CONVERGENCE THEORY

- Background: Best uniform approximation;
- Chebyshev polynomials;
- Analysis of the CG algorithm;
- Analysis in the non-Hermitian case (short)

Background: Best uniform approximation

We seek a function ϕ (e.g., polynomial) which deviates as little as possible from f in the sense of the $\| \cdot \|_\infty$-norm, i.e., we seek the

$$
\min_{\phi} \max_{t \in [a,b]} |f(t) - \phi(t)| = \min_{\phi} \| f - \phi \|_\infty
$$

where ϕ is in a finite dimensional space (e.g., space of polynomials of degree $\leq n$)

- Solution is the "best uniform approximation to $f"
- Important case: ϕ is a polynomial of degree $\leq n$
- In this case ϕ belongs to \mathbb{P}_n

The Min-Max Problem:

$$
\rho_n(f) = \min_{p \in \mathbb{P}_n} \max_{x \in [a,b]} |f(x) - p(x)|
$$

- If f is continuous, best approximation to f on $[a, b]$ by polynomials of degree $\leq n$ exists and is unique
- ... and $\lim_{n \to \infty} \rho_n(f) = 0$ (Weierstrass theorem).

Question: How to find the best polynomial?

Answer: Chebyshev’s equi-oscillation theorem.

Chebyshev equi-oscillation theorem: p_n is the best uniform approximation to f in $[a, b]$ if and only if there are $n + 2$ points $t_0 < t_1 < \ldots < t_{n+1}$ in $[a, b]$ such that

$$
f(t_j) - p_n(t_j) = c(-1)^j \| f - p_n \|_\infty \quad \text{with} \quad c = \pm 1
$$

$[p_n \text{ 'equi-oscillates' } n + 2 \text{ times around } f]$
Application: Chebyshev polynomials

Question: Among all monic polynomials of degree $n+1$ which one minimizes the infinity norm? Problem:

Minimize $\|t^{n+1} - a_n t^n - a_{n-1} t^{n-1} - \cdots - a_0\|_\infty$

Reformulation: Find the best uniform approximation to t^{n+1} by polynomials p of degree $\leq n$.

- $t^{n+1} - p(t)$ should be a polynomial of degree $n + 1$ which equi-oscillates $n + 2$ times.

Consequence:

- C_k Equi-Oscillates $k + 1$ times around zero.
- Normalize C_{n+1} so that leading coefficient is 1.

The minimum of $\|t^{n+1} - p(t)\|_\infty$ over $p \in \mathbb{P}_n$ is achieved when $t^{n+1} - p(t) = \frac{1}{2^n} C_{n+1}(t)$.

Another important result:

Let $[\alpha, \beta]$ be a non-empty interval in \mathbb{R} and let γ be any real scalar outside the interval $[\alpha, \beta]$. Then the minimum

$$\min_{p \in \mathbb{P}_n, p(\gamma) = 1} \max_{t \in [\alpha, \beta]} |p(t)|$$

is reached by the polynomial: $\hat{C}_k(t) \equiv \frac{C_k \left(1 + 2^{\alpha - \beta} \right)}{C_k \left(1 + 2^{\alpha - \gamma} \right)}$.

Convergence Theory for CG

- Approximation of the form $x = x_0 + p_{m-1}(A) r_0$. with $x_0 = \text{initial guess, } r_0 = b - A x_0$;
- Recall property: $x_m \text{ minimizes } \|x - x_*\|_A \text{ over } x_0 + K_m$
- **Consequence:** Standard result

Let $x_m = m$-th CG iterate, x_* = exact solution and

$$\eta = \frac{\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}$$

Then:

$$\|x_* - x_m\|_A \leq \frac{\|x_* - x_0\|_A}{C_m (1 + 2\eta)}$$

where $C_m = \text{Chebyshev polynomial of degree } m$.

Define Chebyshev polynomials:

$$C_k(t) = \cos(k \cos^{-1} t) \text{ for } k = 0, 1, \ldots, \text{ and } t \in [-1, 1]$$

Observation: C_k is a polynomial of degree k, because:

- the C_k’s satisfy the three-term recurrence:

$$C_{k+1}(t) = 2x C_k(t) - C_{k-1}(t)$$

with $C_0(t) = 1, C_1(t) = t$.

- Show the above recurrence relation
- Compute C_2, C_3, \ldots, C_8
- Show that for $|t| > 1$ we have

$$C_k(t) = \text{ch}(k \text{ch}^{-1}(t))$$
Alternative expression. From $C_k = ch(kch^{-1}(t))$:

$$C_m(t) = \frac{1}{2} \left[(t + \sqrt{t^2 - 1})^m + (t + \sqrt{t^2 - 1})^{-m} \right]$$

$$\geq \frac{1}{2} (t + \sqrt{t^2 - 1})^m.$$

Then:

$$C_m(1 + 2\eta) \geq \frac{1}{2} \left(1 + 2\eta + \sqrt{(1 + 2\eta)^2 - 1} \right)^m$$

$$\geq \frac{1}{2} \left(1 + 2\eta + 2\sqrt{\eta(\eta + 1)} \right)^m.$$

Next notice that:

$$1 + 2\eta + 2\sqrt{\eta(\eta + 1)} = \left(\sqrt{\eta} + \sqrt{\eta + 1} \right)^2$$

$$= \left(\frac{\sqrt{\lambda_{\min}} + \sqrt{\lambda_{\max}}}{\lambda_{\max} - \lambda_{\min}} \right)^2$$

where $\kappa = \kappa_2(A) = \lambda_{\max}/\lambda_{\min}$.

Substituting this in previous result yields

$$\|x_* - x_m\|_A \leq 2 \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right]^m \|x_* - x_0\|_A.$$

Compare with steepest descent!

Theory for Nonhermitian case

- Much more difficult!
- No convincing results on ‘global convergence’ for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc..
- Can get a general a-priori – a-posteriori error bound

Convergence results for nonsymmetric case

- Methods based on minimum residual better understood.
- If $(A + A^T)$ is positive definite $(Ax, x) > 0 \forall x \neq 0$), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.

MR-type methods: if $A = X\Lambda X^{-1}$, Λ diagonal, then

$$\|b - Ax_m\|_2 \leq \text{Cond}_2(X) \min_{p \in P_{m-1}, p(0)=1} \max_{\lambda \in \Lambda(A)} |p(\lambda)|$$

(P_{m-1} ≡ set of polynomials of degree ≤ $m - 1$, $\Lambda(A)$ ≡ spectrum of A)