and compile a
program

 “Hello, world”-style program that just prints a message

 Due on Moodle, Monday by 11:55pm

 Worth only one point (extra credit), but good to practice if you
haven’t work with C or Unix much before

 More details covered in tomorrow’s discussion sections

32

Data Representation

 Topics
 Bit-level operations

 Machine-level integers and floating-point

 C operators and things that can go wrong

 Assignments
 L1 (Data lab): Manipulating bits

33

Machine-level Program Representation

 Topics
 Assembly language programs

 Representation of C control and data structures

 E.g., what does a compiler do?

 Assignments
 L2 (Bomb lab): Defusing a binary bomb

 L3 (Buffer lab): Hacking a program that has a buffer overflow bug

34

CPU Architecture

 Topics
 The parts of a CPU and how they work together

 Related topic: optimizing to use CPU resources more efficiently

 Assignments
 L4 (Architecture lab): Modify a simplified CPU and some code that runs on

top of it

35

The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality

 How virtual memory works

 Assignments
 L5 (Cache lab): Building a cache simulator and optimizing for locality.

 Learn how to exploit locality in your programs.

36

Logic Design

 Topics
 A level below architecture: how to “program” with gates and wires

 Lowers abstraction all the way to how hardware works

 Basis for later courses in computer architecture

 Assignments
 No time for a lab, covered in final homework assignment

1/22/2015

7

37

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way
 Set a reasonable threshold for full credit

 Post intermediate results (anonymized) on Web page for glory!

38

Welcome
and Enjoy!

