Krylov subspace methods

• Introduction to Krylov subspace techniques

• FOM, GMRES, practical details.

• Symmetric case: Conjugate gradient

• See Chapter 6 of text for details.
Motivation

- Common feature of one-dimensional projection techniques:
 \[x_{\text{new}} = x + \alpha d \]
 where \(d \) = a certain direction.
- \(\alpha \) is defined to optimize a certain function.
- Equivalently: determine \(\alpha \) by an orthogonality constraint

Example

In MR:
* \(x(\alpha) = x + \alpha d \), with \(d = b - Ax \).*

\[\min_{\alpha} \| b - Ax(\alpha) \|_2 \text{ reached iff } b - Ax(\alpha) \perp r \]

- One-dimensional projection methods are greedy methods. They are ‘short-sighted’.
Example:

Recall in Steepest Descent: New direction of search \tilde{r} is \perp to old direction of search r.

\[
\begin{align*}
 r &\leftarrow b - Ax, \\
 \alpha &\leftarrow (r, r) / (Ar, r) \\
 x &\leftarrow x + \alpha r
\end{align*}
\]

Question: can we do better by combining successive iterates?

Yes: Krylov subspace methods.
Consider MR (or steepest descent). At each iteration:

\[r_{k+1} = b - A(x^{(k)} + \alpha_k r_k) \]
\[= r_k - \alpha_k Ar_k \]
\[= (I - \alpha_k A)r_k \]

In the end:

\[r_{k+1} = (I - \alpha_k A)(I - \alpha_{k-1} A) \cdots (I - \alpha_0 A)r_0 = p_{k+1}(A)r_0 \]

where \(p_{k+1}(t) \) is a polynomial of degree \(k + 1 \) of the form

\[p_{k+1}(t) = 1 - tq_k(t) \]

Show that:

\[x^{(k+1)} = x^{(0)} + q_k(A)r_0 \]

Krylov subspace methods: iterations of this form that are ‘optimal’ [from \(m \)-dimensional projection methods]
Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

\[K_m(A, v_1) = \text{span}\{v_1, Av_1, \cdots, A^{m-1}v_1\} \]

- The most important class of iterative methods.
- Many variants exist depending on the subspace \(L \).

Simple properties of \(K_m \)

- Notation: \(\mu = \text{deg. of minimal polynomial of } v_1 \). Then:
 - \(K_m = \{p(A)v_1|p = \text{polynomial of degree } \leq m - 1\} \)
 - \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
 - \(\text{dim}(K_m) = m \) iff \(\mu \geq m \).
A little review: Gram-Schmidt process

Goal: given $X = [x_1, \ldots, x_m]$ compute an orthonormal set $Q = [q_1, \ldots, q_m]$ which spans the same subspace.

ALGORITHM : 1. Classical Gram-Schmidt

1. For $j = 1, \ldots, m$ Do:
2. Compute $r_{ij} = (x_j, q_i)$ for $i = 1, \ldots, j - 1$
3. Compute $\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij} q_i$
4. $r_{jj} = \|\hat{q}_j\|_2$ If $r_{jj} == 0$ exit
5. $q_j = \hat{q}_j / r_{jj}$
6. EndDo
ALGORITHM : 2. Modified Gram-Schmidt

1. For $j = 1, \ldots, m$ Do:
2. \(\hat{q}_j := x_j \)
3. For $i = 1, \ldots, j - 1$ Do
4. \(r_{ij} = (\hat{q}_j, q_i) \)
5. \(\hat{q}_j := \hat{q}_j - r_{ij}q_i \)
6. EndDo
7. \(r_{jj} = \|\hat{q}_j\|_2 \). If $r_{jj} == 0$ exit
8. \(q_j := \hat{q}_j / r_{jj} \)
9. EndDo
Let:

\[X = [x_1, \ldots, x_m] \ (n \times m \text{ matrix}) \]

\[Q = [q_1, \ldots, q_m] \ (n \times m \text{ matrix}) \]

\[R = \{r_{ij}\} \ (m \times m \text{ upper triangular matrix}) \]

At each step,

\[x_j = \sum_{i=1}^{j} r_{ij} q_i \]

Result:

\[X = QR \]
Arnoldi’s algorithm

Goal: to compute an orthogonal basis of K_m.

Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

For $j = 1, \ldots, m$ Do:
 Compute $w := Av_j$
 For $i = 1, \ldots, j$ Do:
 $h_{i,j} := (w, v_i)$
 $w := w - h_{i,j}v_i$
 EndDo
 Compute: $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w / h_{j+1,j}$
EndDo
Result of orthogonalization process (Arnoldi):

1. \(V_m = [v_1, v_2, \ldots, v_m] \) orthonormal basis of \(K_m \).

2. \(AV_m = V_{m+1}H_m \)

3. \(V_m^T AV_m = H_m \equiv \overline{H}_m - \text{last row.} \)

\[
AV_m = V_{m+1}H_m
\]

\[
V_{m+1} = [V_m, v_{m+1}]
\]
Arnoldi’s Method for linear systems \((L_m = K_m)\)

From Petrov-Galerkin condition when \(L_m = K_m\), we get

\[
x_m = x_0 + V_m H_m^{-1} V_m^T r_0
\]

- Select \(v_1 = r_0/\|r_0\|_2 \equiv r_0/\beta\) in Arnoldi’s. Then

\[
x_m = x_0 + \beta V_m H_m^{-1} e_1
\]

What is the residual vector \(r_m = b - Ax_m\)?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s OR-THORES [1982], Axelsson’s projection method [1981],...

* Also Conjugate Gradient method [see later]
When \(L_m = AK_m \), we let \(W_m \equiv AV_m \) and obtain relation

\[
x_m = x_0 + V_m [W_m^T AV_m]^{-1} W_m^T r_0
= x_0 + V_m [(AV_m)^T AV_m]^{-1} (AV_m)^T r_0.
\]

- Use again \(v_1 := r_0 / (\beta := \|r_0\|_2) \) and the relation

\[
AV_m = V_{m+1} \bar{H}_m
\]

- \(x_m = x_0 + V_m [\bar{H}_m^T \bar{H}_m]^{-1} \bar{H}_m^T \beta e_1 = x_0 + V_m y_m \)

where \(y_m \) minimizes \(\|\beta e_1 - \bar{H}_m y\|_2 \) over \(y \in \mathbb{R}^m \).
Gives the Generalized Minimal Residual method (GMRES) ([Saad-Schultz, 1986]):

\[x_m = x_0 + V_m y_m \quad \text{where} \quad y_m = \min_{y} \|\beta e_1 - \bar{H}_m y\|_2 \]

Several Mathematically equivalent methods:

- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR
A few implementation details: GMRES

Issue 1: How to solve the least-squares problem?

Issue 2: How to compute residual norm (without computing solution at each step)?

- Several solutions to both issues. Simplest: use Givens rotations.
- Recall: We want to solve least-squares problem

\[
\min_y \| \beta e_1 - \overline{H}_m y \|_2
\]

- Transform the problem into upper triangular one.
Rotation matrices of dimension $m + 1$. Define (with $s_i^2 + c_i^2 = 1$):

$$\Omega_i = \begin{bmatrix}
1 \\
\vdots \\
1 \\
-c_i & s_i \\
-s_i & c_i \\
\end{bmatrix} \begin{bmatrix}
1 \\
\vdots \\
1 \\
\end{bmatrix} \quad \leftarrow \text{row } i$$

$$\leftarrow \text{row } i + 1$$

Multiply \bar{H}_m and right-hand side $\bar{g}_0 \equiv \beta e_1$ by a sequence of such matrices from the left. s_i, c_i selected to eliminate $h_{i+1,i}$.

Text: 6 – Krylov1
\[\bar{H}_5 = \begin{bmatrix}
h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\
h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\
h_{32} & h_{33} & h_{34} & h_{35} \\
h_{43} & h_{44} & h_{45} \\
h_{54} & h_{55} \\
h_{65}
\end{bmatrix}, \quad \bar{g}_0 = \begin{bmatrix}
\beta \\
0 \\
0 \\
0 \\
0
\end{bmatrix} \]

1-st Rotation:

\[\Omega_1 = \begin{bmatrix}
c_1 & s_1 \\
-s_1 & c_1 \\
1 & 1 \end{bmatrix} \quad \text{with:} \quad s_1 = \frac{h_{21}}{\sqrt{h_{11}^2 + h_{21}^2}}, \quad c_1 = \frac{h_{11}}{\sqrt{h_{11}^2 + h_{21}^2}} \]
\[\bar{H}_m^{(1)} = \begin{bmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\ h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\ h_{32} & h_{33} & h_{34} & h_{35} \\ h_{43} & h_{44} & h_{45} & h_{45} \\ h_{54} & h_{55} & h_{55} & h_{65} \end{bmatrix}, \quad \bar{g}_1 = \begin{bmatrix} c_{1/3} \\ -s_{1/3} \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

Repeat with \(\Omega_2 \), \(\ldots \), \(\Omega_5 \).

Result:

\[\bar{H}_5^{(5)} = \begin{bmatrix} h_{11}^{(5)} & h_{12}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} \\ h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} \\ h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} & h_{45}^{(5)} \\ h_{44}^{(5)} & h_{45}^{(5)} & h_{45}^{(5)} & h_{55}^{(5)} \\ h_{55}^{(5)} & 0 \end{bmatrix}, \quad \bar{g}_5 = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \cdot \\ \cdot \\ \gamma_6 \end{bmatrix} \]
Define

\[Q_m = \Omega_m \Omega_{m-1} \cdots \Omega_1 \]
\[\bar{R}_m = \bar{H}_m^{(m)} = Q_m \bar{H}_m, \]
\[\bar{g}_m = Q_m (\beta e_1) = (\gamma_1, \ldots, \gamma_{m+1})^T. \]

Since \(Q_m \) is unitary,

\[\min \| \beta e_1 - \bar{H}_m y \|_2 = \min \| \bar{g}_m - \bar{R}_m y \|_2. \]

Delete last row and solve resulting triangular system.

\[R_m y_m = g_m \]
Proposition:
1. The rank of AV_m is equal to the rank of R_m. In particular, if $r_{mm} = 0$ then A must be singular.
2. The vector y_m that minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ is given by
 $$y_m = R_m^{-1} g_m.$$
3. The residual vector at step m satisfies
 $$b - Ax_m = V_{m+1} [\beta e_1 - \bar{H}_m y_m]$$
 $$= V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})$$
4. As a result, $\|b - Ax_m\|_2 = |\gamma_{m+1}|$.