Graph Laplaceans - Definition

- “Laplace-type” matrices associated with general undirected graphs
- useful in many applications

- Given a graph $G = (V, E)$ define

\[A \text{ matrix } W \text{ of weights } w_{ij} \text{ for each edge} \]

- Assume $w_{ij} \geq 0$, $w_{ii} = 0$, and $w_{ij} = w_{ji} \forall (i, j)$

- The diagonal matrix $D = \text{diag}(d_i)$ with $d_i = \sum_{j \neq i} w_{ij}$

- Corresponding graph Laplacean of G is:

\[L = D - W \]

- Gershgorin’s theorem $\rightarrow L$ is positive semidefinite.

Simplest case:

\[w_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \& i \neq j \\ 0 & \text{else} \end{cases} \]

\[D = \text{diag} \left[d_i = \sum_{j \neq i} w_{ij} \right] \]

Example:

Consider the graph

\[L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix} \]

Proposition:

(i) L is symmetric semi-positive definite.

(ii) L is singular with $\frac{1}{2}$ as a null vector.

(iii) If G is connected, then $\text{Null}(L) = \text{span}\{1\}$

(iv) If G has $k > 1$ connected components G_1, G_2, \ldots, G_k, then the nullity of L is k and $\text{Null}(L)$ is spanned by the vectors $z(j), j = 1, \ldots, k$ defined by:

\[(z(j))_i = \begin{cases} 1 & \text{if } i \in G_j \\ 0 & \text{if not} \end{cases} \]
Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly \(u = 1 \) is a null vector for \(L \). The vector \(D^{-1/2}u \) is an eigenvector for the matrix \(D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2} \) associated with the smallest eigenvalue. It is also an eigenvector for \(D^{-1/2}WD^{-1/2} \) associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that \(L \) can be written as a direct sum of the Laplacian matrices for \(G_1, \ldots, G_k \).

A few properties of graph Laplaceans

Define: oriented incidence matrix \(H \): (1) First orient the edges \(i \sim j \) into \(i \to j \) or \(j \to i \). (2) Rows of \(H \) indexed by vertices of \(G \). Columns indexed by edges. (3) For each \((i, j)\) in \(E \), define the corresponding column in \(H \) as \(\sqrt{w_{ij}}(e_i - e_j) \).

Example: In previous example (P. 11-3) orient \(i \to j \) so that \(j > i \) \[lower triangular matrix representation\]. Then matrix \(H \) is:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\]

Property 1: \(L = HH^T \)

Re-prove part (iv) of previous proposition by using this property.

Property 3: (generalization) for any \(Y \in \mathbb{R}^{d \times n} \):

\[
\text{Tr} [YY^T] = \frac{1}{2} \sum_{i,j} w_{ij} \| y_i - y_j \|^2
\]

Note: \(y_j = j\text{-th column of } Y \). Usually \(d < n \). Each column can represent a data sample.

Property 4: For the particular \(L = I - \frac{1}{n} \mathbb{1} \mathbb{1}^T \)

\(XLX^T = \bar{X} \bar{X}^T \equiv n \times \text{Covariance matrix} \)

Property 5: \(L \) is singular and admits the null vector \(\mathbb{1} = \text{ones}(n, 1) \)
Property 6: (Graph partitioning) Consider situation when \(w_{ij} \in \{0, 1\} \). If \(x \) is a vector of signs (\(\pm 1 \)) then

\[
x^\top L x = 4 \times \text{('number of edge cuts')}
\]

edge-cut = pair \((i, j)\) with \(x_i \neq x_j \)

- Consequence: Can be used to partition graphs

Would like to minimize \((L x, x)\) subject to \(x \in \{-1, 1\}^n \) and \(e^\top x = 0 \) [balanced sets]

Will solve a relaxed form of this problem

What if we replace \(x \) by a vector of ones (representing one partition) and zeros (representing the other)?

Let \(x \) be any vector and \(y = x + \alpha \mathbb{1} \) and \(L \) a graph Laplacean. Compare \((L x, x)\) with \((L y, y)\).

Consider any symmetric (real) matrix \(A \) with eigenvalues \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) and eigenvectors \(u_1, \cdots, u_n \)

- Recall that:
 (Min reached for \(x = u_1 \))

\[
\min_{x \in \mathbb{R}^n} \frac{(Ax, x)}{(x, x)} = \lambda_1
\]

- In addition:
 (Min reached for \(x = u_2 \))

\[
\min_{x \perp u_1} \frac{(Ax, x)}{(x, x)} = \lambda_2
\]

- For a graph Laplacian \(u_1 = \mathbb{1} \) = vector of all ones and
 \(\ldots \)vector \(u_2 \) is called the Fiedler vector. It solves a relaxed form of the problem -

Define \(v = u_2 \) then \(lab = sign(v - med(v)) \)
Recursive Spectral Bisection

1. Form graph Laplacean
2. Partition graph in 2 based on Fielder vector
3. Partition largest subgraph in two recursively ...
4. ... Until the desired number of partitions is reached

Three approaches to graph partitioning:

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al., Miller, Vavasis, Teng et al.]
3. Graph Theory techniques – multilevel,... [use graph, but no coordinates]
 - Currently best known technique is Metis (multi-level algorithm)
 - Simplest idea: Recursive Graph Bisection; Nested dissection (George & Liu, 1980; Liu 1992)
 - Advantages: simplicity – no coordinates required

Example of a graph theory approach

- Level Set Expansion Algorithm
- Given: p nodes 'uniformly' spread in the graph (roughly same distance from one another).
- Method: Perform a level-set traversal (BFS) from each node simultaneously.
- Best described for an example on a 15 × 15 five – point Finite Difference grid.
- See [Goehring-Saad '94, See Cai-Saad '95]
- Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]
Clustering

Problem: we are given \(n \) data items: \(x_1, x_2, \ldots, x_n \). Would like to ‘cluster’ them, i.e., group them so that each group or cluster contains items that are similar in some sense.

Example: materials

[Materials diagram with clusters marked]

Example: Digits

[Digit images with PCA projection]

Refer to each group as a ‘cluster’ or a ‘class’

‘Unsupervised learning’

Example: Community Detection

Communities modeled by an ‘affinity’ graph [e.g., ‘user \(A \) sends frequent e-mails to user \(B \)’]

Adjacency Graph represented by a sparse matrix

[Matrix images with blocking]

Use ‘blocking’ techniques for sparse matrices

Advantage of this viewpoint: need not know # of clusters.

Example of application

Data set from: http://www-personal.umich.edu/~mejn/netdata/

Network connecting bloggers of different political orientations [2004 US presidential election]

‘Communities’: liberal vs. conservative

Graph: 1,490 vertices (blogs): first 758: liberal, rest: conservative.

Edge: \(i \rightarrow j \) : a citation between blogs \(i \) and \(j \)

Blocking algorithm (Density threshold=0.4): subgraphs [note: density = \(|E|/|V|^2 \)]

Smaller subgraph: conservative blogs, larger one: liberals

What is Unsupervised learning?

“Unsupervised learning”: methods do not exploit labeled data

Example of digits: perform a 2-D projection

Images of same digit tend to cluster (more or less)

Such 2-D representations are popular for visualization

Can also try to find natural clusters in data, e.g., in materials

Basic clustering technique: K-means

Example of application

Data set from:

http://www-personal.umich.edu/~mejn/netdata/

Network connecting bloggers of different political orientations [2004 US presidential election]

‘Communities’: liberal vs. conservative

Graph: 1,490 vertices (blogs): first 758: liberal, rest: conservative.

Edge: \(i \rightarrow j \) : a citation between blogs \(i \) and \(j \)

Blocking algorithm (Density threshold=0.4): subgraphs [note: density = \(|E|/|V|^2 \)]

Smaller subgraph: conservative blogs, larger one: liberals

Example of community detection

Communities modeled by an ‘affinity’ graph [e.g., ‘user \(A \) sends frequent e-mails to user \(B \)’]

Adjacency Graph represented by a sparse matrix

Use ‘blocking’ techniques for sparse matrices

Advantage of this viewpoint: need not know # of clusters.