Krylov subspace methods

- Introduction to Krylov subspace techniques
- FOM, GMRES, practical details.
- Symmetric case: Conjugate gradient
- See Chapter 6 of text for details.

Motivation

- Common feature of one-dimensional projection techniques:
 \[x_{\text{new}} = x + \alpha d \]
 where \(d \) = a certain direction.
- \(\alpha \) is defined to optimize a certain function.
- Equivalently: determine \(\alpha \) by an orthogonality constraint

Example

In MR:
\[x(\alpha) = x + \alpha d, \text{ with } d = b - Ax. \]
\[\min_{\alpha} \|b - Ax(\alpha)\|_2 \text{ reached iff } b - Ax(\alpha) \perp r \]
- One-dimensional projection methods are greedy methods. They are ‘short-sighted’.

Krylov subspace methods: Introduction

- Consider MR (or steepest descent). At each iteration:
 \[r_{k+1} = b - A(x^{(k)} + \alpha_k r_k) = r_k - \alpha_k Ar_k = (I - \alpha_k A)r_k \]

In the end:
\[r_{k+1} = (I - \alpha_k A)(I - \alpha_{k-1} A) \cdots (I - \alpha_0 A)r_0 = p_{k+1}(A)r_0 \]
where \(p_{k+1}(t) \) is a polynomial of degree \(k + 1 \) of the form
\[p_{k+1}(t) = 1 - t q_k(t) \]

Show that: \[x^{(k+1)} = x^{(0)} + q_k(A)r_0 \], with deg \(q_k \) = \(k \)
- Krylov subspace methods: iterations of this form are ‘optimal’ [from \(m \)-dimensional projection methods]

Example:

Recall in Steepest Descent: New direction of search \(\tilde{r} \) is \(\perp \) to old direction of search \(r \).

\[r \leftarrow b - Ax, \]
\[\alpha \leftarrow (r, r) / (Ar, r) \]
\[x \leftarrow x + \alpha r \]

Question: can we do better by combining successive iterates?
- Yes: Krylov subspace methods.
Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

\[K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\} \]

- The most important class of iterative methods.
- Many variants exist depending on the subspace \(L \).

Simple properties of \(K_m \)

- Notation: \(\mu = \text{deg. of minimal polynomial of } v_1 \). Then:
 - \(K_m = \{ p(A)v_1 | p = \text{polynomial of degree} \leq m - 1 \} \)
 - \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
 - \(\text{dim}(K_m) = m \) iff \(\mu \geq m \).

Goal: Given \(X = [x_1, \ldots, x_m] \) compute an orthonormal set \(Q = [q_1, \ldots, q_m] \) which spans the same subspace.

ALGORITHM : 1. Classical Gram-Schmidt

1. For \(j = 1, \ldots, m \) Do:
2. \(\hat{q}_j := x_j \)
3. For \(i = 1, \ldots, j - 1 \) Do
4. \(r_{ij} = (\hat{q}_j, q_i) \)
5. \(\hat{q}_j := \hat{q}_j - r_{ij}q_i \)
6. EndDo
7. \(r_{jj} = \|\hat{q}_j\|_2 \) If \(r_{jj} == 0 \) exit
8. \(q_j := \hat{q}_j / r_{jj} \)
9. EndDo

ALGORITHM : 2. Modified Gram-Schmidt

1. For \(j = 1, \ldots, m \) Do:
2. \(\hat{q}_j := x_j \)
3. For \(i = 1, \ldots, j - 1 \) Do
4. \(r_{ij} = (\hat{q}_j, q_i) \)
5. \(\hat{q}_j := \hat{q}_j - r_{ij}q_i \)
6. EndDo
7. \(r_{jj} = \|\hat{q}_j\|_2 \) If \(r_{jj} == 0 \) exit
8. \(q_j := \hat{q}_j / r_{jj} \)
9. EndDo

Let:

\[X = [x_1, \ldots, x_m] \ (n \times m \text{ matrix}) \]
\[Q = [q_1, \ldots, q_m] \ (n \times m \text{ matrix}) \]
\[R = \{r_{ij}\} \ (m \times m \text{ upper triangular matrix}) \]

- At each step,

\[x_j = \sum_{i=1}^{j} r_{ij}q_i \]

Result:

\[X = QR \]
Arnoldi’s algorithm

Goal: to compute an orthogonal basis of K_m.

Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

For $j = 1, \ldots, m$ Do:

Compute $w := Av_j$

For $i = 1, \ldots, j$ Do:

$h_{i,j} := (w, v_i)$

$w := w - h_{i,j}v_i$

EndDo

Compute: $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = \frac{w}{h_{j+1,j}}$

EndDo

Result of orthogonalization process (Arnoldi):

1. $V_m = [v_1, v_2, \ldots, v_m]$ orthonormal basis of K_m.
2. $AV_m = V_{m+1}H_m$
3. $V_m^T AV_m = H_m \equiv \bar{H}_m$ – last row.

Arnoldi’s Method for linear systems ($L_m = K_m$)

From Petrov-Galerkin condition when $L_m = K_m$, we get

$x_m = x_0 + V_mH_m^{-1}V_m^Tr_0$

Select $v_1 = r_0/\|r_0\|_2 \equiv r_0/\beta$ in Arnoldi’s. Then

$x_m = x_0 + \beta V_mH_m^{-1}e_1$

What is the residual vector $r_m = b - Ax_m$?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s ORTHORES [1982], Axelsson’s projection method [1981],..*

* Also Conjugate Gradient method [see later]

Minimal residual methods ($L_m = AK_m$)

When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain relation

$x_m = x_0 + V_m[W_m^T AV_m]^{-1}W_m^Tr_0$

$x_m = x_0 + V_m[(AV_m)^T AV_m]^{-1}(AV_m)^T r_0$.

Use again $v_1 := r_0/(\beta := \|r_0\|_2)$ and the relation

$AV_m = V_{m+1}H_m$

$x_m = x_0 + V_m[\bar{H}_m^T \bar{H}_m]^{-1}\bar{H}_m^T \beta e_1 = x_0 + V_m y_m$

where y_m minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ over $y \in \mathbb{R}^m$.
Gives the Generalized Minimal Residual method (GMRES) ([Saad-Schultz, 1986]):

\[x_m = x_0 + V_m y_m \]
where
\[y_m = \min_y \| \beta e_1 - \bar{H}_m y \|_2 \]

Several Mathematically equivalent methods:

- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR

A few implementation details: GMRES

Issue 1: How to solve the least-squares problem?

Issue 2: How to compute residual norm (without computing solution at each step)?

Several solutions to both issues. Simplest: use Givens rotations.

Recall: We want to solve least-squares problem

\[\min_y \| \beta e_1 - \bar{H}_m y \|_2 \]

Transform the problem into upper triangular one.

Rotation matrices of dimension \(m + 1 \). Define (with \(s_i^2 + c_i^2 = 1 \)):

\[
\Omega_i = \begin{bmatrix} 1 & \cdots & 1 \\ & \ddots & \ddots & \ddots \\ & & 1 \\ & & & c_i & s_i \\ & & & -s_i & c_i \\ & & & & 1 & \cdots & 1 \end{bmatrix}
\]

\(\bar{H}_5 = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\ h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\ h_{32} & h_{33} & h_{34} & h_{35} \\ h_{43} & h_{44} & h_{45} \\ h_{54} & h_{55} \\ h_{65} \end{bmatrix} \)

\(\bar{g}_0 = \begin{bmatrix} \beta \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \)

1-st Rotation:

\[
\Omega_1 = \begin{bmatrix} c_1 & s_1 & 1 \\ -s_1 & c_1 & 1 \end{bmatrix}
\]

with:

\[s_1 = \frac{h_{21}}{\sqrt{h_{11}^2 + h_{21}^2}}, \quad c_1 = \frac{h_{11}}{\sqrt{h_{11}^2 + h_{21}^2}} \]
\[
\tilde{H}_m^{(1)} = \begin{bmatrix}
h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\
h_{21}^{(1)} & h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\
h_{31}^{(1)} & h_{32}^{(1)} & h_{33}^{(1)} & h_{34}^{(1)} & h_{35}^{(1)} \\
h_{41}^{(1)} & h_{42}^{(1)} & h_{43}^{(1)} & h_{44}^{(1)} & h_{45}^{(1)} \\
h_{51}^{(1)} & h_{52}^{(1)} & h_{53}^{(1)} & h_{54}^{(1)} & h_{55}^{(1)} \\
h_{61}^{(1)} & h_{62}^{(1)} & h_{63}^{(1)} & h_{64}^{(1)} & h_{65}^{(1)}
\end{bmatrix},
\tilde{g}_1 = \begin{bmatrix}
c_1 \\
s_1 \\
0 \\
0 \\
0
\end{bmatrix}
\]

Repeat with \(\Omega_2\), \(\Omega_3\), \(\Omega_4\), \(\Omega_5\). Result:
\[
\tilde{H}_5^{(5)} = \begin{bmatrix}
h_{11}^{(5)} & h_{12}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} \\
h_{21}^{(5)} & h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} \\
h_{31}^{(5)} & h_{32}^{(5)} & h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} \\
h_{41}^{(5)} & h_{42}^{(5)} & h_{43}^{(5)} & h_{44}^{(5)} & h_{45}^{(5)} \\
h_{51}^{(5)} & h_{52}^{(5)} & h_{53}^{(5)} & h_{54}^{(5)} & h_{55}^{(5)} \\
h_{61}^{(5)} & h_{62}^{(5)} & h_{63}^{(5)} & h_{64}^{(5)} & h_{65}^{(5)}
\end{bmatrix},
\tilde{g}_5 = \begin{bmatrix}
\gamma_1 \\
\gamma_2 \\
\gamma_3 \\
\gamma_4 \\
\gamma_5 \\
\gamma_6
\end{bmatrix}
\]

Define
\[
Q_m = \Omega_m \Omega_{m-1} \ldots \Omega_1,
\tilde{R}_m = \tilde{H}_m^{(m)} = Q_m \tilde{H}_m,
\tilde{g}_m = Q_m (\beta e_1) = (\gamma_1, \ldots, \gamma_{m+1})^T.
\]

\(\bullet\) Since \(Q_m\) is unitary,
\[
\min \| \beta e_1 - \tilde{H}_m y \|_2 = \min \| \tilde{g}_m - \tilde{R}_m y \|_2.
\]

\(\bullet\) Delete last row and solve resulting triangular system.
\[
\tilde{R}_m y_m = \tilde{g}_m
\]

Proposition:
1. The rank of \(AV_m\) is equal to the rank of \(R_m\). In particular, if \(r_{mm} = 0\) then \(A\) must be singular.
2. The vector \(y_m\) that minimizes \(\| \beta e_1 - \tilde{H}_m y \|_2\) is given by
\[
y_m = \tilde{R}_m^{-1} \tilde{g}_m.
\]
3. The residual vector at step \(m\) satisfies
\[
b - Ax_m = V_{m+1} [\beta e_1 - \tilde{H}_m y_m] = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})
\]
4. As a result, \(\| b - Ax_m \|_2 = |\gamma_{m+1}|.\)