8

METHODS RELATED TO THE
NORMAL EQUATIONS

There are a number of techniques for converting a non-symmetric linear sys-
tem into a symmetric one. One such technique solves the equivalent linear
system AT Az = ATb, called the normal equations. Often, this approach
is avoided in practice because the coefficient matrix AT A is much worse
conditioned than A. However, the normal equations approach may be ade-
quate in some situations. Indeed, there are even applications in which it is
preferred to the usual Krylov subspace techniques. This chapter covers it-
erative methods which are either directly or implicitly related to the normal
equations.

—
THE NORMAL EQUATIONS

3

In order to solve the linear system Az = b when A is nonsymmetric, we can solve the
equivalent system

ATAz = AT (8.1)

which is Symmetric Positive Definite. This system is known as the system of the normal
equations associated with the least-squares problem,

minimize  ||b — Az||>. (8.2)

Note that (8.1) is typically used to solve the least-squares problem (8.2) for over-
determined systems, i.e., when A is a rectangular matrix of size n x m, m < n.

A similar well known alternative sets 2 = A7« and solves the following equation for
U

AATy =b. (8-3)

229



230 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

Once the solution u is computed, the original unknown 2 could be obtained by multiplying
u by AT However, most of the algorithms we will see do not invoke the  variable explic-
itly and work with the original variable z instead. The above system of equations can be
used to solve under-determined systems, i.e., those systems involving rectangular matrices
of size n x m, with n. < m. It is related to (8.1) in the following way. Assume that n < m
and that A has full rank. Let z,. be any solution to the underdetermined system Az = b.
Then (8.3) represents the normal equations for the least-squares problem,

minimize ||z, — ATul|. (8.4)

Since by definition ATu = =, then (8.4) will find the solution vector z that is closest to
z, in the 2-norm sense. What is interesting is that when n. < m there are infinitely many
solutions z. to the system Az = b, but the minimizer u of (8.4) does not depend on the
particular . used.

The system (8.1) and methods derived from it are often labeled with NR (N for “Nor-
mal” and R for “Residual”) while (8.3) and related techniques are labeled with NE (N
for “Normal” and E for “Error”). If A is square and nonsingular, the coefficient matrices
of these systems are both Symmetric Positive Definite, and the simpler methods for sym-
metric problems, such as the Conjugate Gradient algorithm, can be applied. Thus, CGNE
denotes the Conjugate Gradient method applied to the system (8.3) and CGNR the Conju-
gate Gradient method applied to (8.1).

There are several alternative ways to formulate symmetric linear systems having the
same solution as the original system. For instance, the symmetric linear system

() (2)=(2) 6

with r = b — Az, arises from the standard necessary conditions satisfied by the solution of
the constrained optimization problem,

L 1
minimize §||r — b3 (8.6)
subjectto ATy = 0. (8.7)

The solution z to (8.5) is the vector of Lagrange multipliers for the above problem.
Another equivalent symmetric system is of the form

(7 0) (%)= ().

The eigenvalues of the coefficient matrix for this system are +¢;, where ¢; is an arbitrary
singular value of A. Indefinite systems of this sort are not easier to solve than the origi-
nal nonsymmetric system in general. Although not obvious immediately, this approach is
similar in nature to the approach (8.1) and the corresponding Conjugate Gradient iterations
applied to them should behave similarly.

A general consensus is that solving the normal equations can be an inefficient approach
in the case when A is poorly conditioned. Indeed, the 2-norm condition number of AT A is
given by

Condz (AT A) = [[ATAll2 [|(ATA) 7o

Now observe that [|AT 4| = 02,,,(A) where o4, (A) is the largest singular value of A

mazr



8.2 ROW PROJECTION METHODS 231

which, incidentally, is also equal to the 2-norm of A. Thus, using a similar argument for
the inverse (AT A)~! yields

Condy (AT A) = ||A||2 ||A~||2 = Cond3(A). (8.8)

The 2-norm condition number for AT A is exactly the square of the condition number of
A, which could cause difficulties. For example, if originally Cond,(A) = 108, then an
iterative method may be able to perform reasonably well. However, a condition number of
106 can be much more difficult to handle by a standard iterative method. That is because
any progress made in one step of the iterative procedure may be annihilated by the noise
due to numerical errors. On the other hand, if the original matrix has a good 2-norm condi-
tion number, then the normal equation approach should not cause any serious difficulties.
In the extreme case when A is unitary, i.e., when AH A = I, then the normal equations are
clearly the best approach (the Conjugate Gradient method will converge in zero step!).

e
ROW PROJECTION METHODS

N c2

When implementing a basic relaxation scheme, such as Jacobi or SOR, to solve the linear
system

AT Az = ATy, (8.9)

AATy = b, (8.10)

it is possible to exploit the fact that the matrices A7 A or AAT need not be formed explic-
itly. As will be seen, only a row or a column of A at a time is needed at a given relaxation
step. These methods are known as row projection methods since they are indeed projection
methods on rows of A or AT Block row projection methods can also be defined similarly.

8.2.1 GAUSS-SEIDEL ON THE NORMAL EQUATIONS

It was stated above that in order to use relaxation schemes on the normal equations, only
access to one column of A at a time is needed for (8.9) and one row at a time for (8.10).
This is now explained for (8.10) first. Starting from an approximation to the solution of
(8.10), a basic relaxation-based iterative procedure modifies its components in a certain
order using a succession of relaxation steps of the simple form

Upew = U + 0;€; (8.11)

where e; is the i-th column of the identity matrix. The scalar §; is chosen so that the i-th
component of the residual vector for (8.10) becomes zero. Therefore,

(b — AAT(U + 5,~ei), 6,’) =0 (8.12)



232 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

which, setting r = b — AATw, yields,

5 = ('f‘, ei) .
|ATe;]|3

Denote by 3; the i-th component of b. Then a basic relaxation step consists of taking
Bi — (ATu, ATe))

(8.13)

S = 8.14
AT (¢:14
Also, (8.11) can be rewritten in terms of x-variables as follows:
Tnew = ¢ + 0;ATe;. (8.15)

The auxiliary variable » has now been removed from the scene and is replaced by the
original variable z = AT u.

Consider the implementation of a forward Gauss-Seidel sweep based on (8.15) and
(8.13) for a general sparse matrix. The evaluation of §; from (8.13) requires the inner prod-
uct of the current approximation z = A%y with ATe;, the i-th row of A. This inner product
is inexpensive to compute because ATe; is usually sparse. If an acceleration parameter w
is used, we only need to change §; into wd;. Therefore, a forward SOR sweep would be as
follows.

ALGORITHM 8.1: Forward NE-SOR Sweep

1. Choose an initial x.

2. Fori=1,2,...,n Do:
_ Bi—(ATei,z)

3. 52 = w W

4, z:=xz+8ATe;

5. EndDo

Note that AT e; is a vector equal to the transpose of the i-th row of A. All that is needed is
the row data structure for A to implement the above algorithm. Denoting by nz; the number
of nonzero elements in the i-th row of A, then each step of the above sweep requires
2nz; + 2 operations in line 3, and another 2nz; operations in line 4, bringing the total to
4nz; + 2. The total for a whole sweep becomes 4nz + 2n operations, where nz represents
the total number of nonzero elements of A. Twice as many operations are required for the
Symmetric Gauss-Seidel or the SSOR iteration. Storage consists of the right-hand side, the
vector z, and possibly an additional vector to store the 2-norms of the rows of A. A better
alternative would be to rescale each row by its 2-norm at the start.

Similarly, a Gauss-Seidel sweep for (8.9) would consist of a succession of steps of the
form

Tnew = T + 0;€;. (8.16)

Again, the scalar ¢; is to be selected so that the i-th component of the residual vector for
(8.9) becomes zero, which yields

(ATb — AT A(x + 6;e;), ;) = 0. (8.17)



8.2 ROW PROJECTION METHODS 233

With r = b — Ax, this becomes (AT (r — §; Ae;), e;) = 0, which yields
(Ta Ael)
8 = . (8.18)
[l Aesll3

Then the following algorithm is obtained.

ALGORITHM 8.2: Forward NR-SOR Sweep

1. Choose an initial x, computer := b — Ax.

2. Fori=1,2,...,n Do:
o (r,Ae;)

3 di=wigae

4, T =T+ 0;€;

5 ri=r-— 5,'146,’

6. EndDo

In contrast with Algorithm 8.1, the column data structure of A is now needed for the imple-
mentation instead of its row data structure. Here, the right-hand side b can be overwritten
by the residual vector r, so the storage requirement is essentially the same as in the previ-
ous case. In the NE version, the scalar 8; — («, a;) is just the i-th component of the current
residual vector r = b — Ax. As a result, stopping criteria can be built for both algorithms
based on either the residual vector or the variation in the solution. Note that the matrices
AAT and AT A can be dense or generally much less sparse than A, yet the cost of the
above implementations depends only on the nonzero structure of A. This is a significant
advantage of relaxation-type preconditioners over incomplete factorization preconditioners
when using Conjugate Gradient methods to solve the normal equations.

One question remains concerning the acceleration of the above relaxation schemes
by under- or over-relaxation. If the usual acceleration parameter w is introduced, then we
only have to multiply the scalars ¢; in the previous algorithms by w. One serious difficulty
here is to determine the optimal relaxation factor. If nothing in particular is known about
the matrix AAT, then the method will converge for any w lying strictly between 0 and
2, as was seen in Chapter 4, because the matrix is positive definite. Moreover, another
unanswered question is how convergence can be affected by various reorderings of the
rows. For general sparse matrices, the answer is not known.

8.2.2 CIMMINO’'S METHOD

In a Jacobi iteration for the system (8.9), the components of the new iterate satisfy the
following condition:

(ATb — AT A(z + die;), ;) = 0. (8.19)
This yields
(b— A(x + 0;e;), Ae;) =0 or (r—6;Ae;, Ae;)) =0



234 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

in which r is the old residual b — Az. As a result, the s-component of the new iterate x,,¢4,
is given by

Tnew,i = Ti + 0;€i, (8.20)
(7‘, Aez)

0 = . (8.21)
[l Aesll3

Here, be aware that these equations do not result in the same approximation as that pro-
duced by Algorithm 8.2, even though the modifications are given by the same formula.
Indeed, the vector z is not updated after each step and therefore the scalars §; are different
for the two algorithms. This algorithm is usually described with an acceleration param-
eter w, i.e., all §;’s are multiplied uniformly by a certain w. If d denotes the vector with
coordinates §;,7 = 1,. .., n, the following algorithm results.

ALGORITHM 8.3: Cimmino-NR

1. Choose initial guess zy. Setx = xg,r = b — Axg
Until convergence Do:
Fori=1,...,n Do:
(r,Ae;)
([ Ae:ll3

2

3

4, (51 = w
5. EndDo

6 z:=z+dwhered =3 die;
7 r:=r— Ad

8. EndDo

Notice that all the coordinates will use the same residual vector r to compute the
updates d;. When w = 1, each instance of the above formulas is mathematically equivalent
to performing a projection step for solving Az = b with X = span{e;}, and £ = AK. It
is also mathematically equivalent to performing an orthogonal projection step for solving
AT Az = ATb with K = span{e;}.

It is interesting to note that when each column Ae; is normalized by its 2-norm, i.e., if
|Aeill = 1,4 =1,...,n, then §; = w(r, Ae;) = w(ATr, e;). In this situation,

d=wATr = wAT (b — Ax)

and the main loop of the algorithm takes the vector form

d:=wATr
r:=z+d
r:=r— Ad.

Each iteration is therefore equivalent to a step of the form
Tnew = T+ w (ATb — ATAx)

which is nothing but the Richardson iteration applied to the normal equations (8.1). In
particular, as was seen in 4.1, convergence is guaranteed for any w which satisfies,

0<w< (8.22)

A77’1(1$



8.2 ROW PROJECTION METHODS 235

where A4z is the largest eigenvalue of AT A. In addition, the best acceleration parameter
is given by
2

Wopt =
)\min + /\maw

in which, similarly, \,:, is the smallest eigenvalue of AT A. If the columns are not nor-
malized by their 2-norms, then the procedure is equivalent to a preconditioned Richardson
iteration with diagonal preconditioning. The theory regarding convergence is similar but
involves the preconditioned matrix or, equivalently, the matrix A’ obtained from A by nor-
malizing its columns.

The algorithm can be expressed in terms of projectors. Observe that the new residual
satisfies

- (7‘, Ael)
Tnew =T — w Ae;. (8.23)
; [4eil3
Each of the operators
(r, Ae;)
I‘)z' : Aez- = PiT (824)
| Aesll3

is an orthogonal projector onto Ae;, the -th column of A. Hence, we can write

Tnew = (I - WZPL) T. (825)
i=1

There are two important variations to the above scheme. First, because the point Jacobi
iteration can be very slow, it may be preferable to work with sets of vectors instead. Let
™, ™2, - .., Tp be a partition of the set {1,2,...,n} and, for each 7, let E; be the matrix
obtained by extracting the columns of the identity matrix whose indices belong to ;.
Going back to the projection framework, define A; = AFE;. If an orthogonal projection
method is used onto E; to solve (8.1), then the new iterate is given by

14
Tpew = T +w Z Ezdz (8.26)

di = (Ef ATAE)'ET ATr = (AT A;)) 7 AT r. (8.27)
Each individual block-component d; can be obtained by solving a least-squares problem
mdin [|r — Asd||2.

An interpretation of this indicates that each individual substep attempts to reduce the resid-
ual as much as possible by taking linear combinations from specific columns of A;. Similar
to the scalar iteration, we also have

n
Thew = (I—wZP,) r
i=1

where P; now represents an orthogonal projector onto the span of 4;.
Note that A, A,, ..., A, is a partition of the column-set { Ae; };—1,..., and this parti-
tion can be arbitrary. Another remark is that the original Cimmino method was formulated



236 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

for rows instead of columns, i.e., it was based on (8.1) instead of (8.3). The alternative
algorithm based on columns rather than rows is easy to derive.

—
CONJUGATE GRADIENT AND NORMAL EQUATIONS

A popular combination to solve nonsymmetric linear systems applies the Conjugate Gra-
dient algorithm to solve either (8.1) or (8.3). As is shown next, the resulting algorithms can
be rearranged because of the particular nature of the coefficient matrices.

8.3.1 CGNR

We begin with the Conjugate Gradient algorithm applied to (8.1). Applying CG directly
to the system and denoting by z; the residual vector at step ¢ (instead of r;) results in the
following sequence of operations:

o a; = (zj,2;) /(AT Apj, p;) = (25, 2;)/ (Apj, Ap;)

® X1 =%+ Qyp;

® 2jy1 =25 — ajATApj

® B = (zjt+1,241)/ (25, 25)

® pjt1 = zjt1 + Bpj .
If the original residual »; = b — Axz; must be available at every step, we may compute
the residual z;11 in two parts: r; 1 := r; — a;Ap; and then z;41 = ATr;  which is

the residual for the normal equations (8.1). It is also convenient to introduce the vector
w; = Ap;. With these definitions, the algorithm can be cast in the following form.

ALGORITHM 8.4: CGNR

1. Compute ro =b— Axg, 20 = ATT(), Po = 20.
2. Fori=0,..., until convergence Do:
3. w; = Ap;

4. a; = lzl?/llwill3

5 miy1 =3+ ap;

6. Tiv1 = T — Q;W;

7. zig1=ATri

8 Bi = llzirall3/llzill3,

9. DPit1 = Zit1 + Bipi

0. EndDo

In Chapter 6, the approximation x,,, produced at the m-th step of the Conjugate Gra-
dient algorithm was shown to minimize the energy norm of the error over an affine Krylov



8.3 CONJUGATE GRADIENT AND NORMAL EQUATIONS 237

subspace. In this case, z,, minimizes the function
f@) = (AT A(2. — 2), (24 — 2))
over all vectors z in the affine Krylov subspace
xo + K (AT A, ATrg) = 29 + span{ATry, ATAATry, ..., (ATA)™ 1 ATy},

in which rg = b— Az, is the initial residual with respect to the original equations Az = b,
and AT is the residual with respect to the normal equations A7 Az = ATb. However,
observe that

f(@) = (Alzs — ), A(zs — 7)) = [|b — Az]l3.

Therefore, CGNR produces the approximate solution in the above subspace which has the
smallest residual norm with respect to the original linear system Az = b. The difference
with the GMRES algorithm seen in Chapter 6, is the subspace in which the residual norm
is minimized.

Example 8.1 Table 8.1 shows the results of applying the CGNR algorithm with no pre-
conditioning to three of the test problems described in Section 3.7.

Matrix | Iters | Kflops | Residual Error

F2DA | 300 | 4847 | 0.23E+02 | 0.62E+00
F3D 300 | 23704 | 0.42E+00 | 0.15E+00
ORS 300 | 5981 | 0.30E+02 | 0.60E-02

Table 8.1 A test run of CGNR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The method
failed to converge in less than 300 steps for all three problems. Failures of this type, char-
acterized by very slow convergence, are rather common for CGNE and CGNR applied to
problems arising from partial differential equations. Preconditioning should improve per-
formance somewhat but, as will be seen in Chapter 10, normal equations are also difficult
to precondition.

8.3.2 CGNE

A similar reorganization of the CG algorithm is possible for the system (8.3) as well.
Applying the CG algorithm directly to (8.3) and denoting by ¢; the conjugate directions,
the actual CG iteration for the « variable would be as follows:

® a;:=(rj,r;)/(AAT g5, q5) = (rj,r;)/(ATq;, ATq5)

® Ujyy = Uj + 0 Q5

® i =T — oszAqu

® 3= (rjy1,rj41)/(rj,75)



238 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

® i1 :=rit + 5545 -
Notice that an iteration can be written with the original variable z; = zo + AT (u; — uo)
by introducing the vector p; = AT¢;. Then, the residual vectors for the vectors z; and
u; are the same. No longer are the ¢; vectors needed because the p;’s can be obtained as
pj+1 1= ATrji1 + B;p;. The resulting algorithm described below, the Conjugate Gradient
for the normal equations (CGNE), is also known as Craig’s method.

ALGORITHM 8.5: CGNE (Craig's Method)

1. Computery =b— Axg, po = ATry.
2. Fori=0,1,...,until convergence Do:
3. a; = (ri,ri)/(0i>ps)

4 Tiy1 = Ti + a;p;

5 riy1 =1 —o;Ap;
6

7

8

Bi = (rig1,mix1)/(ri, 73)
pitv1 = ATrig1 + Bipi
EndDo

We now explore the optimality properties of this algorithm, as was done for CGNR.
The approximation u,,, related to the variable z,, by z,, = ATu,, is the actual m-th CG
approximation for the linear system (8.3). Therefore, it minimizes the energy norm of the
error on the Krylov subspace K,,,. In this case, u,, minimizes the function

F(u) = (AAT (us — ), (ux —u))
over all vectors w in the affine Krylov subspace,
uo + K (AAT 70) = ug + span{rg, AATrq, ..., (AAT)™ 1rp}).
Notice that rqg = b — AATwuy = b — Axq. Also, observe that
Fw) = (AT (us = u), AT (us — ) = [los — 23,
where 2 = ATw. Therefore, CGNE produces the approximate solution in the subspace
zo + AT (AAT 10) = 20 + K (AT A, ATry)

which has the smallest 2-norm of the error. In addition, note that the subspace zq +
Km (AT A, ATry) is identical with the subspace found for CGNR. Therefore, the two meth-
ods find approximations from the same subspace which achieve different optimality prop-
erties: minimal residual for CGNR and minimal error for CGNE.



8.4 SADDLE-POINT PROBLEMS 239

e
SADDLE-POINT PROBLEMS

N c

Now consider the equivalent system

(& 5)(2)=(0)

with r = b — Ax. This system can be derived from the necessary conditions applied to the
constrained least-squares problem (8.6-8.7). Thus, the 2-norm of b —r = Az is minimized
implicitly under the constraint A7 = 0. Note that A does not have to be a square matrix.

This can be extended into a more general constrained quadratic optimization problem
as follows:

minimize f(z) = %(A:c,;c) — (z,b) (8.28)
subjectto BTz =¢. (8.29)

The necessary conditions for optimality yield the linear system

(;T g) (5) - (g) (8:30)

in which the names of the variables r, 2 are changed into z, y for notational convenience.
It is assumed that the column dimension of B does not exceed its row dimension. The
Lagrangian for the above optimization problem is

L(w,y) = 3(A2,2) = (@,8) + (4, (B2 = )

and the solution of (8.30) is the saddle point of the above Lagrangian. Optimization prob-
lems of the form (8.28-8.29) and the corresponding linear systems (8.30) are important and
arise in many applications. Because they are intimately related to the normal equations, we
discuss them briefly here.

In the context of fluid dynamics, a well known iteration technique for solving the linear
system (8.30) is Uzawa’s method, which resembles a relaxed block SOR iteration.

ALGORITHM 8.6: Uzawa's Method

1. Choose xq, yo

2. Fork =0,1,..., until convergence Do:
3. Tpy1 = A_l(b - Byk)

4. Ye1 = Yk +w(B T —©)

5. EndDo

The algorithm requires the solution of the linear system
Azpy1 =b— By (8.31)

at each iteration. By substituting the result of line 3 into line 4, the x iterates can be



240 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

eliminated to obtain the following relation for the y;’s,
k1 = yr +w (BTAH (b — Byi) — ¢)
which is nothing but a Richardson iteration for solving the linear system
BTA'By =BTA b —c. (8.32)

Apart from a sign, this system is the reduced system resulting from eliminating the z vari-
able from (8.30). Convergence results can be derived from the analysis of the Richardson
iteration.

COROLLARY 8.1 Let A be a Symmetric Positive Definite matrix and B a matrix of
full rank. Then S = BT A~ B is also Symmetric Positive Definite and Uzawa’s algorithm
converges, if and only if

2
I<w< m. (833)
In addition, the optimal convergence parameter w is given by
2
Wort = /\mzn(S) + )\maw (S) '

Proof. The proof of this result is straightforward and is based on the results seen in
Example 4.1. [ ]

It is interesting to observe that when ¢ = 0 and A is Symmetric Positive Definite, then
the system (8.32) can be regarded as the normal equations for minimizing the A—!-norm
of b — By. Indeed, the optimality conditions are equivalent to the orthogonality conditions

(b_Byan)A_l =0, Vw,

which translate into the linear system BT A~1 By = BT A—'b. As a consequence, the prob-
lem will tend to be easier to solve if the columns of B are almost orthogonal with respect
to the A—! inner product. This is true when solving the Stokes problem where B represents
the discretization of the gradient operator while B discretizes the divergence operator,
and A is the discretization of a Laplacian. In this case, if it were not for the boundary
conditions, the matrix BT A~! B would be the identity. This feature can be exploited in de-
veloping preconditioners for solving problems of the form (8.30). Another particular case
is when A is the identity matrix and ¢ = 0. Then, the linear system (8.32) becomes the sys-
tem of the normal equations for minimizing the 2-norm of b6 — By. These relations provide
insight in understanding that the block form (8.30) is actually a form of normal equations
for solving By = b in the least-squares sense. However, a different inner product is used.
In Uzawa’s method, a linear system at each step must be solved, namely, the system
(8.31). Solving this system is equivalent to finding the minimum of the quadratic function

minimize fi(z) = %(Am,a:) — (z,b — Byg). (8.34)

Apart from constants, fi(z) is the Lagrangian evaluated at the previous y iterate. The
solution of (8.31), or the equivalent optimization problem (8.34), is expensive. A common
alternative replaces the z-variable update (8.31) by taking one step in the gradient direction



8.4 SADDLE-POINT PROBLEMS 241

for the quadratic function (8.34), usually with fixed step-length €. The gradient of f(z) at
the current iterate is Az, — (b — Byy). This results in the Arrow-Hurwicz Algorithm.

ALGORITHM 8.7: The Arrow-Hurwicz algorithm

Select an initial guess x, yo to the system (8.30)
Fork =0,1,..., until convergence Do:
Compute z+1 = zp, + €(b — Az, — Byy)
Compute yg1 = yr + w(BT 2k 41 — )
EndDo

O~ WNR

The above algorithm is a block-iteration of the form

I 0] Tp+1\ _ (I —€A —eB T, eb
(o 7) () = (70" 77) ()= (00):

Uzawa’s method, and many similar techniques for solving (8.30), are based on solving
the reduced system (8.32). An important observation here is that the Schur complement
matrix S = BT A~ B need not be formed explicitly. This can be useful if this reduced
system is to be solved by an iterative method. The matrix A is typically factored by a
Cholesky-type factorization. The linear systems with the coefficient matrix A can also be
solved by a preconditioned Conjugate Gradient method. Of course these systems must then
be solved accurately.

Sometimes it is useful to “regularize” the least-squares problem (8.28) by solving the
following problem in its place:

—

minimize f(z) = = (Az,z) — (z,b) + p(Cy,y)

[\]

subjectto BTz = ¢

in which p is a scalar parameter. For example, C' can be the identity matrix or the matrix
BT B. The matrix resulting from the Lagrange multipliers approach then becomes

A B
BT pC -
The new Schur complement matrix is
S=pC—-BTA'B.

Example 8.2 In the case where C' = BT B, the above matrix takes the form
S =BT(pr - A )B.
Assuming that A is SPD, S is also positive definite when

> .

However, it is also negative definite for




242 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

a condition which may be easier to satisfy on practice.

—
EXERCISES

1. Derive the linear system (8.5) by expressing the standard necessary conditions for the problem
(8.6-8.7).

2. It was stated in Section 8.2.2 that when ||AT e;||o = 1 fori = 1,...,n, the vector d defined in
Algorithm 8.3 is equal to wATr.
a. What does this become in the general situation when || A e;||2 # 1?
b. Is Cimmino’s method still equivalent to a Richardson iteration?

c. Show convergence results similar to those of the scaled case.

3. In Section 8.2.2, Cimmino’s algorithm was derived based on the Normal Residual formulation,
i.e., on (8.1). Derive an “NE” formulation, i.e., an algorithm based on Jacobi’s method for (8.3).

4, What are the eigenvalues of the matrix (8.5)? Derive a system whose coefficient matrix has the

form

2a A
and which is also equivalent to the original system Az = b. What are the eigenvalues of B(a)?
Plot the spectral norm of B(«) as a function of a.

5. It was argued in Section 8.4 that when ¢ = 0 the system (8.32) is nothing but the normal
equations for minimizing the A~*-norm of the residual » = b — By.

a. Write the associated CGNR approach for solving this problem. Find a variant that requires
only one linear system solution with the matrix A at each CG step [Hint: Write the CG
algorithm for the associated normal equations and see how the resulting procedure can be
reorganized to save operations]. Find also a variant that is suitable for the case where the
Cholesky factorization of A is available.

b. Derive a method for solving the equivalent system (8.30) for the case when ¢ = 0 and then

for the general case wjen ¢ # 0. How does this technique compare with Uzawa’s method?
6. Consider the linear system (8.30) in which ¢ = 0 and B is of full rank. Define the matrix
P=I1-B(B"B) 'B".

a. Show that P is a projector. Is it an orthogonal projector? What are the range and null spaces
of P?

b. Show that the unknown z can be found by solving the linear system

PAPzx = Pb, (8.35)

in which the coefficient matrix is singular but the system is consistent, i.e., there is a nontriv-

ial solution because the right-hand side is in the range of the matrix (see Chapter 1).

c. What must be done toadapt the Conjugate Gradient Algorithm for solving the above linear
system (which is symmetric, but not positive definite)? In which subspace are the iterates
generated from the CG algorithm applied to (8.35)?



EXERCISES AND NOTES 243

d. Assume that the QR factorization of the matrix B is computed. Write an algorithm based on
the approach of the previous questions for solving the linear system (8.30).

7. Show that Uzawa’s iteration can be formulated as a fixed-point iteration associated with the
splitting C = M — N with

_ A 0 _ (O -B
M_(—wBT 1)’ N‘(o I)'

Derive the convergence result of Corollary 8.1 .

8. Show that each new vector iterate in Cimmino’s method is such that

Tnew = T + ‘IJA_I ZPH",

2

where P; is defined by (8.24).

9. In Uzawa’s method a linear system with the matrix A must be solved at each step. Assume that
these systems are solved inaccurately by an iterative process. For each linear system the iterative
process is applied until the norm of the residual rx+1 = (b — Byx) — Axr+1 is less than a
certain threshold €z1.

a. Assume that w is chosen so that (8.33) is satisfied and that e;, converges to zero as & tends to
infinity. Show that the resulting algorithm converges to the solution.

b. Give an explicit upper bound of the error on yy, in the case when e; is chosen of the form
e =o', where a < 1.

10. Assume ||b — Ax||» is to be minimized, in which A is n x m with n > m. Let z. be the
minimizer and »r = b — Ax,. What is the minimizer of ||(b + ar) — Az||2, where « is an
arbitrary scalar?

NOTES AND REFERENCES. Methods based on the normal equations have been among the first to
be used for solving nonsymmetric linear systems [130, 58] by iterative methods. The work by Bjork
and Elfing [27], and Sameh et al. [131, 37, 36] revived these techniques by showing that they have
some advantages from the implementation point of view, and that they can offer good performance
for a broad class of problems. In addition, they are also attractive for parallel computers. In [174], a
few preconditioning ideas for normal equations were described and these will be covered in Chapter
10. 1t would be helpful to be able to determine whether or not it is preferable to use the normal
equations approach rather than the “direct equations” for a given system, but this may require an
eigenvalue/singular value analysis.

It is sometimes argued that the normal equations approach is always better, because it has a
robust quality which outweighs the additional cost due to the slowness of the method in the generic
elliptic case. Unfortunately, this is not true. Although variants of the Kaczmarz and Cimmino algo-
rithms deserve a place in any robust iterative solution package, they cannot be viewed as a panacea. In
most realistic examples arising from Partial Differential Equations, the normal equations route gives
rise to much slower convergence than the Krylov subspace approach for the direct equations. For
ill-conditioned problems, these methods will simply fail to converge, unless a good preconditioner is
available. |



9

PRECONDITIONED
ITERATIONS

Although the methods seen in previous chapters are well founded theoreti-
cally, they are all likely to suffer from slow convergence for problems which
arise from typical applications such as fluid dynamics or electronic device
simulation. Preconditioning is a key ingredient for the success of Krylov
subspace methods in these applications. This chapter discusses the precon-
ditioned versions of the iterative methods already seen, but without being
specific about the particular preconditioners used. The standard precondi-
tioning techniques will be covered in the next chapter.

I
INTRODUCTION

Lack of robustness is a widely recognized weakness of iterative solvers, relative to direct
solvers. This drawback hampers the acceptance of iterative methods in industrial applica-
tions despite their intrinsic appeal for very large linear systems. Both the efficiency and
robustness of iterative techniques can be improved by using preconditioning. A term intro-
duced in Chapter 4, preconditioning is simply a means of transforming the original linear
system into one which has the same solution, but which is likely to be easier to solve with
an iterative solver. In general, the reliability of iterative techniques, when dealing with
various applications, depends much more on the quality of the preconditioner than on the
particular Krylov subspace accelerators used. We will cover some of these precondition-
ers in detail in the next chapter. This chapter discusses the preconditioned versions of the
Krylov subspace algorithms already seen, using a generic preconditioner.

244



9.2 PRECONDITIONED CONJUGATE GRADIENT 245

e
PRECONDITIONED CONJUGATE GRADIENT

N o2

Consider a matrix A that is symmetric and positive definite and assume that a precondi-
tioner M is available. The preconditioner M is a matrix which approximates A in some
yet-undefined sense. It is assumed that M is also Symmetric Positive Definite. From a
practical point of view, the only requirement for M is that it is inexpensive to solve linear
systems Mz = b. This is because the preconditioned algorithms will all require a linear
system solution with the matrix M at each step. Then, for example, the following precon-
ditioned system could be solved:

M~ Az =M""'b (9.1)
or
AM™'u=b, z=M"u. (9.2)

Note that these two systems are no longer symmetric in general. The next section considers
strategies for preserving symmetry. Then, efficient implementations will be described for
particular forms of the preconditioners.

9.2.1 PRESERVING SYMMETRY

When M is available in the form of an incomplete Cholesky factorization, i.e., when
M=1LL"%,

then a simple way to preserve symmetry is to “split” the preconditioner between left and
right, i.e., to solve

L AL Tu=L"1', z=L"1u, (9.3)

which involves a Symmetric Positive Definite matrix.
However, it is not necessary to split the preconditioner in this manner in order to
preserve symmetry. Observe that M —1 A is self-adjoint for the M -inner product,

since
(M_IA;L',y)M = (Az,y) = (z,Ay) = (.Q;,M(M_lA)y) = (xaM_lAy)M'

Therefore, an alternative is to replace the usual Euclidean inner product in the Conjugate
Gradient algorithm by the M -inner product.

If the CG algorithm is rewritten for this new inner product, denoting by r; = b — Ax;
the original residual and by z; = M ~!r; the residual for the preconditioned system, the
following sequence of operations is obtained, ignoring the initial step:

1. o = (2j,2)m/ (M~ Apj, pj)m
2. Tjy1 = Tj + oyp;



246 CHAPTER 9 PRECONDITIONED ITERATIONS

3. Tjt1 (=715 — OjjApj and Zj41 = M_lTj+1
4. Bj = (zj41, 2i41)m /(255 25) M
5. pjy1 = zjp1 + Bip;

Since (zj,2)m = (rj,2;) and (M~*Ap;,pj)m = (Apj,p;), the M-inner products do
not have to be computed explicitly. With this observation, the following algorithm is ob-
tained.

ALGORITHM 9.1: Preconditioned Conjugate Gradient

1. Computerg :=b— Axzg, 20 = M~ 1rg, andpg := 2o
2. Forj =0,1,..., until convergence Do:
3. aj:=(rj,z)/(Apj, pj)

4, Tjy1 = Tj + Q;p;

5. Tj41 =15 — OéjApj

6. Rjt1 = M_lrj_H

7. Bj=(rjr,z41) [(r5, 2)

8. pjt1:=zj41 + Bip;

9. EndDo

It is interesting to observe that A/ —1 A is also self-adjoint with respect to the A inner-
product. Indeed,

(M~ Az,y)a = (AM ™' Az,y) = (v, AM ™' Ay) = (2, M~ Ay)a

and a similar algorithm can be written for this dot product (see Exercise 1).

In the case where M is a Cholesky product A = LLT, two options are available,
namely, the split preconditioning option (9.3), or the above algorithm. An immediate ques-
tion arises about the iterates produced by these two options: Is one better than the other?
Surprisingly, the answer is that the iterates are identical. To see this, start from Algorithm
9.1 and define the following auxiliary vectors and matrix from it:

pj = L"p;
Uj = LTJUJ'
fj = LTZj = L_l’l“j
A=r1AL"T.
Observe that
(rj,2j) = (rj, L=TL7 ;) = (L7 vy, L7 ry) = (F5,75).
Similarly,

(Apj,pj) = (AL~ Tp;, L~ Th;) (L AL Ty, 55) = (Ap;, ;).
All the steps of the algorithm can be rewritten with the new variables, yielding the follow-
ing sequence of operations:

1. aj := (F4,75)/(Ap;, b;)
2. ujy1 ==y + Oéjﬁj



9.2 PRECONDITIONED CONJUGATE GRADIENT 247

3. #jy1 =7 — aj Ap;
4. Bj = (Fit1,7541) [ (75, 75)
5. Djq1 = Tjp1 + B .
This is precisely the Conjugate Gradient algorithm applied to the preconditioned system
Au=L""%

where u = LT z. It is common when implementing algorithms which involve a right pre-
conditioner to avoid the use of the u variable, since the iteration can be written with the
original z variable. If the above steps are rewritten with the original z and p variables, the
following algorithm results.

ALGORITHM 9.2: Split Preconditioner Conjugate Gradient

1. Computery :=b— Axy; fo = L™ rg; and py := L~ T#.
2. Forj =0,1,..., until convergence Do:

3. aj:=(F},7;)/(Apj; pj)

4, Tjy1 = Tj + a;p;

5. fj-i-l = T’A]' - OthilApj
6

7

8

Bj = (fj+1anj+1)/(7‘j,fj)
Pi+1 = L7 Fip1 + Bip;
EndDo

The iterates z; produced by the above algorithm and Algorithm 9.1 are identical, provided
the same initial guess is used.

Consider now the right preconditioned system (9.2). The matrix AM ! is not Hermi-
tian with either the Standard inner product or the M -inner product. However, it is Hermi-
tian with respect to the M —'-inner product. If the CG-algorithm is written with respect to
the u-variable and for this new inner product, the following sequence of operations would
be obtained, ignoring again the initial step:

1. Qj = (T’j,T’j)M—l/(AM_lpj,pj)M—l

2. Ujt+1 = Uj + ;P;

3. Tjt1 =T — O[jAMflpj

4. Bj = (rjg1,min) -1 /(15 m5) M-

5. Pjt1 = Tjp1 + ﬂjpj .
Recall that the « vectors and the 2 vectors are related by 2 = M ~!u. Since the u vectors
are not actually needed, the update for ;. in the second step can be replaced by . :=
z; + ajM~'p;. Then observe that the whole algorithm can be recast in terms of ¢; =
M_lpj and Zj = M‘lrj.

1. aj == (zj,75)/(Agj, q5)

2. Tj41 = T + a;q;

3. Tjy1 = =T5 — O[qu]' and Zj41 = M_lTj+1

4. ﬁj = (Zj+1;7'j+1)/(zj7rj)



248 CHAPTER 9 PRECONDITIONED ITERATIONS

5. gjy1 = Zip1 + Big;.

Notice that the same sequence of computations is obtained as with Algorithm 9.1, the
left preconditioned Conjugate Gradient. The implication is that the left preconditioned CG
algorithm with the M-inner product is mathematically equivalent to the right precondi-
tioned CG algorithm with the A —!-inner product.

9.2.2 EFFICIENT IMPLEMENTATIONS

When applying a Krylov subspace procedure to a preconditioned linear system, an opera-
tion of the form

v—ow=M1Av

or some similar operation is performed at each step. The most natural way to perform this
operation is to multiply the vector v by A and then apply M ~! to the result. However,
since A and M are related, it is sometimes possible to devise procedures that are more
economical than this straightforward approach. For example, it is often the case that

M=A-R

in which the number of nonzero elements in R is much smaller than in A. In this case, the
simplest scheme would be to compute w = M~ Av as

w=M"1Av=M"YM+ R)v=v+ M 'Ru.

This requires that R be stored explicitly. In approximate LU factorization techniques, R
is the matrix of the elements that are dropped during the incomplete factorization. An
even more efficient variation of the preconditioned Conjugate Gradient algorithm can be
derived for some common forms of the preconditioner in the special situation where A is
symmetric. Write A in the form

A=Dy—E—-E* (9.4)
in which — E is the strict lower triangular part of A and Dy, its diagonal. In many cases,
the preconditioner M can be written in the form

M = (D - E)D YD - E") (9.5)
in which E is the same as above and D is some diagonal, not necessarily equal to Dy.
For example, in the SSOR preconditioner with w = 1, D = D,. Also, for certain types
of matrices, the 1C(0) preconditioner can be expressed in this manner, where D can be
obtained by a recurrence formula.

Eisenstat’s implementation consists of applying the Conjugate Gradient algorithm to
the linear system

Au=(D-E) ' (9.6)
with
A=(D-E)'AD-E")', z=(D-E") u. (9.7)



9.2 PRECONDITIONED CONJUGATE GRADIENT 249

This does not quite correspond to a preconditioning with the matrix (9.5). In order to pro-
duce the same iterates as Algorithm 9.1, the matrix A must be further preconditioned with
the diagonal matrix D—1. Thus, the preconditioned CG algorithm, Algorithm 9.1, is ac-
tually applied to the system (9.6) in which the preconditioning operation is M ~! = D.
Alternatively, we can initially scale the rows and columns of the linear system and precon-
ditioning to transform the diagonal to the identity. See Exercise 6.
Now note that
A=(D-E)"AD - ET)!
=(D—-E)YDy-E-E")(D-E")!
=(D-E)" (Do-2D+(D-E)+(D-E")([D-E")™"
=D-E)'Dy(D-E"'+(D-E)'+([D-E",
in which D; = Dy — 2D. As a result,
Av=(D—-E)[v+Dy(D - E") "] + (D - E") 1o
Thus, the vector w = Av can be computed by the following procedure:
z:=(D—-ET)"ly
w:= (D - E) (v + Di2)
w:i=w+ 2.
One product with the diagonal D can be saved if the matrices D'E and D~ 1ET

are stored. Indeed, by setting D; = D~'D; and % = D~1v, the above procedure can be
reformulated as follows.

ALGORITHM 9.3: Computation of w = Av

1. 9:=D"l

2. z:=(I—-D'ET")y" 1%

3 w:=(I—D'E)"Y(6+ Dy2)
4, w:=w+z2.

Note that the matrices D—'E and D~'ET are not the transpose of one another, so we
actually need to increase the storage requirement for this formulation if these matrices
are stored. However, there is a more economical variant which works with the matrix
D~1/2ED~1/2 and its transpose. This is left as Exercise 7.

Denoting by N, (X) the number of nonzero elements of a sparse matrix X, the total
number of operations (additions and multiplications) of this procedure is n for (1), 2N, (E)
for (2), 2N, (ET) + 2n for (3), and n for (4). The cost of the preconditioning operation by
D1, i.e., n operations, must be added to this, yielding the total number of operations:

Nop =n+2N,(E) + 2N, (ET) +2n+n+n
= 3n + 2(N,(E) + N,(ET) +n)
=3n+2N,(A).
For the straightforward approach, 2V, (A) operations are needed for the product with A,



250 CHAPTER 9 PRECONDITIONED ITERATIONS

2N, (E) for the forward solve, and n + 2N, (ET) for the backward solve giving a total of
2N,(A) + 2N, (E) + n + 2N, (E") = 4N, (A4) — n.

Thus, Eisenstat’s scheme is always more economical, when IV, is large enough, although
the relative gains depend on the total number of nonzero elements in A. One disadvantage
of this scheme is that it is limited to a special form of the preconditioner.

Example 9.1 For a 5-point finite difference matrix, N,(A) is roughly 5n, so that with
the standard implementation 19n operations are performed, while with Eisenstat’s imple-
mentation only 13n operations would be performed, a savings of about % However, if the
other operations of the Conjugate Gradient algorithm are included, for a total of about 10n
operations, the relative savings become smaller. Now the original scheme will require 29n
operations, versus 23n operations for Eisenstat’s implementation.

—
PRECONDITIONED GMRES

In the case of GMRES, or other nonsymmetric iterative solvers, the same three options for
applying the preconditioning operation as for the Conjugate Gradient (namely, left, split,
and right preconditioning) are available. However, there will be one fundamental difference
— the right preconditioning versions will give rise to what is called a flexible variant, i.e.,
a variant in which the preconditioner can change at each step. This capability can be very
useful in some applications.

9.3.1 LEFT-PRECONDITIONED GMRES

As before, define the left preconditioned GMRES algorithm, as the GMRES algorithm
applied to the system,

M 'Az = M 'b. (9.8)
The straightforward application of GMRES to the above linear system yields the following
preconditioned version of GMRES.
ALGORITHM 9.4: GMRES with Left Preconditioning

1. Computero = M~Y(b— Axg), B = ||roll2 and vy = ro/B
2. Forj=1,...,m Do:
3. Computew := M~ Av;

4 Fori=1,...,3, Do:
5. hi’j = (U),U,')
6 wi=w— hi’j’l}i



9.3 PRECONDITIONED GMRES 251

7. EndDo
8. Compute hji1,; = ||w|l2 andvjyr = w/hjt1,;
9. EndDo B
10. Define Vi = [Ul, e ,'l)m], H,, = {hiaj}lfiﬁj"‘l?lSjSm

11. Computey,, = argminyHﬁel — Huyll2, and 2, = 2o + Vinym
12. If satisfied Stop, else set xq := x,, and GoTo 1

The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov
subspace

Span{re, M 1Arg,..., (M 1A)™ 1re}.

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonalized
is obtained from the previous vector in the process. All residual vectors and their norms
that are computed by the algorithm correspond to the preconditioned residuals, namely,
2m = M~Y(b— Az,,), instead of the original (unpreconditioned) residuals b — Az . In
addition, there is no easy access to these unpreconditioned residuals, unless they are com-
puted explicitly, e.g., by multiplying the preconditioned residuals by A .This can cause
some difficulties if a stopping criterion based on the actual residuals, instead of the precon-
ditioned ones, is desired.

Sometimes a Symmetric Positive Definite preconditioning M for the nonsymmetric
matrix A may be available. For example, if A is almost SPD, then (9.8) would not take ad-
vantage of this. It would be wiser to compute an approximate factorization to the symmetric
part and use GMRES with split preconditioning. This raises the question as to whether or
not a version of the preconditioned GMRES can be developed, which is similar to Algo-
rithm 9.1, for the CG algorithm. This version would consist of using GMRES with the
M -inner product for the system (9.8).

At step j of the preconditioned GMRES algorithm, the previous v; is multiplied by A
to get a vector

wj; = AU]'. (9.9)
Then this vector is preconditioned to get
zj = M~ 'w;. (9-10)

This vector must be M -orthogonalized against all previous v;’s. If the standard Gram-
Schmidt process is used, we first compute the inner products

hij = (z5,vi)m = (M zj,v5) = (wj,v;), i =1,..., 7], (9.11)

and then modify the vector z; into the new vector

J
2]' =25 — Z hijvi. (9.12)
i=1

To complete the orthonormalization step, the final Z; must be normalized. Because of the
orthogonality of 2; versus all previous v;’s, observe that

(25, 25)m = (2, 2))m = (M wy, 2) m = (wy, 25)- (9.13)



252 CHAPTER 9 PRECONDITIONED ITERATIONS

Thus, the desired M -norm could be obtained from (9.13), and then we would set

~ 1/2 ~
hjrg = (3, w)"? and i1 = 2i/hjpa,5- (9-14)

One serious difficulty with the above procedure is that the inner product (25, ;) ar as
computed by (9.13) may be negative in the presence of round-off. There are two remedies.
First, this M -norm can be computed explicitly at the expense of an additional matrix-vector
multiplication with /. Second, the set of vectors M v; can be saved in order to accumulate
inexpensively both the vector z; and the vector M 2;, via the relation

J
M,éj = wj; — ZhijMvz'-
i=1
A modified Gram-Schmidt version of this second approach can be derived easily. The
details of the algorithm are left as Exercise 12.

9.3.2 RIGHT-PRECONDITIONED GMRES

The right preconditioned GMRES algorithm is based on solving
AM 'y =b, u= Mz. (9.15)

As we now show, the new variable u never needs to be invoked explicitly. Indeed, once
the initial residual b — Azg = b — AM ~ug is computed, all subsequent vectors of the
Krylov subspace can be obtained without any reference to the u-variables. Note that u is
not needed at all. The initial residual for the preconditioned system can be computed from
ro = b — Axg, which is the same as b — AM ~Lug. In practice, it is usually zq that is
available, not ug. At the end, the u-variable approximate solution to (9.15) is given by,

m
Uy, = Ug + Z Vi
=1
with ug = Mxo. Multiplying through by M —! yields the desired approximation in terms
of the z-variable,

m
Ty = To + Mt lz 1),"[7,"| .
i=1

Thus, one preconditioning operation is needed at the end of the outer loop, instead of at the
beginning in the case of the left preconditioned version.

ALGORITHM 9.5: GMRES with Right Preconditioning

1. Computerg =b— Axg, 8= ||roll2, and vy = r¢/8
2. Forj=1,...,m Do:

3 Computew := AM ~'v;

4, Fori=1,...,j, Do:

5 hi,j = (w,vi)

6. wi=w— h,'J"Ui

7. EndDo



9.3 PRECONDITIONED GMRES 253

8. Compute hjy1,; = [|w]|2 and_vj+1 = ’U)/hj.H,j

9. Define Vi := [’1)1, Cey ’Um], H,, = {hi,j}1§i§j+1;1§j§m
10. EndDo
11. Computey,, = argminyHﬁel — Hyyll2, and 2, = x0 + M1V, ym.
12. If satisfied Stop, else set xq := x,, and GoTo 1.

This time, the Arnoldi loop builds an orthogonal basis of the right preconditioned
Krylov subspace

Span{ro, AM_I’I'(), ey (AM_I)m_l’I‘()}.

Note that the residual norm is now relative to the initial system, i.e., b — Ax,,, since the
algorithm obtains the residual b — Az,, = b — AM ~'u,,, implicitly. This is an essential
difference with the left preconditioned GMRES algorithm.

9.3.3 SPLIT PRECONDITIONING

In many cases, M is the result of a factorization of the form
M=LU.
Then, there is the option of using GMRES on the split-preconditioned system
L'AUw =L, z=U"lu

In this situation, it is clear that we need to operate on the initial residual by L ! at the start
of the algorithm and by U ! on the linear combination V;,,3/,, in forming the approximate
solution. The residual norm available is that of L= (b — Az,,).

A question arises on the differences between the right, left, and split preconditioning
options. The fact that different versions of the residuals are available in each case may
affect the stopping criterion and may cause the algorithm to stop either prematurely or with
delay. This can be particularly damaging in case M is very ill-conditioned. The degree
of symmetry, and therefore performance, can also be affected by the way in which the
preconditioner is applied. For example, a split preconditioner may be much better if A
is nearly symmetric. Other than these two situations, there is little difference generally
between the three options. The next section establishes a theoretical connection between
left and right preconditioned GMRES.

9.3.4 COMPARISON OF RIGHT AND LEFT
PRECONDITIONING

When comparing the left, right, and split preconditioning options, a first observation to
make is that the spectra of the three associated operators M 14, AM~!, and L=1AU !
are identical. Therefore, in principle one should expect convergence to be similar, although,
as is known, eigenvalues do not always govern convergence. In this section, we compare
the optimality properties achieved by left- and right preconditioned GMRES.



254 CHAPTER 9 PRECONDITIONED ITERATIONS

For the left preconditioning option, GMRES minimizes the residual norm
1M ™10 — M~ Aglls,
among all vectors from the affine subspace
zo +KE = 20 + Span {20, M1 Azg,..., (M1 A)™ 12} (9.16)

in which zq is the preconditioned initial residual zo = M ~1ry. Thus, the approximate
solution can be expressed as

T =20+ M s (M1 A)z
where s,,,—1 is the polynomial of degree m — 1 which minimizes the norm
llzo — M1 A s(M 1 A)z]|2
among all polynomials s of degree < m — 1. It is also possible to express this optimality
condition with respect to the original residual vector rq. Indeed,
20— MT'As(M ™' A)zg = M~ [ro — As(M~TA)M™'ro].
A simple algebraic manipulation shows that for any polynomial s,
s(M*AYM tr = M 1s(AM)r, (9.17)
from which we obtain the relation
20— M7 As(M™"A)zg = M~ [ro — AM~'s(AM~")ro] . (9.18)
Consider now the situation with the right preconditioned GMRES. Here, it is necessary
to distinguish between the original  variable and the transformed variable « related to «

by £ = M ~—'w. For the w variable, the right preconditioned GMRES process minimizes
the 2-norm of » = b — AM ~'u where u belongs to

uo + KE = ug + Span {rg, AM~trgy,...,(AM~ ™1y} (9.19)

in which rq is the residual ro = b — AM —1wug. This residual is identical to the residual
associated with the original 2 variable since M ~uy = x¢. Multiplying (9.19) through to
the left by M —! and exploiting again (9.17), observe that the generic variable z associated
with a vector of the subspace (9.19) belongs to the affine subspace

M Yug + M_llCﬁ = zo + Span {zo, M~ Az..., (M_IA)m_lzo}.

This is identical to the affine subspace (9.16) invoked in the left preconditioned variant. In
other words, for the right preconditioned GMRES, the approximate z-solution can also be
expressed as

T = T + Sm—1(AM ).
However, now s,,_1 is a polynomial of degree m — 1 which minimizes the norm
||T0 — AJ\I—1 S(AM_I)T()”Q (9.20)

among all polynomials s of degree < m — 1. What is surprising is that the two quantities
which are minimized, namely, (9.18) and (9.20), differ only by a multiplication by M —1.
Specifically, the left preconditioned GMRES minimizes M ~!r, whereas the right precon-
ditioned variant minimizes r, where r is taken over the same subspace in both cases.



9.4 FLEXIBLE VARIANTS 255

PROPOSITION 9.1 The approximate solution obtained by left or right preconditioned
GMRES is of the form

Ty =0 + S 1 (M 1A)20 = 20 + M s 1(AM )y

where zo = M7y and s,,,_1 is a polynomial of degree m — 1. The polynomial s,,,_1
minimizes the residual norm ||b — Az,,||2 in the right preconditioning case, and the pre-
conditioned residual norm || M ~1(b — Ax,,)||2 in the left preconditioning case.

In most practical situations, the difference in the convergence behavior of the two
approaches is not significant. The only exception is when M is ill-conditioned which could
lead to substantial differences.

—
FLEXIBLE VARIANTS

N o

In the discussion of preconditioning techniques so far, it is implicitly assumed that the pre-
conditioning matrix M is fixed, i.e., it does not change from step to step. However, in some
cases, No matrix M is available. Instead, the operation A —' z is the result of some unspeci-
fied computation, possibly another iterative process. In such cases, it may well happen that
M~ is not a constant operator. The previous preconditioned iterative procedures will not
converge if M is not constant. There are a number of variants of iterative procedures devel-
oped in the literature that can accommaodate variations in the preconditioner, i.e., that allow
the preconditioner to vary from step to step. Such iterative procedures are called “flexible”
iterations. One of these iterations, a flexible variant of the GMRES algorithm, is described
next.

9.4.1 FLEXIBLE GMRES

We begin by examining the right preconditioned GMRES algorithm. In line 11 of Algo-
rithm 9.5 the approximate solution z,,, is expressed as a linear combination of the precon-
ditioned vectors z; = M ~'v;,4 = 1,...,m. These vectors are also computed in line 3,
prior to their multiplication by A to obtain the vector w. They are all obtained by applying
the same preconditioning matrix M ~! to the v;’s. As a result it is not necessary to save
them. Instead, we only need to apply M ~! to the linear combination of the v;’s, i.e., to
Vimym in line 11. Suppose now that the preconditioner could change at every step, i.e., that
zj is given by

25 = Mfl’l)]'.
Then it would be natural to compute the approximate solution as

Tm = %0 + ZmYm



256 CHAPTER 9 PRECONDITIONED ITERATIONS

in which Z,, = [21,-..,2m], and y,, is computed as before, as the solution to the least-
squares problem in line 11. These are the only changes that lead from the right precondi-
tioned algorithm to the flexible variant, described below.

ALGORITHM 9.6: Flexible GMRES (FGMRES)

1. Computerq =b— Axg, 8= ||rol|2, and v = 1o/
2. Forj=1,...,m Do:

3. Computez; := M; v
4.  Computew := Az;

5. Fori=1,...,3, Do:
6

7

8

hij = (w,vi)
wi=w— hi,jv,-
EndDo
9. Computehjiy,; = |lwll2 andvji1 = w/hji1,;
10. Define T, 1= [zl, ey zm], H,, = {hi,j}lgigj—i-l;lgjgm
11. EndDo

12. Compute y,, = argmin,[|Be; — Hyllo, and ., = 2o + ZinYm.
13. If satisfied Stop, else set x¢ < x,,, and GoTo 1.

As can be seen, the main difference with the right preconditioned version, Algorithm
9.5, is that the preconditioned vectors z; = Mjflv]- must be saved and the solution updated
using these vectors. It is clear that when M; = M for j = 1,...,m, then this method
is equivalent mathematically to Algorithm 9.5. It is important to observe that z; can be
defined in line 3 without reference to any preconditioner. That is, any given new vector
zj can be chosen. This added flexibility may cause the algorithm some problems. Indeed,
zj may be so poorly selected that a breakdown could occur, as in the worst-case scenario
when z; is zero.

One difference between FGMRES and the usual GMRES algorithm is that the action
of AMJ._1 on a vector v of the Krylov subspace is no longer in the span of V;,,1. Instead,
it is easy to show that

AZp = Vg1 Hp, (9.21)

in replacement of the simpler relation (AM ~1)V,, = V.41 H,, which holds for the
standard preconditioned GMRES; see (6.5). As before, H,, denotes the m x m matrix
obtained from H,, by deleting its last row and 4,1 is the vector w which is normalized
in line 9 of Algorithm 9.6 to obtain v;41. Then, the following alternative formulation of
(9.21) is valid, even when h;, 11, m = 0t

AZpy = VinHppy + g€l . (9.22)

An optimality property similar to the one which defines GMRES can be proved.
Consider the residual vector for an arbitrary vector z = z9 + Z,,,y in the affine space
xo + span{Z,,}. This optimality property is based on the relations

b—Az=b—A(xo + Zny)
=T0 — AZmy (9.23)



9.4 FLEXIBLE VARIANTS 257

= Bv1 = Vips1Hmy

= Vm+1[Ber — Hpyl. (9.24)
If J,,(y) denotes the function
Im(y) = b= Alzo + Zmylll2,
observe that by (9.24) and the fact that V,,,,1 is unitary,
In(y) = [1Ber — Hpmylla- (9.25)

Since the algorithm minimizes this norm over all vectors v in R™ to yield y,,, it is clear
that the approximate solution z,, = xo + Zym has the smallest residual norm in zo +
Span{Z,}. Thus, the following result is proved.

PROPOSITION 9.2 The approximate solution x.,, obtained at step m of FGMRES
minimizes the residual norm ||b — Az, ||2 over zg + Span{Z,,}.

Next, consider the possibility of breakdown in FGMRES. A breakdown occurs when
the vector v, cannot be computed in line 9 of Algorithm 9.6 because h;1,; = 0. For
the standard GMRES algorithm, this is not a problem because when this happens then the
approximate solution z; is exact. The situation for FGMRES is slightly different.

PROPOSITION 9.3 Assume that 8 = ||ro|l2 # 0 and that j — 1 steps of FGMRES
have been successfully performed, i.e., that h; 1 ; # 0 fori < j. In addition, assume that
the matrix H; is nonsingular. Then x; is exact, if and only if hj;1,; = 0.

Proof. Ifh;.;; =0,then AZ; = V;H;, and as a result
Ji(y) = [1Bvr — AZjy;ll2 = [|Bvr — ViHjy;ll2 = [|Ber — Hjy;l2-

If H; is nonsingular, then the above function is minimized for y; = H{l(ﬁel) and the
corresponding minimum norm reached is zero, i.e., z; is exact.
Conversely, if z; is exact, then from (9.22) and (9.23),

0=b— Az; = Vj[Ber — Hyy;] + bj11€] y;- (9:26)

We must show, by contraction, that 9,1 = 0. Assume that ¢4 # 0. Since 9,1, v1,
V2, ..., U, Torm an orthogonal system, then it follows from (9.26) that 8e; — H;y; = 0
and ejTy]- = 0. The last component of y; is equal to zero. A simple back-substitution for
the system H;y; = Bes, starting from the last equation, will show that all components of
y; are zero. Because H,, is nonsingular, this would imply that 3 = 0 and contradict the
assumption. [ ]

The only difference between this result and that of Proposition 6.10 for the GMRES
algorithm is that the additional assumption must be made that H; is nonsingular since it is
no longer implied by the nonsingularity of A. However, H,, is guaranteed to be nonsingu-
lar when all the z;’s are linearly independent and A is nonsingular. This is a consequence
of a modification of the first part of Proposition 6.9. That same proof shows that the rank of
AZy, is equal to the rank of the matrix R, therein. If R, is nonsingular and Ay, 11,m = 0,
then H,, is also nonsingular.



258 CHAPTER 9 PRECONDITIONED ITERATIONS

A consequence of the above proposition is that if Az; = v;, at a certain step, i.e., if
the preconditioning is “exact,” then the approximation z; will be exact provided that H;
is nonsingular. This is because w = Az; would depend linearly on the previous v;’s (it is
equal to v;), and as a result the orthogonalization process would yield 9,1 = 0.

A difficulty with the theory of the new algorithm is that general convergence results,
such as those seen in earlier chapters, cannot be proved. That is because the subspace of
approximants is no longer a standard Krylov subspace. However, the optimality property
of Proposition 9.2 can be exploited in some specific situations. For example, if within each
outer iteration at least one of the vectors z; is chosen to be a steepest descent direction
vector, e.g., for the function F(z) = ||b — Az||3, then FGMRES is guaranteed to converge
independently of m.

The additional cost of the flexible variant over the standard algorithm is only in the
extra memory required to save the set of vectors {z;}j=1,....m. Yet, the added advantage of
flexibility may be worth this extra cost. A few applications can benefit from this flexibility,
especially in developing robust iterative methods or preconditioners on parallel computers.
Thus, any iterative technique can be used as a preconditioner: block-SOR, SSOR, ADI,
Multi-grid, etc. More interestingly, iterative procedures such as GMRES, CGNR, or CGS
can also be used as preconditioners. Also, it may be useful to mix two or more precondi-
tioners to solve a given problem. For example, two types of preconditioners can be applied
alternatively at each FGMRES step to mix the effects of “local” and “global” couplings in
the PDE context.

9.4.2 DQGMRES

Recall that the DQGMRES algorithm presented in Chapter 6 uses an incomplete orthogo-
nalization process instead of the full Arnoldi orthogonalization. At each step, the current
vector is orthogonalized only against the k previous ones. The vectors thus generated are
“locally” orthogonal to each other, in that (v;,v;) = &;; for |i — j| < k. The matrix H,, be-
comes banded and upper Hessenberg. Therefore, the approximate solution can be updated
at step j from the approximate solution at step j — 1 via the recurrence

j—1
1 J
Pi = |V~ > rupi|, T =31+ (9.27)
79 i=j—k+1

in which the scalars ~; and r;; are obtained recursively from the Hessenberg matrix H;.

An advantage of DQGMRES is that it is also flexible. The principle is the same as
in FGMRES. In both cases the vectors z; = Mjflvj must be computed. In the case of
FGMRES, these vectors must be saved and this requires extra storage. For DQGMRES, it
can be observed that the preconditioned vectors z; only affect the update of the vector p;
in the preconditioned version of the update formula (9.27), yielding

j—1
1 1
pi=— | M v - > rijpi
7 i=j—k+1

As a result, Mj_lvj can be discarded immediately after it is used to update p;. The same



9.5 PRECONDITIONED CG FOR THE NORMAL EQUATIONS 259

memory locations can store this vector and the vector p;. This contrasts with FGMRES
which requires additional vectors of storage.

e
PRECONDITIONED CG FOR THE NORMAL EQUATIONS

o5

There are several versions of the preconditioned Conjugate Gradient method applied to
the normal equations. Two versions come from the NR/NE options, and three other varia-
tions from the right, left, or split preconditioning options. Here, we consider only the left
preconditioned variants.

The left preconditioned CGNR algorithm is easily derived from Algorithm 9.1. Denote
by r; the residual for the original system, i.e., r; = b — Az;, and by 7; = ATr; the
residual for the normal equations system. The preconditioned residual z; is z; = M ~'7;.
The scalar «;; in Algorithm 9.1 is now given by

= Tz) (7))
T (AT Apj,p;)  (Apj, Apj)
This suggests employing the auxiliary vector w; = Ap; in the algorithm which takes the
following form.

ALGORITHM 9.7: Left-Preconditioned CGNR

1. Computero =b- A.’L‘(), o = AT’I‘(), 20 = M_lf(), Po = 0.
2. Forj =0,..., until convergence Do:
3 w; = Apj

4. oy = (2, 75)/|lw;ll3

5. Tjt1 = Tj + Q;p;

6. Ti+1 =T — Q;W;

7. = AT

8. zjip1 =M

9. Bj = (zj+1,741)/ (25, 75)

0. pjy1=zj41 + Bip;

1. EndDo

Similarly, the linear system AATvy = b, with z = AT, can also be preconditioned
from the left, and solved with the preconditioned Conjugate Gradient algorithm. Here, it is
observed that the update of the u variable, the associated z variable, and two residuals take
the form

e riz) o (15,2)
7 (AATpj,p;) — (ATp;, ATp;)

T
Ujrl = uj +ip; & Tipn = T+ oG AT

T
Tjit1 =Tj — ajAA Dj

_ -1
Zj+1 = M Ti+1



260 CHAPTER 9 PRECONDITIONED ITERATIONS

Thus, if the algorithm for the unknown z is to be written, then the vectors A7p; can be
used instead of the vectors p;, which are not needed. To update these vectors at the end
of the algorithm the relation p; 11 = zj41 + Bj41p; in line 8 of Algorithm 9.1 must
be multiplied through by AT, This leads to the left preconditioned version of CGNE, in
which the notation has been changed to denote by p; the vector A7 p; invoked in the above
derivation.

ALGORITHM 9.8: Left-Preconditioned CGNE

1. Computery =b— Axg, 20 = M~ 'rg, po = AT 2.
2. Forj =0,1,...,until convergence Do:
3 w; = Apj

4. a;=(2,75)/ ), pj)

5. Tjr1 = Ty + O ;pj

6. Tj+1 = Tj — Oéjﬂ]j

7. zipn=MTlrin

8. Bj = (zjt1,1541)/(2575)

9. piy1=ATzj11 + Bip;

0. EndDo

Not shown here are the right and split preconditioned versions which are considered in
Exercise 3.

I
THE CGW ALGORITHM

When the matrix is nearly symmetric, we can think of preconditioning the system with the
symmetric part of A. This gives rise to a few variants of a method known as the CGW
method, from the names of the three authors Concus and Golub [60], and Widlund [225]
who proposed this technique in the middle of the 1970s. Originally, the algorithm was not
viewed from the angle of preconditioning. Writing A = M — N, with M = %(A + Af),
the authors observed that the preconditioned matrix

M7'A=I-M"'N

is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect to the
M -inner product. It is not too difficult to show that the tridiagonal matrix corresponding to
the Lanczos algorithm, applied to A with the M -inner product, has the form

L —fB
B 1 —fs

Thn = . . . . (9-28)

ﬂm—l 1 _ﬂm
Bm 1



EXERCISES AND NOTES 261

As a result, a three-term recurrence in the Arnoldi process is obtained, which results in a
solution algorithm that resembles the standard preconditioned CG algorithm (Algorithm
9.1).

A version of the algorithm can be derived easily. From the developments in Section
6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, it is known that
Z;+1 can be expressed as

Tjr1 = Tj + a;py.
The preconditioned residual vectors must then satisfy the recurrence
Zjy1 = Zj — OéjM_lApj
and if the z;’s are to be M -orthogonal, then we must have (z; — a; M ' Ap;, zj)m = 0.
As a result,
(zi>25)m  _ (r5,2)
(M~=*Apj, zj)m (Ap;, 2;)
Also, the next search direction p;; is a linear combination of z;44 and p;,

a; =

Pj+1 = Zj+1 + Bip;-
Thus, a first consequence is that
(Apj, zj)m = (M~ Apj,p; — Bj—1pj—1)m = (M~ Apj,pj)m = (Apj, p;)

because M ~!Ap; is orthogonal to all vectors in K;_;. In addition, writing that p;., is
M-orthogonal to M~ Ap; yields

(zj41, M~ Ap;) mr

B =— :
’ (pj>» M~' Apj)m
Note that M ~* Ap; = —alj(sz — z;) and therefore we have, just as in the standard PCG
algorithm,
g, = Girvzivm _ o)
! (2j,2j)m (zj,75)
I
EXERCISES

N

1. Let a matrix A and its preconditioner M be SPD. Observing that M ! A is self-adjoint with
respect to the A inner-product, write an algorithm similar to Algorithm 9.1 for solving the pre-
conditioned linear system M~ Az = M ~'b, using the A-inner product. The algorithm should
employ only one matrix-by-vector product per CG step.

2. In Section 9.2.1, the split-preconditioned Conjugate Gradient algorithm, Algorithm 9.2, was de-
rived from the Preconditioned Conjugate Gradient Algorithm 9.1. The opposite can also be done.
Derive Algorithm 9.1 starting from Algorithm 9.2, providing a different proof of the equivalence
of the two algorithms.



262

3.

CHAPTER 9 PRECONDITIONED ITERATIONS

Six versions of the CG algorithm applied to the normal equations can be defined. Two versions
come from the NR/NE options, each of which can be preconditioned from left, right, or on
two sides. The left preconditioned variants have been given in Section 9.5. Describe the four
other versions: Right P-CGNR, Right P-CGNE, Split P-CGNR, Split P-CGNE. Suitable inner
products may be used to preserve symmetry.

. When preconditioning the normal equations, whether the NE or NR form, two options are avail-

able in addition to the left, right and split preconditioners. These are “centered” versions:
AM™'ATu=0b, z=M ATy
for the NE form, and
ATM 'Ar=A"M b
for the NR form. The coefficient matrices in the above systems are all symmetric. Write down
the adapted versions of the CG algorithm for these options.

. Let a matrix A and its preconditioner M be SPD. The standard result about the rate of conver-

gence of the CG algorithm is not valid for the Preconditioned Conjugate Gradient algorithm,
Algorithm 9.1. Show how to adapt this result by exploiting the M-inner product. Show how to
derive the same result by using the equivalence between Algorithm 9.1 and Algorithm 9.2.

. In Eisenstat’s implementation of the PCG algorithm, the operation with the diagonal D causes

some difficulties when describing the algorithm. This can be avoided.

a. Assume that the diagonal D of the preconditioning (9.5) is equal to the identity matrix.
What are the number of operations needed to perform one step of the PCG algorithm with
Eisenstat’s implementation? Formulate the PCG scheme for this case carefully.

b. The rows and columns of the preconditioning matrix M can be scaled so that the matrix D
of the transformed preconditioner, written in the form (9.5), is equal to the identity matrix.
What scaling should be used (the resulting M should also be SPD)?

c. Assume that the same scaling of question b is also applied to the original matrix A. Is the
resulting iteration mathematically equivalent to using Algorithm 9.1 to solve the system (9.6)
preconditioned with the diagonal D?

. In order to save operations, the two matrices D~ E and D~' E™ must be stored when comput-

ing Av by Algorithm 9.3. This exercise considers alternatives.

a. Consider the matrix B = DAD. Show how to implement an algorithm similar to 9.3 for
multiplying a vector v by B. The requirement is that only ED~" must be stored.

b. The matrix B in the previous question is not the proper preconditioned version of A by
the preconditioning (9.5). CG is used on an equivalent system involving B but a further
preconditioning by a diagonal must be applied. Which one? How does the resulting algorithm
compare in terms of cost and storage with an Algorithm based on 9.3?

c. It was mentioned in Section 9.2.2 that A needed to be further preconditioned by D1, Con-
sider the split-preconditioping option: CG i§ to be applied to the preconditioned system as-
sociated with C = DY/2 AD'/2. Defining E = D~'/2ED~1/? show that,

C=(I—-E)y'Dy(I-E)y"+(I-E)"+(I—-E)"

where D5 is a certain matrix to be determined. Then write an analogue of Algorithm 9.3
using this formulation. How does the operation count compare with that of Algorithm 9.3?

8. Assume that the number of nonzero elements of a matrix A is parameterized by Nz(Z) = an.

How small should o be before it does not pay to use Eisenstat’s implementation for the PCG
algorithm? What if the matrix A is initially scaled so that D is the identity matrix?



EXERCISES AND NOTES 263

9. Let M = LU be a preconditioner for a matrix A. Show that the left, right, and split precondi-
tioned matrices all have the same eigenvalues. Does this mean that the corresponding precon-
ditioned iterations will converge in (a) exactly the same number of steps? (b) roughly the same
number of steps for any matrix? (c) roughly the same number of steps, except for ill-conditioned
matrices?

10. Show that the relation (9.17) holds for any polynomial s and any vector r.
11. Write the equivalent of Algorithm 9.1 for the Conjugate Residual method.

12. Assume that a Symmetric Positive Definite matrix M is used to precondition GMRES for solv-
ing a nonsymmetric linear system. The main features of the P-GMRES algorithm exploiting
this were given in Section 9.2.1. Give a formal description of the algorithm. In particular give a
Modified Gram-Schimdt implementation. [Hint: The vectors Mwv;’s must be saved in addition to
the v;’s.] What optimality property does the approximate solution satisfy? What happens if the
original matrix A is also symmetric? What is a potential advantage of the resulting algorithm?

NOTES AND REFERENCES. The preconditioned version of CG described in Algorithm 9.1 is due
to Meijerink and van der Vorst [149]. Eisenstat’s implementation was developed in [80] and is of-
ten referred to as Eisenstat’s trick. A number of other similar ideas are described in [153]. Several
flexible variants of nonsymmetric Krylov subspace methods have been developed by several authors
simultaneously; see, e.g., [18], [181], and [211]. There does not seem to exist a similar technique
for left preconditioned variants of the Krylov subspace methods. This is because the preconditioned
operator M ]TIA now changes at each step. Similarly, no flexible variants have been developed for the
BCG-based methods, because the short recurrences of these algorithms rely on the preconditioned
operator being constant.

The CGW algorithm can be useful in some instances, such as when the symmetric part of A can
be inverted easily, e.g., using fast Poisson solvers. Otherwise, its weakness is that linear systems with
the symmetric part must be solved exactly. Inner-outer variations that do not require exact solutions
have been described by Golub and Overton [109]. |



10

PRECONDITIONING
TECHNIQUES

Finding a good preconditioner to solve a given sparse linear system is often
viewed as a combination of art and science. Theoretical results are rare
and some methods work surprisingly well, often despite expectations. A
preconditioner can be defined as any subsidiary approximate solver which
is combined with an outer iteration technique, typically one of the Krylov
subspace iterations seen in previous chapters. This chapter covers some of
the most successful techniques used to precondition a general sparse linear
system. Note at the outset that there are virtually no limits to available
options for obtaining good preconditioners. For example, preconditioners
can be derived from knowledge of the original physical problems from which
the linear system arises. However, a common feature of the preconditioners
discussed in this chapter is that they are built from the original coefficient
matrix.

I
INTRODUCTION

Roughly speaking, a preconditioner is any form of implicit or explicit modification of an
original linear system which makes it “easier” to solve by a given iterative method. For
example, scaling all rows of a linear system to make the diagonal elements equal to one
is an explicit form of preconditioning. The resulting system can be solved by a Krylov
subspace method and may require fewer steps to converge than with the original system
(although this is not guaranteed). As another example, solving the linear system

M 'Az =M

where M~ is some complicated mapping that may involve FFT transforms, integral cal-
culations, and subsidiary linear system solutions, may be another form of preconditioning.
Here, it is unlikely that the matrix M and M ~'A can be computed explicitly. Instead,

264



10.2 JACOBI, SOR, AND SSOR PRECONDITIONERS 265

the iterative processes operate with A and with M —! whenever needed. In practice, the
preconditioning operation A —* should be inexpensive to apply to an arbitrary vector.

One of the simplest ways of defining a preconditioner is to perform an incomplete fac-
torization of the original matrix A. This entails a decomposition of the form A = LU — R
where L and U have the same nonzero structure as the lower and upper parts of A respec-
tively, and R is the residual or error of the factorization. This incomplete factorization
known as ILU(O) is rather easy and inexpensive to compute. On the other hand, it of-
ten leads to a crude approximation which may result in the Krylov subspace accelerator
requiring many iterations to converge. To remedy this, several alternative incomplete fac-
torizations have been developed by allowing more fill-in in L and U. In general, the more
accurate 1L U factorizations require fewer iterations to converge, but the preprocessing cost
to compute the factors is higher. However, if only because of the improved robustness,
these trade-offs generally favor the more accurate factorizations. This is especially true
when several systems with the same matrix must be solved because the preprocessing cost
can be amortized.

This chapter considers the most common preconditioners used for solving large sparse
matrices and compares their performance. It begins with the simplest preconditioners (SOR
and SSOR) and then discusses the more accurate variants such as ILUT.

e
JACOBI, SOR, AND SSOR PRECONDITIONERS

02

As was seen in Chapter 4, a fixed-point iteration for solving a linear system

Az =b
takes the general form
Tpyr = M Nxy + M~ (10.1)
where M and N realize the splitting of A4 into
A=M-N. (10.2)
The above iteration is of the form
Trt1 = Gz + f (10.3)

where f = M ~'band
G=M"N=M"YM- A)

=I-M1A. (10.4)

Thus, for Jacobi and Gauss Seidel it has been shown that
Gja(A)=I-D'4 (10.5)
Ggs(A)=I-(D—-E)™"A, (10.6)

where A = D — E — F is the splitting defined in Chapter 4.



266 CHAPTER 10 PRECONDITIONING TECHNIQUES

The iteration (10.3) is attempting to solve

I-Gx=f (10.7)
which, because of the expression (10.4) for G, can be rewritten as
M~'Ax = M~1b. (10.8)

The above system is the preconditioned system associated with the splitting A = M — N,
and the iteration (10.3) is nothing but a fixed-point iteration on this preconditioned system.
Similarly, a Krylov subspace method, e.g., GMRES, can be used to solve (10.8), leading
to a preconditioned version of the Krylov subspace method, e.g., preconditioned GMRES.
The preconditioned versions of some Krylov subspace methods have been discussed in the
previous chapter with a generic preconditioner M. In theory, any general splitting in which
M is nonsingular can be used. Ideally, M should be close to A in some sense. However,
note that a linear system with the matrix A must be solved at each step of the iterative
procedure. Therefore, a practical and admittedly somewhat vague requirement is that these
solutions steps should be inexpensive.
As was seen in Chapter 4, the SSOR preconditioner is defined by

Mssor = (D —wE)D (D — wF).
Typically, when this matrix is used as a preconditioner, it is not necessary to choose w as
carefully as for the underlying fixed-point iteration. Taking w = 1 leads to the Symmetric
Gauss-Seidel (SGS) iteration,
Msgs = (D — EYD™Y(D - F). (10.9)
An interesting observation is that D — E is the lower part of 4, including the diagonal, and
D — F'is, similarly, the upper part of A. Thus,
Msgs = LU,
with
L=D-ED'=I-ED', U=D-F.

The matrix L is unit lower triangular and U is upper triangular. One question that may arise
concerns the implementation of the preconditioning operation. To compute w = Ms_clvsf”’
proceed as follows:

solve (I — ED ')z =u,

solve (D — F)w = z.
A FORTRAN implementation of this preconditioning operation is illustrated in the follow-
ing code, for matrices stored in the MSR format described in Chapter 3.

| FORTRAN CODE |
subroutine lusol (n,rhs,sol,luval,lucol,luptr,uptr)
real*8 sol(n), rhs(n), luval(*)
integer n, luptr(*), uptr(n)

Performs a forward and a backward solve for an ILU or
SSOR factorization, i.e., solves (LU) sol = rhs where LU
is the ILU or the SSOR factorization. For SSOR, L and U

o000



10.2 JACOBI, SOR, AND SSOR PRECONDITIONERS 267

c should contain the matrices L = I - omega E inv(D), and U
c =D - omega F, respectively with -E = strict lower
c triangular part of A, -F = strict upper triangular part
c of A, and D = diagonal of A.

c——- _ _ - -

c PARAMETERS:

cn = Dimension of problem

c rhs = Right hand side; rhs is unchanged on return
¢ sol = Solution of (LU) sol = rhs.

¢ luval = Values of the LU matrix. L and U are stored

c together in CSR format. The diagonal elements of
[ U are inverted. In each row, the L values are

c followed by the diagonal element (inverted) and

c then the other U values.

¢ lucol = Column indices of corresponding elements in luval
¢ luptr = Contains pointers to the beginning of each row in
c the LU matrix.

c uptr = pointer to the diagonal elements in luval, lucol

c——- o — _ -
integer i,k
c FORWARD SOLVE. Solve L . sol = rhs
doi=1,n
c compute sol(i) := rhs(i) - sum L(i,j) x sol(j)
sol(i) = rhs(i)
do k=luptr(i),uptr(i)-1
sol(i) = sol(i) - luval(k)* sol(lucol(k))
enddo
enddo
c BACKWARD SOLVE. Compute sol := inv(U) sol
doi=mn, 1, -1
c compute s0l(i) := sol(i) - sum U(i,j) x sol(j)
do k=uptr(i)+1, luptr(i+i)-1

sol(i) = sol(i) - luval(k)*sol(lucol(k))
enddo

(¢}

compute sol(i) := sol(i)/ U(i,i)

sol(i) = luval(uptr(i))*sol(i)
enddo
return
| end

As was seen above, the SSOR or SGS preconditioning matrix is of the form M = LU
where L and U have the same pattern as the L-part and the U-part of A, respectively. Here,
L-part means lower triangular part and, similarly, the U-part is the upper triangular part. If
the error matrix A — LU is computed, then for SGS, for example, we would find

A-LU=D-E-F-(I-ED'YD-F)=-ED™'F.

If L is restricted to have the same structure as the L-part of A and U is to have the same



268 CHAPTER 10 PRECONDITIONING TECHNIQUES

structure as the U-part of A, the question is whether or not it is possible to find L and U
that yield an error that is smaller in some sense than the one above. We can, for example,
try to find such an incomplete factorization in which the residual matrix A — LU has zero
elements in locations where A has nonzero entries. This turns out to be possible in general
and yields the ILU(O) factorization to be discussed later. Generally, a pattern for L and U
can be specified and L and U may be sought so that they satisfy certain conditions. This
leads to the general class of incomplete factorization techniques which are discussed in the
next section.

Example 10.1 Table 10.1 shows the results of applying the GMRES algorithm with
SGS (SSOR with w = 1) preconditioning to the five test problems described in Section
3.7.

Matrix | Iters | Kflops | Residual Error
F2DA 38 | 1986 | 0.76E-03 | 0.82E-04
F3D 20 | 4870 | 0.14E-02 | 0.30E-03

ORS 110 6755 | 0.31E+00 | 0.68E-04
F2DB | 300 | 15907 | 0.23E+02 | 0.66E+00
FID 300 | 99070 | 0.26E+02 | 0.51E-01

Table 10.1 A test run of GMRES with SGS preconditioning.

See Example 6.1 for the meaning of the column headers in the table. Notice here that the
method did not converge in 300 steps for the last two problems. The number of iterations
for the first three problems is reduced substantially from those required by GMRES with-
out preconditioning shown in Table 6.2. The total number of operations required is also
reduced, but not proportionally because each step now costs more due to the precondition-
ing operation.

I
ILU FACTORIZATION PRECONDITIONERS

Consider a general sparse matrix A whose elements are a;;,4,j = 1,...,n. A general
Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix L
and a sparse upper triangular matrix U so the residual matrix R = LU — A satisfies cer-
tain constraints, such as having zero entries in some locations. We first describe a general
ILU preconditioner geared toward A/-matrices. Then we discuss the ILU(0) factorization,
the simplest form of the ILU preconditioners. Finally, we will show how to obtain more
accurate factorizations.




10.3 ILU FACTORIZATION PRECONDITIONERS 269

10.3.1 INCOMPLETE LU FACTORIZATIONS

A general algorithm for building Incomplete LU factorizations can be derived by perform-
ing Gaussian elimination and dropping some elements in predetermined nondiagonal posi-
tions. To analyze this process and establish existence for M -matrices, the following result
of Ky-Fan [86] is needed.

THEOREM 10.1 Let A be an M-matrix and let A, be the matrix obtained from the
first step of Gaussian elimination. Then A is an M -matrix.

Proof. Theorem 1.17 will be used to establish that properties 1, 2, and 3 therein are

satisfied. First, consider the off-diagonal elements of A;:
a;1a1 4
al = a;j — 2aty

4 a11

Since a4, ai1, a1, are nonpositive and a1, is positive, it follows that a}j <0fori#j.
Second, the fact that A; is nonsingular is a trivial consequence of the following stan-
dard relation of Gaussian elimination

A
A= L1A1 where L = L’l, €3,€3,...€6n| - (10.10)
aii

Finally, we establish that A, is nonnegative by examining A;lej forj=1,...,n.
For j = 1, it is clear that Al_lel = ;761 because of the structure of A;. For the case
j # 1, (10.10) can be exploited to yield

Afle]- = A_lLflej = A_lej Z 0.

Therefore, all the columns of A;! are nonnegative by assumption and this completes the
proof. ]

Clearly, the (n — 1) x (n — 1) matrix obtained from A; by removing its first row and first
column is also an M -matrix.

Assume now that some elements are dropped from the result of Gaussian Elimination
outside of the main diagonal. Any element that is dropped is a nonpositive element which
is transformed into a zero. Therefore, the resulting matrix Ay is such that

A=A+ R,
where the elements of R are such that r;; = 0,7;; > 0. Thus,
A < A4

and the off-diagonal elements of A, are nonpositive. Since A; is an M -matrix, theorem
1.18 shows that A; is also an M -matrix. The process can now be repeated on the matrix
A(2 : n,2 : n), and then continued until the incomplete factorization of A is obtained. The
above arguments shows that at each step of this construction, we obtain an M -matrix and
that the process does not break down.

The elements to drop at each step have not yet been specified. This can be done stat-
ically, by choosing some non-zero pattern in advance. The only restriction on the zero

pattern is that it should exclude diagonal elements because this assumption was used in the



270 CHAPTER 10 PRECONDITIONING TECHNIQUES

above proof. Therefore, for any zero pattern set P, such that
Pc{@,j)|i#5j1<4,j< n}, (10.11)
an Incomplete LU factorization, ILUp, can be computed as follows.

ALGORITHM 10.1: General Static Pattern ILU

1. Fork=1,...,n—1Do:
2. Fori=k+1,nandif(i,k) ¢ P Do:

3 ik, = Qir, [ Qg
4 Forj=k+1,...,nandfor(i,j) ¢ P Do:
5. Qjj = Q35 — Qi * Qkj
6 EndDo
7 EndDo
8. EndDo
1
The For loop in line 4 should be interpreted as follows: Forj = k + 1, ..., n and only for

those indices j that are not in P execute the next line. In practice, it is wasteful to scan j
from k + 1 to n because there is an inexpensive mechanism for identifying those in this set
that are in the complement of P.

Using the above arguments, the following result can be proved.

THEOREM 10.2 Let A be an M-matrix and P a given zero pattern defined as in
(10.11). Then Algorithm 10.1 is feasible and produces an incomplete factorization,
A=LU-R (10.12)

which is a regular splitting of A.

Proof. At each step of the process, we have
A=A+ Ry, Ap=LiAr

where, using Oy, to denote a zero vector of dimension &, and A,,., ; to denote the vector
of components a; j,i =m,...,n,

Le=1- é (A(k O n,k)> -
From this follow the relations
Ay = Ag + Ry = LAy 1 + Ry
Applying this relation recursively, starting fromk =n — 1 up to &k = 1, it is found that
Ay 1=Lp1...L1tA+L,_1...LoRi +...+ Ly_1Rp_o+ Rp_1. (10.13)
Now define

LZ(Ln_l...Ll)_l, UZAn_l.



10.3 ILU FACTORIZATION PRECONDITIONERS 271

Then,
U=L1'4+8
with
S=L, 1...LoRy+...+ L, 1R, o+ R,_1.

Observe that at stage &, elements are dropped only in the (n — k) x (n — k) lower part of
Ay. Hence, the first £ rows and columns of R, are zero and as a result

Lpt...LppiRy =Ly y...L1Ry,
so that .S can be rewritten as
S=Lp1...Lay(Ri+Ra+ ...+ Rp_1).
If R denotes the matrix
R=Ri+Ry+...+ Rp_1,
then we obtain the factorization
A=LU-R,

where (LU)~! = UL~ is a nonnegative matrix, R is nonnegative. This completes the
proof. [ ]

Now consider a few practical aspects. An ILU factorization based on the form of Al-
gorithm 10.1 is difficult to implement because at each step &, all rows k& + 1 to n are being
modified. However, ILU factorizations depend on the implementation of Gaussian elimi-
nation which is used. Several variants of Gaussian elimination are known which depend on
the order of the three loops associated with the control variables 4, j, and & in the algorithm.
Thus, Algorithm 10.1 is derived from what is known as the k, 7, j variant. In the context of
Incomplete LU factorization, the variant that is most commonly used for a row-contiguous
data structure is the ¢, k, j variant, described next for dense matrices.

ALGORITHM 10.2: Gaussian Elimination — IKJ Variant

1. Fori=2,...,nDo:
2. Fork=1,...,i—1 Do:

3 ik = Qi [ Ak

4 Forj=k+1,...,n Do:
5. Aij = Qj5 — Qif * Ak
6 EndDo

7 EndDo

8. EndDo

The above algorithm is in place meaning that the i-th row of A can be overwritten by
the 4-th rows of the L and U matrices of the factorization (since L is unit lower triangular,
its diagonal entries need not be stored). Each step ¢ of the algorithm generates the ¢-th row



272 CHAPTER 10 PRECONDITIONING TECHNIQUES

of L and the i-th row of U at the same time. The previous rows 1,2,...,5 —1of Land U
are accessed at step ¢ but they are not modified. This is illustrated in Figure 10.1.

Accessed but not
modified

~ Accessed and
=""" modified

Figure 10.1 |KJvariant of the LU factorization.

Adapting this version for sparse matrices is easy because the rows of L and U are
generated in succession. These rows can be computed one at a time and accumulated in a
row-oriented data structure such as the CSR format. This constitutes an important advan-
tage. Based on this, the general ILU factorization takes the following form.

ALGORITHM 10.3: General ILU Factorization, 1K JVersion

1. Fori=2,...,nDo:
2. Fork=1,...,i—1andif(i,k) ¢ P Do:

3 Qi 2= Qg [ Ak

4 Forj=k+1,...,nandfor(i,j) ¢ P, Do:
5. Qi 2= Q45 — Qi Afj-

6 EndDo

7 EndDo

8. EndDo

It is not difficult to see that this more practical | KJvariant of ILU is equivalent to the
K 1Jversion which can be defined from Algorithm 10.1.

PROPOSITION 10.1 Let P be a zero pattern satisfying the condition (10.11). Then
the ILU factors produced by the K1J-based Algorithm 10.1 and the 1K J-based Algorithm
10.3 are identical if they can both be computed.

Proof. Algorithm (10.3) is obtained from Algorithm 10.1 by switching the order of the
loops k and 4. To see that this gives indeed the same result, reformulate the first two loops
of Algorithm 10.1 as



10.3 ILU FACTORIZATION PRECONDITIONERS 273

Fork = 1,n Do:
Fori =1,n Do:
ifk < i and for (i, k) ¢ P Do:
ope(row(i),row(k))

in which ope(row(i),row(k)) is the operation represented by lines 3 through 6 of both
Algorithm 10.1 and Algorithm 10.3. In this form, it is clear that the £ and 7 loops can be
safely permuted. Then the resulting algorithm can be reformulated to yield exactly Algo-
rithm 10.3. [ |

Note that this is only true for a static pattern ILU. If the pattern is dynamically determined
as the Gaussian elimination algorithm proceeds, then the patterns obtained with different
versions of GE may be different.

It is helpful to interpret the result of one incomplete elimination step. Denoting by .,
Uix, and a;. the i-th rows of L, U, and A, respectively, then the k-loop starting at line 2
of Algorithm 10.3 can be interpreted as follows. Initially, we have u;. = a;«. Then, each
elimination step is an operation of the form

Uin 1= Ugs — LikUpx.

However, this operation is performed only on the nonzero pattern, i.e., the complement of
P. This means that, in reality, the elimination step takes the form

k
Uix = Uix — LipUps + 7“,(*)7

in which r§f> is zerowhen (i,j) ¢ P and equals l;,ux; When (i,j) € P.Thus, the row
rz(f) cancels out the terms I;,us; that would otherwise be introduced in the zero pattern. In
the end the following relation is obtained:

i—1

Ui = Qjxe — Z (likuk* - ngf)) .

k=1

Note that I;, = 0 for (i,k) € P.We now sum up all the r§f> ’s and define

i—1
= i (10.14)
k=1

The row r;, contains the elements that fall inside the P pattern at the completion of the
k-loop. Using the fact that 7;; = 1, we obtain the relation,

Qi = Z LikUks — Tix- (10.15)
k=1
Therefore, the following simple property can be stated.
PROPOSITION 10.2 Algorithm (10.3) produces factors L and U such that

A=LU-R

in which — R is the matrix of the elements that are dropped during the incomplete elimina-
tion process. When (i, j) € P, anentryr;; of R is equal to the value of —a;; obtained at



274 CHAPTER 10 PRECONDITIONING TECHNIQUES

the completion of the k loop in Algorithm 10.3. Otherwise, r;; is zero.

10.3.2 ZERO FILL-IN ILU (ILU(0))

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), consists of
taking the zero pattern P to be precisely the zero pattern of A. In the following, we denote
by b;.. the i-th row of a given matrix B, and by N Z(B), the set of pairs (i, j),1 < 4,5 <n
such that b; ; # 0.

L U
... .==J ==
... ..Ej .== .=Ej
A LU

Figure 10.2 The ILU(O) factorization for a five-point matrix.

The incomplete factorization ILU(0) factorization is best illustrated by the case for
which it was discovered originally, namely, for 5-point and 7-point matrices related to finite
difference discretization of PDEs. Consider one such matrix A as illustrated in the bottom
left corner of Figure 10.2. The A matrix represented in this figure is a 5-point matrix of
size n = 32 corresponding to an n, x n, = 8 x 4 mesh. Consider now any lower triangular
matrix L which has the same structure as the lower part of A, and any matrix U which has
the same structure as that of the upper part of A. Two such matrices are shown at the top of
Figure 10.2. If the product LU were performed, the resulting matrix would have the pattern
shown in the bottom right part of the figure. It is impossible in general to match A with
this product for any L and U. This is due to the extra diagonals in the product, namely, the



10.3 ILU FACTORIZATION PRECONDITIONERS 275

diagonals with offsets n, — 1 and —n,, + 1. The entries in these extra diagonals are called
fill-in elements. However, if these fill-in elements are ignored, then it is possible to find L
and U so that their product is equal to A in the other diagonals. This defines the ILU(0)
factorization in general terms: Any pair of matrices L (unit lower triangular) and U (upper
triangular) so that the elements of A — LU are zero in the locations of NZ(A). These
constraints do not define the ILU(0) factors uniquely since there are, in general, infinitely
many pairs of matrices L and U which satisfy these requirements. However, the standard
ILU(O) is defined constructively using Algorithm 10.3 with the pattern P equal to the zero
pattern of A.

ALGORITHM 10.4: ILU(0)

1. Fori=2,...,nDo:
2. Fork=1,...,i—1andfor(i,k) € NZ(A) Do:

3 Compute a;r, = a;r /akk

4 Forj=k+1,...,nandfor(i,j) € NZ(A), Do:
5. Compute a;j := a;j — QirGk;.

6. EndDo

7 EndDo

8. EndDo

In some cases, it is possible to write the ILU(Q) factorization in the form
M =(D—-E)D™Y(D - F), (10.16)

where —F and —F" are the strict lower and strict upper triangular parts of A, and D is a
certain diagonal matrix, different from the diagonal of A, in general. In these cases it is
sufficient to find a recursive formula for determining the elements in D. A clear advantage
is that only an extra diagonal of storage is required. This form of the ILU(O) factorization is
equivalent to the incomplete factorizations obtained from Algorithm 10.4 when the product
of the strict-lower part and the strict-upper part of A consists only of diagonal elements
and fill-in elements. This is true, for example, for standard 5-point difference approxima-
tions to second order partial differential operators; see Exercise 4. In these instances, both
the SSOR preconditioner with w = 1 and the ILU(0) preconditioner can be cast in the form
(10.16), but they differ in the way the diagonal matrix D is defined. For SSOR(w = 1),
D is the diagonal of the matrix A itself. For ILU(0), it is defined by a recursion so that
the diagonal of the product of matrices (10.16) equals the diagonal of A. By definition,
together the L and U matrices in ILU(0) have the same number of nonzero elements as the
original matrix A.

Example 10.2 Table 10.2 shows the results of applying the GMRES algorithm with
ILU(O) preconditioning to the five test problems described in Section 3.7.



276 CHAPTER 10 PRECONDITIONING TECHNIQUES

Matrix | Iters | Kflops | Residual Error
F2DA 28 | 1456 | 0.12E-02 | 0.12E-03
F3D 17 | 4004 | 0.52E-03 | 0.30E-03

ORS 20 1228 | 0.18E+00 | 0.67E-04
F2DB | 300 | 15907 | 0.23E+02 | 0.67E+00
FID 206 | 67970 | 0.19E+00 | 0.11E-03

Table 10.2 A test run of GMRES with ILU(0) precondition-
ing.

See Example 6.1 for the meaning of the column headers in the table. Observe that for the
first two problems, the gains compared with the performance of the SSOR preconditionerin
Table 10.1 are rather small. For the other three problems, which are a little harder, the gains
are more substantial. For the last problem, the algorithm achieves convergence in 205 steps
whereas SSOR did not convergence in the 300 steps allowed. The fourth problem (F2DB)
is still not solvable by ILU(0) within the maximum number of steps allowed.

For the purpose of illustration, below is a sample FORTRAN code for computing the
incomplete L and U factors for general sparse matrices stored in the usual CSR format. The
real values of the resulting L, U factors are stored in the array luval, except that entries of
ones of the main diagonal of the unit lower triangular matrix L are not stored. Thus, one
matrix is needed to store these factors together. This matrix is denoted by L/U. Note that
since the pattern of L/U is identical with that of A, the other integer arrays of the CSR
representation for the LU factors are not needed. Thus, ja(k), which is the column position
of the element a(k) in the input matrix, is also the column position of the element luval (k)
in the L/U matrix. The code below assumes that the nonzero elements in the input matrix
A are sorted by increasing column numbers in each row.

| FORTRAN CODE |

subroutine ilu0 (n, a, ja, ia, luval, uptr, iw, icode)

integer n, ja(*), ia(n+1l), uptr(n), iw(n)

real*8 a(*), luval(*)
Set-up routine for ILU(0) preconditioner. This routine
computes the L and U factors of the ILU(0) factorization
of a general sparse matrix A stored in CSR format. Since
L is unit triangular, the L and U factors can be stored
as a single matrix which occupies the same storage as A.
The ja and ia arrays are not needed for the LU matrix
since the pattern of the LU matrix is identical with
that of A.

an0oo0n0oonoo0oo0o0o0n0n

(¢}

dimension of matrix
sparse matrix in general sparse storage format
integer work array of length n

o000
[+
.
o
H
o
nwnn

00
=
e
<
P
]

1]

L/U matrices stored together. On return luval,
ja, ia is the combined CSR data structure for
the LU factors

o0



10.3 ILU FACTORIZATION PRECONDITIONERS 277

c uptr = pointer to the diagonal elements in the CSR
c data structure luval, ja, ia
c icode = integer indicating error code on return
c icode = 0: normal return
c icode = k: encountered a zero pivot at step k
c
PR— - - _—
c initialize work array iw to zero and luval array to a
do 30 i =1, ia(n+1)-1
luval(i) = a(i)
30 continue
do 31 i=1, n
iw(i) = 0
31 continue
c-——-- Main loop
do 500 k =1, n
j1 = ia(k)
j2 = ia(k+1)-1
do 100 j=j1, j2
iw(ja(j)) = j
100 continue
j=it
150 jrow = ja(j)
c-——-- Exit if diagonal element is reached
if (jrow .ge. k) goto 200
c-—-- -—- Compute the multiplier for jrow.

tl = luval(j)#*luval (uptr(jrow))
luval(j) = tl1
c———- --- Perform linear combination
do 140 jj = uptr(jrow)+1, ia(jrow+1l)-1
ju = 10(aGi)
if (jw .ne. 0) luval(jw)=luval(jw)-tl*luval(jj)

140 continue

=i+t

if (j .le. j2) goto 150
c-——-- - --- Store pointer to diagonal element
200 uptr(k) = j

if (jrow .ne. k .or. luval(j) .eq. 0.0d0) goto 600
luval(j) = 1.0d0/luval(j)
c——-- -——- -—— Refresh all entries of iw to zero.
do 201 i = j1, j2
iw(ja(i)) = 0
201 continue
500 continue
c——-- —-——= -—- Normal return
icode = 0
return
c——-- —-— --- Error: zero pivot
600 icode = k
return
end

10.3.3 LEVEL OF FILL AND ILU(P)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an ade-
quate rate of convergence as shown in Example 10.2. More accurate Incomplete LU fac-
torizations are often more efficient as well as more reliable. These more accurate factoriza-



278 CHAPTER 10 PRECONDITIONING TECHNIQUES

tions will differ from 1LU(0) by allowing some fill-in. Thus, ILU(1) keeps the “first order
fill-ins,” a term which will be explained shortly.

To illustrate ILU(p) with the same example as before, the ILU(1) factorization results
from taking P to be the zero pattern of the product LU of the factors L, U obtained from
ILU(0). This pattern is shown at the bottom right of Figure 10.2. Pretend that the original
matrix has this “augmented” pattern N Z; (A). In other words, the fill-in positions created
in this product belong to the augmented pattern N Z;(A), but their actual values are zero.
The new pattern of the matrix A is shown at the bottom left part of Figure 10.3. The factors
L, and U; of the ILU(1) factorization are obtained by performing an ILU(0) factorization
on this “augmented pattern” matrix. The patterns of L, and U, are illustrated at the top
of Figure 10.3. The new LU matrix shown at the bottom right of the figure has now two
additional diagonals in the lower and upper parts.

L Uy
.l. ==J .=I
Foz. ™. Faz. @
l== I=Ej I=E I=Ej
Augmented A LU

Figure 10.3 The ILU(1) factorization.

One problem with the construction defined in this illustration is that it does not extend
to general sparse matrices. It can be generalized by introducing the concept of level of
fill. A level of fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the value of the level of fill. Algorithm 10.2 will be used
as a model, although any other form of GE can be used. The rationale is that the level of
fill should be indicative of the size: the higher the level, the smaller the elements. A very
simple model is employed to justify the definition: A size of €* is attributed to any element
whose level of fill is k, where € < 1. Initially, a nonzero element has a level of fill of one



10.3 ILU FACTORIZATION PRECONDITIONERS 279

(this will be changed later) and a zero element has a level of fill of co. An element a;; is
updated in line 5 of Algorithm 10.2 by the formula

Qij = Q5 — Qi X Q. (10.17)

If lev;; is the current level of the element a;;, then our model tells us that the size of the
updated element should be

(Iij = elevij _ 6levik X 6levkj — elevij _ 6levik+levkj‘
Therefore, roughly speaking, the size of a;; will be the maximum of the two sizes e’V
and efevirtleves and it is natural to define the new level of fill as,

lev;; == min{lev;;, leviy + levy; }.

In the common definition used in the literature, all the levels of fill are actually shifted
by —1 from the definition used above. This is purely for convenience of notation and to
conform with the definition used for ILU(0). Thus, initially lev;; = 0 if a;; # 0, and
lev;; = oo otherwise. Thereafter, define recursively

lev;; = min{lev;;,levy, + levy; + 1}.

DEFINITION 10.1 The initial level of fill of an element a;; of a sparse matrix A is
defined by

_J 0 ifay #0,ori=j

levij = { oo otherwise.

Each time this element is modified in line 5 of Algorithm 10.2, its level of fill must be
updated by

lev;; = min{lev;;, levyy, + levg; + 1}. (10.18)

Observe that the level of fill of an element will never increase during the elimination. Thus,
if a;; # 0 in the original matrix A, then the element in location 4, j will have a level of
fill equal to zero throughout the elimination process. The above systematic definition gives
rise to a natural strategy for discarding elements. In ILU(p), all fill-in elements whose level
of fill does not exceed p are kept. So using the definition of zero patterns introduced earlier,
the zero pattern for ILU(p) is the set

Py, ={(i,j) | levi; > p},

where lev;; is the level of fill value after all updates (10.18) have been performed. The case
p = 0 coincides with the 1LU(0) factorization and is consistent with the earlier definition.

In practical implementations of the ILU(p) factorization it is common to separate the
symbolic phase (where the structure of the L and U factors are determined) from the nu-
merical factorization, when the numerical values are computed. Here, a variant is described
which does not separate these two phases. In the following description, a ;. denotes the 4-th
row of the matrix A, and a;; the (4, j)-th entry of A.

ALGORITHM 10.5: ILU(p)

1. Forall nonzero elements a;; define lev(a;;) = 0
2. Fori=2,...,n Do:




280 CHAPTER 10 PRECONDITIONING TECHNIQUES

3. Foreachk=1,...,i—1andforlev(a;) < p Do:

4. Compute a;y, := a;r/akk

5. Compute a;x := Qi — GikQpox -

6. Update the levels of fill of the nonzero a; ;s using (10.18)
7. EndDo

8. Replace any element in row i with lev(a;;) > p by zero

9. EndDo

There are a number of drawbacks to the above algorithm. First, the amount of fill-in and
computational work for obtaining the ILU(p) factorization is not predictable for p > 0.
Second, the cost of updating the levels can be quite high. Most importantly, the level of
fill-in for indefinite matrices may not be a good indicator of the size of the elements that
are being dropped. Thus, the algorithm may drop large elements and result in an inaccurate
incomplete factorization, in the sense that R = LU — A is not small. Experience reveals
that on the average this will lead to a larger number of iterations to achieve convergence,
although there are certainly instances where this is not the case. The techniques which will
be described in Section 10.4 have been developed to remedy these three difficulties, by
producing incomplete factorizations with small error R and a controlled number of fill-ins.

01 V2 Pm+1
,82 52 3

B3 &3 \
AN
i

Bi 0; i+l Pitm

N

$n

Tn
Tn Bn O

Figure 10.4 Matrix resulting from the discretization of an el-
liptic problem on a rectangle.

10.3.4 MATRICES WITH REGULAR STRUCTURE

Often, the original matrix has a regular structure which can be exploited to formulate the
ILU preconditioners in a simpler way. Historically, incomplete factorization precondition-
ers were developed first for such matrices, rather than for general sparse matrices. Here, we
call a regularly structured matrix a matrix consisting of a small number of diagonals. As an



10.3 ILU FACTORIZATION PRECONDITIONERS 281

example, consider the diffusion-convection equation, with Dirichlet boundary conditions
—Au+bVu=finQ
u =0 on 0N

where Q0 is simply a rectangle. As seen in Chapter 2, if the above problem is discretized
using centered differences, a linear system is obtained whose coefficient matrix has the
structure shown in Figure 10.4. In terms of the stencils seen in Chapter 4, the representation
of this matrix is rather simple. Each row expresses the coupling between unknown ¢ and
unknowns i + 1, ¢ — 1 which are in the horizontal, or z direction, and the unknowns i + m
and ¢ —m which are in the vertical, or y direction. This stencil is represented in Figure 10.5.

Pitm
o
Bi d; Yi41
@ L o
o
i
Figure 10.5 Stencil associated with the 5-point matrix shown
in Figure 10.4.
The desired L and U matrices in the ILU(0) factorization are shown in Figure 10.6.
L U
1 dy 92 fmt1
ba
€m+41
fn
In
€n bn 1 dn

Figure 10.6 L and U factors of the ILU(0) factorization for
the 5-point matrix shown in Figure 10.4.

Now the respective stencils of these L and U matrices can be represented at a mesh
point ¢ as shown in Figure 10.7.



282 CHAPTER 10 PRECONDITIONING TECHNIQUES

fi—l—m
L
bi 1 d, gi+1
@ ® L L
L
€;

Figure 10.7 Stencils associated with the L and U factors
shown in Figure 10.6.

The stencil of the product LU can be obtained easily by manipulating stencils directly
rather than working with the matrices they represent. Indeed, the i-th row of LU is obtained
by performing the following operation:

row;(LU) = 1 x row;(U) + b; x row;_1(U) + e; X row;_m (U).
This translates into a combination of the stencils associated with the rows:
stencil;(LU) = 1 x stencil;(U) + b; x stencil;—1(U) + e; x stencil;—, (U)

in which stencil ;(X) represents the stencil of the matrix X based at the mesh point labeled
Jj. This gives the stencil for the LU matrix represented in Figure 10.8.

bifirm—1 fitm

/di +bigi +eifi
Gi+1

bid;i—1

eid; _m €igi—m+1

Figure 10.8 Stencil associated with the product of the L and
U factors shown in Figure 10.6.

In the figure, the fill-in elements are represented by squares and all other nonzero elements
of the stencil are filled circles. The ILU(0) process consists of identifying LU with A in
locations where the original a;;’s are nonzero. In the Gaussian eliminations process, this
is done from ¢ = 1 to ¢ = n. This provides the following equations obtained directly from
comparing the stencils of LU and A (going from lowest to highest indices)

eidi—m =1



10.3 ILU FACTORIZATION PRECONDITIONERS 283

bidi—1 = B;
di +bigi +eifi =0;
9Gi+1 = Yi+1

fi—i—m = Qitm-

Observe that the elements g; 1 and f;,, are identical with the corresponding elements of
the A matrix. The other values are obtained from the following recurrence:

M
“= difm
Bi
b; =
di—1

di = 0; — bigi — i fi.

The above recurrence can be simplified further by making the observation that the quan-
tities #; /d;—m and 3;/d;—1 need not be saved since they are scaled versions of the corre-
sponding elements in A. With this observation, only a recurrence for the diagonal elements
d; is needed. This recurrence is:

d; = 6; — Bivi _ M

1=1,...
YUdir diem ’

with the convention that any d; with a non-positive index j is replaced by 1 and any other
element with a negative index is zero. The factorization obtained takes the form

M =(D—-E)D YD -F) (10.20)

., (10.19)

in which — E is the strict lower diagonal of A, —F' is the strict upper triangular part of A4,
and D is the diagonal obtained with the above recurrence. Note that an ILU(0) based on
the 1K Jversion of Gaussian elimination would give the same result.

For a general sparse matrix A with irregular structure, one can also determine a pre-
conditioner in the form (10.20) by requiring only that the diagonal elements of M match
those of A (see Exercise 10). However, this will not give the same ILU factorization as the
one based on the 1 KJvariant of Gaussian elimination seen earlier. Why the 1LU(0) factor-
ization gives rise to the same factorization as that of (10.20) is simple to understand: The
product of L and U does not change the values of the existing elements in the upper part,
except for the diagonal. This also can be interpreted on the adjacency graph of the matrix.

This approach can now be extended to determine the ILU(1) factorization as well as
factorizations with higher levels of fill. The stencils of the L and U matrices in the ILU(1)
factorization are the stencils of the lower part and upper parts of the LU matrix obtained
from ILU(0). These are shown in Figure 10.9. In the illustration, the meaning of a given
stencil is not in the usual graph theory sense. Instead, all the marked nodes at a stencil
based at node ¢ represent those nodes coupled with unknown ¢ by an equation. Thus, all
the filled circles in the picture are adjacent to the central node. Proceeding as before and
combining stencils to form the stencil associated with the LU matrix, we obtain the stencil
shown in Figure 10.10.



284 CHAPTER 10 PRECONDITIONING TECHNIQUES

Ritm—1 fitm
b 1 d; Ji+1
@ @ @ @

€ Ci
Figure 10.9 Stencils associated with the L and U factors of
the 1LU(0) factorization for the matrix associated with the sten-
cil of Figure 10.8.

hitm—1 + bifirm_1
bihitm—2 fitm

di + bigi +eifi+cih;
git1 + Cifit

|
bidi—1 + eihi—1

o
eid;_m Cigi—m+1

€iGi—m+1 + Cidi—mi1

Figure 10.10 Stencil associated with the product of the L
and U matrices whose stencils are shown in Figure 10.9.

As before, the fill-in elements are represented by squares and all other elements are
filled circles. A typical row of the matrix associated with the above stencil has nine nonzero
elements. Two of these are fill-ins, i.e., elements that fall outside the original structure of
the L and U matrices. It is now possible to determine a recurrence relation for obtaining
the entries of L and U. There are seven equations in all which, starting from the bottom,
are

eidi—m = 1;
€iGi—m+1 + Cidi—my1 =0
bid; 1 +e;h;_1 = B
d; + bigi + eifi + cih; = 6;
gi+1 + Cifir1 = Vit
hivm—1+ bifi+m_1 =0
fitm = Qitm.



10.3 ILU FACTORIZATION PRECONDITIONERS 285

This immediately yields the following recurrence relation for the entries of the L and U
factors:
ei =1ni/di-m
i = —€igi—m+1/di—m+1
bi = (Bi — eihi—1) /di—1
di = 0; — bigi — eifi — cih;
gi+1 = Vi1 — Cifir
hiym—1 = =bifiym—1
fitm = Pitm-
In proceeding from the nodes of smallest index to those of largest index, we are in effect
performing implicitly the 1K Jversion of Gaussian elimination. The result of the ILU(1)

obtained in this manner is therefore identical with that obtained by using Algorithms 10.1
and 10.3.

10.3.5 MODIFIED ILU (MILU)

In all the techniques thus far, the elements that were dropped out during the incomplete
elimination process are simply discarded. There are also techniques which attempt to re-
duce the effect of dropping by compensating for the discarded entries. For example, a
popular strategy is to add up all the elements that have been dropped at the completion of
the k-loop of Algorithm 10.3. Then this sum is subtracted from the diagonal entry in U.
This diagonal compensation strategy gives rise to the Modified ILU (MILU) factorization.

Thus, in equation (10.14), the final row u;, obtained after completion of the k-loop of
Algorithm 10.3 undergoes one more modification, namely,

Ui = Ugq — (Tz’*@)

in which e = (1,1,...,1)7. Note that r;, is a row and r;,e is the sum of the elements
in this row, i.e., its row sum. The above equation can be rewritten in row form as u;. :=
ui« — (rix€)el and equation (10.15) becomes

1
Qi = Zlikuk* + (rive)el — ri. (10.21)
k=1
Observe that
i i—1
i€ = Z Lirug«e + (r,'*e)efe — e = Elikuk*e = LU e.
k=1 k=1

This establishes that Ae = LUe. As a result, this strategy guarantees that the row sums of
A are equal to those of LU. For PDEs, the vector of all ones represents the discretization
of a constant function. This additional constraint forces the ILU factorization to be exact
for constant functions in some sense. Therefore, it is not surprising that often the algorithm
does well for such problems. For other problems or problems with discontinuous coeffi-
cients, MILU algorithms usually are not better than their ILU counterparts, in general.



286 CHAPTER 10 PRECONDITIONING TECHNIQUES

Example 10.3 For regularly structured matrices there are two elements dropped at the
i-th step of ILU(0). These are b; f;+m—1 and e;g;—n+1 located on the north-west and south-
east corners of the stencil, respectively. Thus, the row sum r; e associated with step i is
_ Bidiym—1 4 TYm—it1

di—1 di—m
and the MILU variant of the recurrence (10.19) is
_ Bidirm— 4 TYmeit

di—1 di—m

4 =g, _ D Mg

84

8

The new ILU factorization is now such that A = LU — R in which according to (10.21)
the i-th row of the new remainder matrix R is given by

r,(jiew) = (rise)el —ri
whose row sum is zero.

This generic idea of lumping together all the elements dropped in the elimination pro-
cess and adding them to the diagonal of U can be used for any form of ILU factorization.
In addition, there are variants of diagonal compensation in which only a fraction of the
dropped elements are added to the diagonal. Thus, the term s; in the above example would
be replaced by ws; before being added to w;;, where w is typically between 0 and 1. Other
strategies distribute the sum s; among nonzero elements of L and U, other than the diago-
nal.

I
THRESHOLD STRATEGIES AND ILUT

Incomplete factorizations which rely on the levels of fill are blind to numerical values be-
cause elements that are dropped depend only on the structure of A. This can cause some
difficulties for realistic problems that arise in many applications. A few alternative methods
are available which are based on dropping elements in the Gaussian elimination process
according to their magnitude rather than their locations. With these techniques, the zero
pattern P is determined dynamically. The simplest way to obtain an incomplete factor-
ization of this type is to take a sparse direct solver and modify it by adding lines of code
which will ignore “small” elements. However, most direct solvers have a complex imple-
mentation which involves several layers of data structures that may make this approach
ineffective. It is desirable to develop a strategy which is more akin to the 1LU(0) approach.
This section describes one such technique.




10.4 THRESHOLD STRATEGIES AND ILUT 287

10.4.1 THE ILUT APPROACH

A generic ILU algorithm with threshold can be derived from the 1KJversion of Gaussian
elimination, Algorithm 10.2, by including a set of rules for dropping small elements. In
what follows, applying a dropping rule to an element will only mean replacing the element
by zero if it satisfies a set of criteria. A dropping rule can be applied to a whole row by
applying the same rule to all the elements of the row. In the following algorithm, w is a
full-length working row which is used to accumulate linear combinations of sparse rows in
the elimination and wy, is the k-th entry of this row. As usual, a;, denotes the i-th row of
A.

ALGORITHM 10.6: ILUT

1. Fori=1,...,nDo:

2 W = Qi

3 Fork =1,...,i—1 and when wy, # 0 Do:
4 Wg 1= wk/akk

5 Apply a dropping rule to wy,
6 Ifwy, # 0 then

7 W= W — Wk * Uk

8 EndIf

9. EndDo
10 Apply a dropping rule to row w
11 l,’ij:’wJ'fOrj:].,...,i—].
12 Ui, 5 = Wj fij:i,...,n
13 w:=10

. 14. EndDo

Now consider the operations involved in the above algorithm. Line 7 is a sparse update
operation. A common implementation of this is to use a full vector for w and a companion
pointer which points to the positions of its nonzero elements. Similarly, lines 11 and 12 are
sparse-vector copy operations. The vector w is filled with a few nonzero elements after the
completion of each outer loop ¢, and therefore it is necessary to zero out those elements at
the end of the Gaussian elimination loop as is done in line 13. This is a sparse set-to-zero
operation.

ILU(0) can be viewed as a particular case of the above algorithm. The dropping rule
for ILU(O) is to drop elements that are in positions not belonging to the original structure
of the matrix.

In the factorization ILUT(p, 7), the following rule is used.

1. In line 5, an element wy, is dropped (i.e., replaced by zero) if it is less than the
relative tolerance 7; obtained by multiplying = by the original norm of the ¢-th row
(e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, drop again any
element in the row with a magnitude that is below the relative tolerance 7;. Then,



288 CHAPTER 10 PRECONDITIONING TECHNIQUES

keep only the p largest elements in the L part of the row and the p largest elements
in the U part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row. Roughly
speaking, p can be viewed as a parameter that helps control memory usage, while 7 helps
to reduce computational cost. There are several possible variations on the implementation
of dropping step 2. For example we can keep a number of elements equal to nu (i) + p in
the upper part and nl(i) + p in the lower part of the row, where nl(i) and nu(s) are the
number of nonzero elements in the L part and the U part of the i-th row of A, respectively.
This variant is adopted in the ILUT code used in the examples.

Note that no pivoting is performed. Partial (column) pivoting may be incorporated at
little extra cost and will be discussed later. It is also possible to combine ILUT with one of
the many standard reorderings, such as the ordering and the nested dissection ordering, or
the reverse Cuthill-McKee ordering. Reordering in the context of incomplete factorizations
can also be helpful for improving robustness, provided enough accuracy is used. For ex-
ample, when a red-black ordering is used, ILU(0) may lead to poor performance compared
with the natural ordering ILU(0). On the other hand, if ILUT is used by allowing gradually
more fill-in, then the performance starts improving again. In fact, in some examples, the
performance of ILUT for the red-black ordering eventually outperforms that of ILUT for
the natural ordering using the same parameters p and 7.

10.4.2 ANALYSIS

Existence theorems for the ILUT factorization are similar to those of other incomplete
factorizations. If the diagonal elements of the original matrix are positive while the off-
diagonal elements are negative, then under certain conditions of diagonal dominance the
matrices generated during the elimination will have the same property. If the original ma-
trix is diagonally dominant, then the transformed matrices will also have the property of
being diagonally dominant under certain conditions. These properties are analyzed in detail
in this section.

The row vector w resulting from line 4 of Algorithm 10.6 will be denoted by uk+1.
Note that u’““ = 0 for j < k. Lines 3 to 10 in the algorithm involve a sequence of
operations of the form

Lik := uby Jugr, (10.22)

if |I;] small enoughset ;=0

else:

“kjl = Uf,j — Likug,; — Tf’j j=k+1,...,n (10.23)
fork =1,...,4— 1, inwhich initially u} , := a; . and where rkj is an element subtracted

from a f|II -in element which is being dropped It should be equal either to zero (ho drop-
ping) or to u — lirur; When the element u’“jl is being dropped. At the end of the i-th
step of Gausswln elimination (outer loop in Algorithm 10.6), we obtain the i-th row of U,

Ui = uﬁ_L* (10.24)



10.4 THRESHOLD STRATEGIES AND ILUT 289

and the following relation is satisfied:

K3
Qj,% = Zlk,juz* + i,
k=1
where r; . is the row containing all the fill-ins.
The existence result which will be proved is valid only for certain modifications of
the basic ILUT(p, 7) strategy. We consider an ILUT strategy which uses the following
modification:

e Drop Strategy Modification. For any ¢ < n, let a; ; be the element of largest
modulus among the elements a; ;, j = i + 1,...n, in the original matrix. Then
elements generated in position (4, j;) during the ILUT procedure are not subject to
the dropping rule.

This modification prevents elements generated in position (4, j;) from ever being dropped.
Of course, there are many alternative strategies that can lead to the same effect.
A matrix H whose entries h;; satisfy the following three conditions:

hi; >0 for 1<i<n and h,, >0 (10.25)
hi; <0 for i,5=1,...,n and i#j; (10.26)

> hij<0, for 1<i<n (10.27)
j=it+1

will be referred to as an M matrix. The third condition is a requirement that there be at
least one nonzero element to the right of the diagonal element, in each row except the last.
The row sum for the i-th row is defined by

TS(h,'y*) = hi,*e = Z hi’j.
j=1

A given row of an M matrix H is diagonally dominant, if its row sum is nonnegative. An
M matrix H is said to be diagonally dominant if all its rows are diagonally dominant. The
following theorem is an existence result for ILUT. The underlying assumption is that an
ILUT strategy is used with the modification mentioned above.

THEOREM 10.3 If the matrix A is a diagonally dominant M matrix, then the rows
uf,, k=0,1,2,...,i defined by (10.23) starting withu , = 0 and uj , = a; . satisfy the

following relations fork = 1,...,1

uf; <0 j#i (10.28)
rs(uf,) > rs(uf,') >0, (10.29)
uf. >0 when i<n and uF,>o0. (10.30)

Proof. The result can be proved by induction on k. It is trivially true for k£ = 0. To prove
that the relation (10.28) is satisfied, start from the relation

k+1 | k

_ , k
Us o 2= Uju — llkuk,* — Tix



290 CHAPTER 10 PRECONDITIONING TECHNIQUES

in which 1z < 0,u,; < 0. Either rf; is zero which yields u;t' < uf; < 0, or r¥;
is nonzero which means that ufj“ is being dropped, i.e., replaced by zero, and therefore
again ufj“ < 0. This establishes (10.28). Note that by this argumentr{?j = 0 except when
the j-th element in the row is dropped, in which case u%" = 0 and rfj = ufj —Ligug,; < 0.
Therefore, rfj < 0, always. Moreover, when an element in position (i, j) is not dropped,
then

K+l ._ k7. ]
iy S Ui Lirug,; <u

and in particular by the rule in the modification of the basic scheme described above, for
i < n, we will always have for j = j;,

k

u i,j

ukbtl < ob (10.31)

,Ji — i
in which j; is defined in the statement of the modification.
Consider the row sum of u%+'. We have

rs(uilt) = rs(uf,) —lix  rsure) —rs(rfy)
> rs(ufy*) — i, rs(upx) (10.32)
> rs(uf,) (10.33)

which establishes (10.29) for k& + 1.
It remains to prove (10.30). From (10.29) we have, for i < n,

uft > Y —uit= Y (el (10:34)
j=k+1,n j=k+1,n

> Jufth > Jug ;| > (10.35)

> fug j,| = lai- (10.36)

Note that the inequalities in (10.35) are true because “f,ji is never dropped by assumption
and, as a result, (10.31) applies. By the condition (10.27), which defines M matrices, |as, j;
is positive for ¢ < n. Clearly, when ¢ = n, we have by (10.34) u,, > 0. This completes
the proof. ]

The theorem does not mean that the factorization is effective only when its conditions are
satisfied. In practice, the preconditioner is efficient under fairly general conditions.

10.4.3 IMPLEMENTATION DETAILS

A poor implementation of ILUT may well lead to an expensive factorization phase, and
possibly an impractical algorithm. The following is a list of the potential difficulties that
may cause inefficiencies in the implementation of ILUT.

1. Generation of the linear combination of rows of A (Line 7 in Algorithm 10.6).

2. Selection of the p largest elementsin L and U.

3. Need to access the elements of L in increasing order of columns (in line 3 of
Algorithm 10.6).



10.4 THRESHOLD STRATEGIES AND ILUT 201

For (1), the usual technique is to generate a full row and accumulate the linear combination
of the previous rows in it. The row is zeroed again after the whole loop is finished using
a sparse set-to-zero operation. A variation on this technique uses only a full integer array
jr(1 : n), the values of which are zero except when there is a nonzero element. With this
full row, a short real vector w(1 : mazw) must be maintained which contains the real
values of the row, as well as a corresponding short integer array jw(1 : mazw) which
points to the column position of the real values in the row. When a nonzero element resides
in position j of the row, then jr(j) is set to the address & in w, jw where the nonzero
element is stored. Thus, jw(k) points to jr(j), and jr(j) points to jw(k) and w(k). This
is illustrated in Figure 10.11.

Jjrinonzero
0j170,2(0(0]3]0|4|0|0] 0 0 |indicator

2| 4| 7 | 9 | jw:pointer to nonzero elements

x | x| x| x | w:real values

Figure 10.11 Illustration of data structure used for the work-
ing row in ILUT.

Note that jr holds the information on the row consisting of both the L part and the
U part of the LU factorization. When the linear combinations of the rows are performed,
first determine the pivot. Then, unless it is small enough to be dropped according to the
dropping rule being used, proceed with the elimination. If a new element in the linear
combination is not a fill-in, i.e., if j»(j) = k # 0, then update the real value w(k). If itis a
fill-in (jr(j) = 0), then append an element to the arrays w, jw and update jr accordingly.

For (2), the natural technique is to employ a heap-sort strategy. The cost of this imple-
mentation would be O(m+pxlog, m), i.e., O(m) for the heap construction and O(log, m)
for each extraction. Another implementation is to use a modified quick-sort strategy based
on the fact that sorting the array is not necessary. Only the largest p elements must be ex-
tracted. This is a quick-split technique to distinguish it from the full quick-sort. The method
consists of choosing an element, e.g., x = w(1), in the array w(1 : m), then permuting
the data so that |w(k)| < |z| if & < mid and |w(k)| > |z| if & > mid, where mid is
some split point. If mid = p, then exit. Otherwise, split one of the left or right sub-arrays
recursively, depending on whether mid is smaller or larger than p. The cost of this strategy
on the average is O(m). The savings relative to the simpler bubble sort or insertion sort
schemes are small for small values of p, but they become rather significant for large p and
m.

The next implementation difficulty is that the elements in the L part of the row being
built are not in an increasing order of columns. Since these elements must be accessed from
left to right in the elimination process, all elements in the row after those already elimi-



292 CHAPTER 10 PRECONDITIONING TECHNIQUES

nated must be scanned. The one with smallest column number is then picked as the next
element to eliminate. This operation can be efficiently organized as a binary search tree
which allows easy insertions and searches. However, this improvement is rather complex
to implement and is likely to yield moderate gains.

Example 10.4 Tables 10.3 and 10.4 show the results of applying GMRES(10) precon-
ditioned with ILUT(1,10~%) and ILUT(5,10~%), respectively, to the five test problems
described in Section 3.7. See Example 6.1 for the meaning of the column headers in the ta-
ble. As shown, all linear systems are now solved in a relatively small number of iterations,
with the exception of F2DB which still takes 130 steps to converge with Ifil = 1 (but only
10 with Ifil = 5.) In addition, observe a marked improvement in the operation count and
error norms. Note that the operation counts shown in the column Kflops do not account for
the operations required in the set-up phase to build the preconditioners. For large values of
Ifil , this may be large.

Matrix | Iters | Kflops | Residual Error

F2DA 18 964 | 0.47E-03 | 0.41E-04
F3D 14 | 3414 | 0.11E-02 | 0.39E-03
ORS 6 341 | 0.13E+00 | 0.60E-04
F2DB | 130 | 7167 | 0.45E-02 | 0.51E-03
FID 59 | 19112 | 0.19E+00 | 0.11E-03

Table 10.3 A test run of GMRES(10)-1LUT(1, 10~%) precon-
ditioning.

If the total time to solve one linear system with A is considered, a typical curve of
the total time required to solve a linear system when the Ifil parameter varies would look
like the plot shown in Figure 10.12. As Ifil increases, a critical value is reached where
the preprocessing time and the iteration time are equal. Beyond this critical point, the
preprocessing time dominates the total time. If there are several linear systems to solve
with the same matrix A, then it is advantageous to use a more accurate factorization, since
the cost of the factorization will be amortized. Otherwise, a smaller value of Ifil will be
more efficient.

Matrix | Iters | Kflops | Residual Error

F2DA 7 478 | 0.13E-02 | 0.90E-04
F3D 9 | 2855 | 0.58E-03 | 0.35E-03
ORS 4 270 | 0.92E-01 | 0.43E-04
F2DB 10 724 | 0.62E-03 | 0.26E-03
FID 40 | 14862 | 0.11E+00 | 0.11E-03

Table 10.4 A test run of GMRES(10)-1LUT(5, 10~*) precon-
ditioning.



10.4 THRESHOLD STRATEGIES AND ILUT 203

12.

10. |

8.0

60] : e

®o3—-— CTO
1
\

4.0 Tt

201~

30 50 70 90 11. 13. 15

level of fill-in
Figure 10.12 Typical CPU time as a function of Ifil The
dashed line is the ILUT time, the dotted line is the GMRES time,
and the solid line shows the total.

10.4.4 THE ILUTP APPROACH

The ILUT approach may fail for many of the matrices that arise from real applications, for
one of the following reasons.

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow condition, because of an
exponential growth of the entries of the factors;

3. The ILUT preconditioner terminates normally but the incomplete factorization pre-
conditioner which is computed is unstable.

An unstable LU factorization is one for which A —' = U~'L~! has a very large norm
leading to poor convergence or divergence of the outer iteration. The case (1) can be over-
come to a certain degree by assigning an arbitrary nonzero value to a zero diagonal element
that is encountered. Clearly, this is not a satisfactory remedy because of the loss in accuracy
in the preconditioner. The ideal solution in this case is to use pivoting. However, a form of
pivoting is desired which leads to an algorithm with similar cost and complexity to ILUT.
Because of the data structure used in ILUT, row pivoting is not practical. Instead, column
pivoting can be implemented rather easily.

Here are a few of the features that characterize the new algorithm which is termed
ILUTP (“P” stands for pivoting). ILUTP uses a permutation array perm to hold the new
orderings of the variables, along with the reverse permutation array. At step 4 of the elim-
ination process the largest entry in a row is selected and is defined to be the new i-th
variable. The two permutation arrays are then updated accordingly. The matrix elements
of L and U are kept in their original numbering. However, when expanding the L-U row
which corresponds to the i-th outer step of Gaussian elimination, the elements are loaded
with respect to the new labeling, using the array perm for the translation. At the end of
the process, there are two options. The first is to leave all elements labeled with respect



204 CHAPTER 10 PRECONDITIONING TECHNIQUES

to the original labeling. No additional work is required since the variables are already in
this form in the algorithm, but the variables must then be permuted at each preconditioning
step. The second solution is to apply the permutation to all elements of A as well as L/U.
This does not require applying a permutation at each step, but rather produces a permuted
solution which must be permuted back at the end of the iteration phase. The complexity
of the ILUTP procedure is virtually identical to that of ILUT. A few additional options
can be provided. A tolerance parameter called permtol may be included to help determine
whether or not to permute variables: A nondiagonal element a;; is candidate for a per-
mutation only when tol x |a;;| > |ai;|. Furthermore, pivoting may be restricted to take
place only within diagonal blocks of a fixed size. The size mbloc of these blocks must be
provided. A value of mbloc > n indicates that there are no restrictions on the pivoting.
For difficult matrices, the following strategy seems to work well:

1. Always apply a scaling to all the rows (or columns) e.g., so that their 1-norms are
all equal to 1; then apply a scaling of the columns (or rows).

2. Use a small drop tolerance (e.g., e = 10~* ore = 1079).

3. Take a large fill-in parameter (e.g., I fil = 20).

4. Do not take a small value for permtol. Reasonable values are between 0.5 and
0.01, with 0.5 being the best in many cases.

5. Take mbloc = n unless there are reasons why a given block size is justifiable.

Example 10.5 Table 10.5 shows the results of applying the GMRES algorithm with
ILUTP(1,10~%) preconditioning to the five test problems described in Section 3.7. The
permtol parameter is set to 1.0 in this case.

Matrix | Iters | Kflops | Residual Error

F2DA 18 964 | 0.47E-03 | 0.41E-04
F3D 14 | 3414 | 0.11E-02 | 0.39E-03
ORS 6 341 | 0.13E+00 | 0.61E-04
F2DB | 130 | 7167 | 0.45E-02 | 0.51E-03
FID 50 | 16224 | 0.17E+00 | 0.18E-03

Table 10.5 A test run of GMRES with ILUTP(1) precondi-
tioning.

See Example 6.1 for the meaning of the column headers in the table. The results are identi-
cal with those of ILUT(1, 10~*) shown in Table 10.3, for the first four problems, but there
is an improvement for the fifth problem.

10.4.5 THE ILUS APPROACH

The ILU preconditioners discussed so far are based mainly on the the 1K Jvariant of Gaus-
sian elimination. Different types of ILUs can be derived using other forms of Gaussian



10.4 THRESHOLD STRATEGIES AND ILUT 205

elimination. The main motivation for the version to be described next is that ILUT does
not take advantage of symmetry. If A is symmetric, then the resulting A = LU is nonsym-
metric in general. Another motivation is that in many applications including computational
fluid dynamics and structural engineering, the resulting matrices are stored in a sparse
skyline (SSK) format rather than the standard Compressed Sparse Row format.

I O
+ sparse column

[
sparse row — | ]

Figure 10.13 Illustration of the sparse skyline format.

In this format, the matrix A is decomposed as
A=D+ Ly + Lg

in which D is a diagonal of A and L, L, are strictly lower triangular matrices. Then a
sparse representation of Ly and L, is used in which, typically, L and L, are stored in the
CSR format and D is stored separately.

Incomplete Factorization techniques may be developed for matrices in this format
without having to convert them into the CSR format. Two notable advantages of this ap-
proach are (1) the savings in storage for structurally symmetric matrices, and (2) the fact
that the algorithm gives a symmetric preconditioner when the original matrix is symmetric.

Consider the sequence of matrices

Ak Vg
A = ,
ktt (wk ak+1>
where A,, = A. If A; is nonsingular and its LDU factorization
A, = L, DU,

is already available, then the LDU factorization of Ay is
A o Lk 0 Dk 0 Uk 2k
T\ 1)\ 0 di )\ 0 1

zr =D, 'L, vy, (10.37)
yr = wpU, ' Di* (10.38)

in which



296 CHAPTER 10 PRECONDITIONING TECHNIQUES

dit1 = opy1 — Y Dr 2k (10.39)

Hence, the last row/column pairs of the factorization can be obtained by solving two unit
lower triangular systems and computing a scaled dot product. This can be exploited for
sparse matrices provided an appropriate data structure is used to take advantage of the
sparsity of the matrices Ly, Uy, as well as the vectors vy, wyg, yg, and z. A convenient data
structure for this is to store the rows/columns pairs wy,, v} as a single row in sparse mode.
All these pairs are stored in sequence. The diagonal elements are stored separately. This is
called the Unsymmetric Sparse Skyline (USS) format. Each step of the ILU factorization
based on this approach will consist of two approximate sparse linear system solutions and
a sparse dot product. The question that arises is: How can a sparse triangular system be
solved inexpensively? It would seem natural to solve the triangular systems (10.37) and
(10.38) exactly and then drop small terms at the end, using a numerical dropping strategy.
However, the total cost of computing the ILU factorization with this strategy would be
O(n?) operations at least, which is not acceptable for very large problems. Since only an
approximate solution is required, the first idea that comes to mind is the truncated Neumann
series,

zp = D 'Ly 'vy, = D '(I + By, + Ef + ...+ ED)uy, (10.40)

in which Ey, = I — Ly. In fact, by analogy with ILU(p), it is interesting to note that the
powers of Ej, will also tend to become smaller as p increases. A close look at the structure
of E}vy, shows that there is indeed a strong relation between this approach and ILU(p) in
the symmetric case. Now we make another important observation, namely, that the vector
Ej vy, can be computed in sparse-sparse mode, i.e., in terms of operations involving prod-
ucts of sparse matrices by sparse vectors. Without exploiting this, the total cost would still
be O(n?). When multiplying a sparse matrix A by a sparse vector v, the operation can
best be done by accumulating the linear combinations of the columns of A. A sketch of the
resulting ILUS algorithm is as follows.

ALGORITHM 10.7: ILUS(¢, p)

SetA1 = D1 = a1, L1 = U1 =1
Fori=1,...,n—1Do:
Compute zy, by (10.40) in sparse-sparse mode
Compute yy, in a similar way
Apply numerical dropping to y;, and z,
Compute dj1 via (10.39)
EndDo

NSO WNR

If there are only ¢ nonzero components in the vector v and an average of v nonzero elements
per column, then the total cost per step will be 2 x 4 x v on the average. Note that the
computation of dy, via (10.39) involves the inner product of two sparse vectors which is
often implemented by expanding one of the vectors into a full vector and computing the
inner product of a sparse vector by this full vector. As mentioned before, in the symmetric
case ILUS yields the Incomplete Cholesky factorization. Here, the work can be halved
since the generation of y;, is not necessary.



10.5 APPROXIMATE INVERSE PRECONDITIONERS 297

Also note that a simple iterative procedure such as MR or GMRES(m) can be used
to solve the triangular systems in sparse-sparse mode. Similar techniques will be seen
in Section 10.5. Experience shows that these alternatives are not much better than the
Neumann series approach [53].

e
APPROXIMATE INVERSE PRECONDITIONERS

- E8

The Incomplete LU factorization techniques were developed originally for M -matrices
which arise from the discretization of Partial Differential Equations of elliptic type, usu-
ally in one variable. For the common situation where A is indefinite, standard 1LU fac-
torizations may face several difficulties, and the best known is the fatal breakdown due to
the encounter of a zero pivot. However, there are other problems that are just as serious.
Consider an incomplete factorization of the form

A=LU+E (10.41)

where E is the error. The preconditioned matrices associated with the different forms of
preconditioning are similar to

L'AU ' =T+ L7'EU. (10.42)

What is sometimes missed is the fact that the error matrix E in (10.41) is not as important
as the “preconditioned” error matrix L =1 EU~! shown in (10.42) above. When the matrix
A is diagonally dominant, then L and U are well conditioned, and the size of L~ EU ! re-
mains confined within reasonable limits, typically with a nice clustering of its eigenvalues
around the origin. On the other hand, when the original matrix is not diagonally dominant,
L~ or U~ may have very large norms, causing the error L= EU ! to be very large and
thus adding large perturbations to the identity matrix. It can be observed experimentally
that ILU preconditioners can be very poor in these situations which often arise when the
matrices are indefinite, or have large nonsymmetric parts.

One possible remedy is to try to find a preconditioner that does not require solving
a linear system. For example, the original system can be preconditioned by a matrix M
which is a direct approximation to the inverse of A.

10.5.1 APPROXIMATING THE INVERSE OF A SPARSE
MATRIX

A simple technique for finding approximate inverses of arbitrary sparse matrices is to at-
tempt to find a sparse matrix M which minimizes the Frobenius norm of the residual matrix
I—AM,

F(M) = ||I — AM||%. (10.43)



298 CHAPTER 10 PRECONDITIONING TECHNIQUES

A matrix M whose value F'(M) is small would be a right-approximate inverse of A. Sim-
ilarly, a left-approximate inverse can be defined by using the objective function

1T — MA|%. (10.44)
Finally, a left-right pair L, U can be sought to minimize
I — LAU||3. (10.45)

In the following, only (10.43) and(10.45) are considered. The case (10.44) is very
similar to the right preconditioner case (10.43). The objective function (10.43) decouples
into the sum of the squares of the 2-norms of the individual columns of the residual matrix
I-AM,

F(M) = |1 - AM|5 = lle; — Amjyl3 (10.46)
j=1
in which e; and m; are the j-th columns of the identity matrix and of the matrix M,
respectively. There are two different ways to proceed in order to minimize (10.46). The
function (10.43) can be minimized globally as a function of the sparse matrix M, e.g., by
a gradient-type method. Alternatively, the individual functions

f](m) = ”eJ - Am”%) .7 = 1727 RN (10'47)

can be minimized. The second approach is appealing for parallel computers, although there
is also parallelism to be exploited in the first approach. These two approaches will be
discussed in turn.

10.5.2 GLOBAL ITERATION

The global iteration approach consists of treating M as an unknown sparse matrix and
using a descent-type method to minimize the objective function (10.43). Thisé function is a

quadratic function on the space of n x n matrices, viewed as objects in R™ . The proper
inner product on the space of matrices, to which the squared norm (10.46) is associated, is

(X,Y) =tr(YTX). (10.48)

In the following, an array representation of an n2 vector X means the n. x n matrix whose
column vectors are the successive n-vectors of X.

In a descent algorithm, a new iterate M., is defined by taking a step along a selected
direction G, i.e.,

Mpew = M + aG

in which « is selected to minimize the objective function F'(M .., ). From results seen
in Chapter 5, minimizing the residual norm is equivalent to imposing the condition that
R — aAG be orthogonal to AG with respect to the (-, -) inner product. Thus, the optimal
a is given by

(R, AG) tr(RT AG)

T TAG, AG) ~ & ((AG)TAG) (10.49)




10.5 APPROXIMATE INVERSE PRECONDITIONERS 299

The denominator may be computed as || AG||%. The resulting matrix M will tend to be-
come denser after each descent step and it is therefore essential to apply a numerical drop-
ping strategy to the resulting M. However, the descent property of the step is now lost,
i.e., it is no longer guaranteed that F/(M,e.,) < F(M). An alternative would be to apply
numerical dropping to the direction of search G before taking the descent step. In this case,
the amount of fill-in in the matrix M cannot be controlled.

The simplest choice for the descent direction G is to take it to be equal to the residual
matrix R = I — AM, where M is the new iterate. Except for the numerical dropping step,
the corresponding descent algorithm is nothing but the Minimal Residual (MR) algorithm,
seen in Section 5.3.2, on the n2 x n? linear system AM = I. The global Minimal Residual
algorithm will have the following form.

ALGORITHM 10.8: Global Minimal Residual Descent Algorithm

1. Select an initial M

2. Until convergence Do:

3 Compute C := AM andG :=1-C
4. Computea = tr(GTAG)/||C||%

5. Compute M := M + oG
6

7.

Apply numerical dropping to M
EndDo

A second choice is to take G to be equal to the direction of steepest descent, i.e., the
direction opposite to the gradient of the function (10.43) with respect to M. If all vectors
as represented as 2-dimensional n x n arrays, then the gradient can be viewed as a matrix
G, which satisfies the following relation for small perturbations E,

F(M + E)=F(M) + (G, E) + o(|| E|))- (10.50)

This provides a way of expressing the gradient as an operator on arrays, rather than n?2
vectors.

PROPOSITION 10.3 The array representation of the gradient of F' with respect to M
is the matrix

G =—-24TR
in which R is the residual matrix R = I — AM.

Proof. For any matrix E we have
F(M+E)—FM)=tr[(I-AM +E)"(I - AM+E))]
—tr [(I = A(M)"(I — A(M)]
=tr [(R—- AE)" (R - AE) — R"R]
= —tr [(AE)"R + RTAE — (AE)" (AE)]
= —2tr(RTAE) + tr [(AE)T(AE)]
= —2(A"R,E) + (AE, AE).



300 CHAPTER 10 PRECONDITIONING TECHNIQUES

Comparing this with (10.50) yields the desired result. ]

Thus, the steepest descent algorithm will consist of replacing G in line 3 of Algorithm
10.8by G = ATR = AT (I — AM). As is expected with steepest descent techniques, the
algorithm can be quite slow.

ALGORITHM 10.9: Global Steepest Descent Algorithm

Select an initial M
Until convergence Do:
Compute R=1— AM,andG := ATR ;
Compute o = ||G|[%/I|AG|1%
Compute M := M + oG
Apply numerical dropping to M
EndDo

NSO GOAWNR

In either steepest descent or minimal residual, the G matrix must be stored explicitly.
The scalars [|AG||% and tr(GT AG) needed to obtain « in these algorithms can be com-
puted from the successive columns of AG, which can be generated, used, and discarded.
As a result, the matrix AG need not be stored.

10.5.3 COLUMN-ORIENTED ALGORITHMS

Column-oriented algorithms consist of minimizing the individual objective functions
(10.47) separately. Each minimization can be performed by taking a sparse initial guess
and solving approximately the n parallel linear subproblems

Amj;=e;, j=1,2,...,n (10.51)

with a few steps of a nonsymmetric descent-type method, such as MR or GMRES. If these
linear systems were solved (approximately) without taking advantage of sparsity, the cost
of constructing the preconditioner would be of order n2. That is because each of the n
columns would require O(n) operations. Such a cost would become unacceptable for large
linear systems. To avoid this, the iterations must be performed in sparse-sparse mode, a
term which was already introduced in Section 10.4.5. The column m ; and the subsequent
iterates in the MR algorithm must be stored and operated on as sparse vectors. The Arnoldi
basis in the GMRES algorithm are now to be kept in sparse format. Inner products and
vector updates involve pairs of sparse vectors.

In the following MR algorithm, n; iterations are used to solve (10.51) approximately
for each column, giving an approximation to the j-th column of the inverse of A. Each
initial m; is taken from the columns of an initial guess, M.



10.5 APPROXIMATE INVERSE PRECONDITIONERS 301

ALGORITHM 10.10: Approximate Inverse via MR lteration
1. Start: set M = M

2. Foreachcolumnj =1,...,n Do:
3. Definem; = Me;
4 Fori=1,...,n; Do:
5. rj i =¢€; — Am]'
6. o= kA
7 mj = my + Q;r;
8 Apply numerical dropping to m;
9 EndDo
10. EndDo

The algorithm computes the current residual ; and then minimizes the residual norm
|le; — A(m; + ar;)||2, with respect to . The resulting column is then pruned by applying
the numerical dropping step in line 8.

In the sparse implementation of MR and GMRES, the matrix-vector product, SAXPY,
and dot product kernels now all involve sparse vectors. The matrix-vector product is much
more efficient if the sparse matrix is stored by columns, since all the entries do not need
to be traversed. Efficient codes for all these kernels may be constructed which utilize a full
n-length work vector.

Columns from an initial guess M, for the approximate inverse are used as the initial
guesses for the iterative solution of the linear subproblems. There are two obvious choices:
My = ol and My = a.AT. The scale factor « is chosen to minimize the norm of I — AMj.
Thus, the initial guess is of the form My = oG where G is either the identity or AT, The
optimal o can be computed using the formula (10.49), in which R is to be replaced by
the identity, so a = tr(AG) /tr(AG(AG)T). The identity initial guess is less expensive to
use but My = aAT is sometimes a much better initial guess. For this choice, the initial
preconditioned system A M, is SPD.

The linear systems needed to solve when generating each column of the approximate
inverse may themselves be preconditioned with the most recent version of the precondi-
tioning matrix M. Thus, each system (10.51) for approximating column j may be pre-
conditioned with M} where the first j — 1 columns of M| are the my, that already have
been computed, 1 < k < 4, and the remaining columns are the initial guesses for the mp,
j < k < n. Thus, outer iterations can be defined which sweep over the matrix, as well as
inner iterations which compute each column. At each outer iteration, the initial guess for
each column is taken to be the previous result for that column.

10.5.4 THEORETICAL CONSIDERATIONS

The first theoretical question which arises is whether or not the approximate inverses ob-
tained by the approximations described earlier can be singular. It cannot be proved that A/
is nonsingular unless the approximation is accurate enough. This requirement may be in
conflict with the requirement of keeping the approximation sparse.



302 CHAPTER 10 PRECONDITIONING TECHNIQUES

PROPOSITION 10.4 Assume that A is nonsingular and that the residual of the ap-
proximate inverse M satisfies the relation

- AM|| < 1 (10.52)

where ||.|| is any consistent matrix norm. Then M is nonsingular.

Proof. The result follows immediately from the equality
AM =1—-(I—-AM)=1-N. (10.53)

Since || N]| < 1, Theorem 1.5 seen in Chapter 1 implies that T — N is nonsingular. [ |

The result is true in particular for the Frobenius norm which is consistent (see Chapter 1).

It may sometimes be the case that AM is poorly balanced and as a result R can be
large. Then balancing AM can yield a smaller norm and possibly a less restrictive condi-
tion for the nonsingularity of M. It is easy to extend the previous result as follows. If A is
nonsingular and two nonsingular diagonal matrices D4, D exist such that

||I—D1AMD2|| <1 (10.54)

where ||.|| is any consistent matrix norm, then M is nonsingular.
Each column is obtained independently by requiring a condition on the residual norm
of the form

lle; — Amyl| <, (10.55)

for some vector norm ||.||. From a practical point of view the 2-norm is preferable since it is
related to the objective function which is used, namely, the Frobenius norm of the residual
I — AM. However, the 1-norm is of particular interest since it leads to a number of simple
theoretical results. In the following, it is assumed that a condition of the form

llej — Amyll1 <7 (10.56)

is required for each column.

The above proposition does not reveal anything about the degree of sparsity of the
resulting approximate inverse M. It may well be the case that in order to guarantee nonsin-
gularity, M must be dense, or nearly dense. In fact, in the particular case where the norm in
the proposition is the 1-norm, it is known that the approximate inverse may be structurally
dense, in that it is always possible to find a sparse matrix A for which A will be dense if
1T —AM||; < 1.

Next, we examine the sparsity of M and prove a simple result for the case where an
assumption of the form (10.56) is made.

PROPOSITION 10.5 LetB = A~! and assume that a given element b;; of B satisfies
the inequality

|bij| > 7; max |bi], (10.57)
k=1,n

then the element m;; is nonzero.



10.5 APPROXIMATE INVERSE PRECONDITIONERS 303

Proof. From the equality AM = I — Rwe have M = A~! — A~!R, and hence

n
mij =bij — > bikr;.
k=1

Therefore,
n
[maj| > [bigl = D [biwras]
k=1
2> |bij| — max [big| [|r;llx
k=1,n
> |bij| — krgélu% |bik| 75
Now the condition (10.57) implies that |m;;| > 0. [ |

The proposition implies that if R is small enough, then the nonzero elements of M are
located in positions corresponding to the larger elements in the inverse of A. The following
negative result is an immediate corollary.

COROLLARY 10.1 Let7 = max;—,.. 7;. Ifthe nonzero elements of B = A= are
T-equimodular in that

[big| > 7 max bl
then the nonzero sparsity pattern of M includes the nonzero sparsity pattern of A=*. In
particular, if A=1 is dense and its elements are T-equimodular, then M is also dense.

The smaller the value of T, the more likely the condition of the corollary will be satisfied.
Another way of stating the corollary is that accurate and sparse approximate inverses may
be computed only if the elements of the actual inverse have variations in size. Unfortu-
nately, this is difficult to verify in advance and it is known to be true only for certain types
of matrices.

10.5.5 CONVERGENCE OF SELF PRECONDITIONED MR

We now examine the convergence of the MR algorithm in the case where self precon-
ditioning is used, but no numerical dropping is applied. The column-oriented algorithm is
considered first. Let M be the current approximate inverse at a given substep. The self pre-
conditioned MR iteration for computing the j-th column of the next approximate inverse
is obtained by the following sequence of operations:

1 rj:=e; — Am; =e; — AMe;
2. tj = MT]'
. (r;,At;)
3. Qj = TAt;, Aty)
4 mj 1= m; -+ Oljtj .



304 CHAPTER 10 PRECONDITIONING TECHNIQUES

Note that a; can be written as
a = (1, AMry) _ (rj,Cr)
J (AMT]',AMT]‘) (CT’j,CTj)

where
C =AM

is the preconditioned matrix at the given substep. The subscript j is how dropped to sim-
plify the notation. The new residual associated with the current column is given by

" =r —aAt =r —aAMr =r — aCr.
The orthogonality of the new residual against AMr can be used to obtain
113 = [Irll3 — e [Cr[f3-

Replacing « by its value defined above we get

Cr,r) 2
prew (2 — 1|12 1_((7’) _
” ”2 ” ||2 l ”CTHQHTHQ

Thus, at each inner iteration, the residual norm for the j-th column is reduced according to
the formula

[|[r™¢®|l2 = |[|r||2sin Z(r,Cr) (10.58)

in which /(u,v) denotes the acute angle between the vectors « and v. Assume that each
column converges. Then, the preconditioned matrix C' converges to the identity. As a result
of this, the angle Z(r, Cr) will tend to Z(r,r) = 0, and therefore the convergence ratio
sin /(r, Cr) will also tend to zero, showing superlinear convergence.

Now consider equation (10.58) more carefully. Denote by R the residual matrix R =
I — AM and observe that

—aC
sin /(r,Cr) = min lir = a Cril,
o [I7[l2
llr — Crllz _ || Br|l2
lI7[l2 [I7l2

< (1Bl

This results in the following statement.

PROPOSITION 10.6 Assume that the self preconditioned MR algorithm is employed
with one inner step per iteration and no numerical dropping. Then the 2-norm of each
residual e; — Am ; of the j-th column is reduced by a factor of at least || I — AM ||, where
M is the approximate inverse before the current step, i.e.,

7l < |l =AMz [|r;]]2- (10.59)
In addition, the residual matrices Ry, = I — AM,, obtained after each outer iteration satisfy
|Ret1llr < [|Rill7- (10.60)

As a result, when the algorithm converges, it does so quadratically.



10.5 APPROXIMATE INVERSE PRECONDITIONERS 305

Proof. Inequality (10.59) was proved above. To prove quadratic convergence, first use
the inequality || X |2 < || X ||+ and (210.59) to obtain

lr7ll2 < |RkjllF [Irs]l2-

Here, the k index corresponds to the outer iteration and the j-index to the column. Note that
the Frobenius norm is reduced for each of the inner steps corresponding to the columns,
and therefore,

IRk jllF < || RillF-
This yields
Irpells < NIRkllZ llrsl13
which, upon summation over j, gives
[Rks1llr < 1RlZ-

This completes the proof. ]

Note that the above theorem does not prove convergence. It only states that when the al-
gorithm converges, it does so quadratically at the limit. In addition, the result ceases to be
valid in the presence of dropping.

Consider now the case of the global iteration. When self preconditioning is incor-
porated into the global MR algorithm (Algorithm 10.8), the search direction becomes
Zy = MRy, where Ry is the current residual matrix. Then, the main steps of the al-
gorithm (without dropping) are as follows.

1. Ry:=1—AM;y
2. Zy:= MpRy
Ry, AZ
3. = 7(&;,&22))
4. Mpyq = My + apZy,
At each step the new residual matrix Ry satisfies the relation
Rk+1 =I- AMIH-I =I- A(Mk + aka) = Ry — a,AZy.

An important observation is that Ry, is a polynomial in Ry. This is because, from the above
relation,

Ry41 = Ry — aAMp Ry, = Ry, — Ozk(I — Rk)Rk = (1 — Otk)Rk + akRi. (10.61)

Therefore, induction shows that Rx+1 = pox (Ro) Where p; is a polynomial of degree j.
Now define the preconditioned matrices,

Bk = AMk =1- Rk. (1062)
Then, the following recurrence follows from (10.61),
Bk+1 = By + ClkBk(I - Bk) (10.63)

and shows that By, is also a polynomial of degree 2% in By. In particular, if the initial
By is symmetric, then so are all subsequent By,’s. This is achieved when the initial M is a
multiple of AT, namely if My = agAT.



306 CHAPTER 10 PRECONDITIONING TECHNIQUES

Similar to the column oriented case, when the algorithm converges it does so quadrat-
ically.

PROPOSITION 10.7 Assume that the self preconditioned global MR algorithm is
used without dropping. Then, the residual matrices obtained at each iteration satisfy
| Ret1llr < |RE]IF- (10.64)

As a result, when the algorithm converges, then it does so quadratically.

Proof. Define for any a,
R(a) = (1 — @)Ry + aR:
Recall that oy, achieves the minimum of | R(a)||r over all &’s. In particular,

[|Retil|F = moin |1 R()]|

<[IRW)IIF = l|IRIlr (10.65)
< || RxlI%-
This proves quadratic convergence at the limit. ]

For further properties see Exercise 16.

10.5.6 FACTORED APPROXIMATE INVERSES

A notable disadvantage of the right or left preconditioning approach method is that it is
difficult to assess in advance whether or not the resulting approximate inverse M is non-
singular. An alternative would be to seek a two-sided approximation, i.e., a pair L, U, with
L lower triangular and U upper triangular, which attempts to minimize the objective func-
tion (10.45). The techniques developed in the previous sections can be exploited for this
purpose.

In the factored approach, two matrices L and U which are unit lower and upper trian-
gular matrices are sought such that

LAU = D

where D is some unknown diagonal matrix. When D is nonsingular and LAU = D, then
L, U are called inverse LU factors of A since in this case A~! = UD~!L. Once more, the
matrices are built one column or row at a time. Assume as in Section 10.4.5 that we have

the sequence of matrices
A g
Apy1 =
Wk  Qg+1

in which A,, = A. If the inverse factors Ly, Uy, are available for 4y, i.e.,
Ly ApUy = Dy,



10.5 APPROXIMATE INVERSE PRECONDITIONERS 307

then the inverse factors Ly1, Ugy1 for Ap41 are easily obtained by writing

Ly 0 Ay Vg Up —2z Dy, 0
= 10.66
(_yk 1) (U)k ak+1) ( 0 1 ) ( 0 6k+1) ( )

in which zg, yx, and dg41 are such that

Az = vg (10.67)
ykAk = Wk (10.68)
Okt1 = Q41 — W2k = Ohg1 — YkVk- (10.69)

Note that the formula (10.69) exploits the fact that either the system (10.67) is solved
exactly (middle expression) or the system (10.68) is solved exactly (second expression) or
both systems are solved exactly (either expression). In the realistic situation where neither
of these two systems is solved exactly, then this formula should be replaced by

Okt1 = Qpy1 — W2k — YrVk + YrAr2k- (10.70)

The last row/column pairs of the approximate factored inverse can be obtained by solving
two sparse systems and computing a few dot products. It is interesting to note that the only
difference with the ILUS factorization seen in Section 10.4.5 is that the coefficient matrices
for these systems are not the triangular factors of Ay, but the matrix Ay itself.

To obtain an approximate factorization, simply exploit the fact that the A, matrices are
sparse and then employ iterative solvers in sparse-sparse mode. In this situation, formula
(10.70) should be used for &1 . The algorithm would be as follows.

ALGORITHM 10.11: Approximate Inverse Factors Algorithm

1 Fork=1,...,n Do:

2 Solve (10.67) approximately;
3. Solve (10.68) approximately;
4

5

Compute 041 = Qp+1 — WE2k — YUk + Yk Ak 2k

. EndDo

A linear system must be solved with Ay, in line 2 and a linear system with A7 in line 3.
This is a good scenario for the Biconjugate Gradient algorithm or its equivalent two-sided
Lanczos algorithm. In addition, the most current approximate inverse factors can be used
to precondition the linear systems to be solved in steps 2 and 3. This was termed “self
preconditioning” earlier. All the linear systems in the above algorithm can be solved in
parallel since they are independent of one another. The diagonal D can then be obtained at
the end of the process.

This approach is particularly suitable in the symmetric case. Since there is only one
factor, the amount of work is halved. In addition, there is no problem with the existence
in the positive definite case as is shown in the following lemma which states that §41 is
always > 0 when A is SPD, independently of the accuracy with which the system (10.67)
is solved.

LEMMA 10.1 Let A be SPD. Then, the scalar §;41 as computed by (10.70) is positive.



308 CHAPTER 10 PRECONDITIONING TECHNIQUES

Proof. Inthe symmetric case, wy, = vy . Note that d;1 as computed by formula (10.70)
is the (k + 1,k + 1) element of the matrix L1 Ag+1 L7, ;. It is positive because Ay is
SPD. This is independent of the accuracy for solving the system to obtain zy,. [ ]

In the general nonsymmetric case, there is no guarantee that §,41 will be nonzero,
unless the systems (10.67) and (10.68) are solved accurately enough. There is no practical
problem here, since §41 is computable. The only question remaining is a theoretical one:
Can d41 be guaranteed to be nonzero if the systems are solved with enough accuracy?
Intuitively, if the system is solved exactly, then the D matrix must be nonzero since it is
equal to the D matrix of the exact inverse factors in this case. The minimal assumption to
make is that each Ay, is nonsingular. Let d; , ; be the value that would be obtained if at least
one of the systems (10.67) or (10.68) is solved exactly. According to equation (10.69), in
this situation this value is given by

Orp1 = Qg1 — wiAp vg. (10.71)

If Axy1 is nonsingular, then oz, , # 0. To see this refer to the defining equation (10.66)
and compute the product Ly, 1 Ag+1 U1 inthe general case. Let ri, and sy, be the residuals
obtained for these linear systems, i.e.,

Ty = Vg — Akzk, Sp = W — ykAk- (10.72)

Then a little calculation yields

L AU, L
Lyy1Ap1Ukpr = ( Rk h ka)-

10.73
stUr - Orga (1073)

If one of rj or sy is zero, then it is clear that the term §,1 in the above relation be-
comes d7, ; and it must be nonzero since the matrix on the left-hand side is nonsingular.
Incidentally, this relation shows the structure of the last matrix L, A,U, = LAU. The
components 1 to j — 1 of column 5 consist of the vector L;r;, the components 1 to j — 1
of row 7 make up the vector s; Uy, and the diagonal elements are the §;’s. Consider now
the expression for 041 from (10.70).

Ok+1 = Qpy1 — Wr2k — YrVk + YrAr 2k
= Qpy1 — 'kalzl(’Uk — Tk) — (wk — Sk)Alzl’l}k + (vk - Tk)A,Zl (wk - Sk)
= Qpy1 — vaglwk + rkA,lek
= (5;_'_1 + TkAlzlsk.

This perturbation formula is of a second order in the sense that [0xy1 — 0, 4| =
O(llrk |l [Iskll). It guarantees that 641 is nonzero whenever |ry Ay si| < 874 ].

10.5.7 IMPROVING A PRECONDITIONER

After a computed ILU factorization results in an unsatisfactory convergence, it is difficult
to improve it by modifying the L and U factors. One solution would be to discard this
factorization and attempt to recompute a fresh one possibly with more fill-in. Clearly, this
may be a wasteful process. A better alternative is to use approximate inverse techniques.
Assume a (sparse) matrix M is a preconditioner to the original matrix A, so the precondi-



10.6 BLOCK PRECONDITIONERS 309

tioned matrix is
C=M"1A

A sparse matrix S is sought to approximate the inverse of M —! A. This matrix is then to be
used as a preconditioner to M ~! A. Unfortunately, the matrix C is usually dense. However,
observe that all that is needed is a matrix S such that

AS ~ M.

Recall that the columns of A and M are sparse. One approach is to compute a least-squares
approximation in the Frobenius norm sense. This approach was used already in Section
10.5.1 when M is the identity matrix. Then the columns of S were obtained by approxi-
mately solving the linear systems As; = e;. The same idea can be applied here. Now, the
systems

AS,’ =m;

must be solved instead, where m; is the i-th column of A which is sparse. Thus, the
coefficient matrix and the right-hand side are sparse, as before.

—
BLOCK PRECONDITIONERS

B0

Block preconditioning is a popular technique for block-tridiagonal matrices arising from
the discretization of elliptic problems. It can also be generalized to other sparse matrices.
We begin with a discussion of the block-tridiagonal case.

10.6.1 BLOCK-TRIDIAGONAL MATRICES

Consider a block-tridiagonal matrix blocked in the form
D, E,
F, D; Ej
A= ' . (10.74)

Fm—l Dm—l Em

Frn  Dn

One of the most popular block preconditioners used in the context of PDEs is based on
this block-tridiagonal form of the coefficient matrix A. Let D be the block-diagonal matrix
consisting of the diagonal blocks D;, L the block strictly-lower triangular matrix consisting
of the sub-diagonal blocks F;, and U the block strictly-upper triangular matrix consisting
of the super-diagonal blocks FE;. Then, the above matrix has the form

A=L+D+U.



310 CHAPTER 10 PRECONDITIONING TECHNIQUES

A block ILU preconditioner is defined by
M= (L+A)A Y A+U), (10.75)

where L and U are the same as above, and A is a block-diagonal matrix whose blocks A;
are defined by the recurrence:

A; = D; — FiQy 1 E;, (10.76)

in which €; is some sparse approximation to A7 Thus, to obtain a block factorization,
approximations to the inverses of the blocks A; must be found. This clearly will lead to
difficulties if explicit inverses are used.

An important particular case is when the diagonal blocks D; of the original matrix are
tridiagonal, while the co-diagonal blocks E; and F; are diagonal. Then, a simple recur-
rence formula for computing the inverse of a tridiagonal matrix can be exploited. Only the
tridiagonal part of the inverse must be kept in the recurrence (10.76). Thus,

A = Dy, (10.77)

A =D;-FO®P E, i=1,...,m, (10.78)
where QS) is the tridiagonal part of A} !
(7)ig = (A for Ji—jl<1.

The following theorem can be shown.

THEOREM 10.4 Let A be Symmetric Positive Definite and such that

®qa; >0,i=1,...,n,anda;; <0 forall j #i.

e The matrices D; are all (strict) diagonally dominant.
Then each block A; computed by the recurrence (10.77), (10.78) is a symmetric M -matrix.
In particular, M is also a positive definite matrix.

We now show how the inverse of a tridiagonal matrix can be obtained. Let a tridiagonal
matrix A of dimension [ be given in the form

o —f
_/62 a2 _ﬁ3
A= - ,
b1 a1 =B
=B
and let its Cholesky factorization be
A=LDL",

with
D = diag {4;}



10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 311

and

-1 1
-7 1
The inverse of A is L= D' L=, Start by observing that the inverse of L is a unit upper
triangular matrix whose coefficients u;; are given by

Uij = Yi41Vit2---YVi-1y; for 1<i<j<l

As aresult, the j-th column ¢; of L~ is related to the (j — 1)-st column ¢;_; by the very
simple recurrence,

Cj =€ +7jCj—1, for j>2

starting with the first column ¢; = e;. The inverse of A becomes
‘1
AT =L7TDTILT =) é—jcjch. (10.79)
j=1

See Exercise 12 for a proof of the above equality. As noted, the recurrence formulas for
computing A~ can be unstable and lead to numerical difficulties for large values of I.

10.6.2 GENERAL MATRICES

A general sparse matrix can often be put in the form (10.74) where the blocking is ei-
ther natural as provided by the physical problem, or artificial when obtained as a result of
RCMK ordering and some block partitioning. In such cases, a recurrence such as (10.76)
can still be used to obtain a block factorization defined by (10.75). A 2-level precondi-
tioner can be defined by using sparse inverse approximate techniques to approximate ;.
These are sometimes termed implicit-explicit preconditioners, the implicit part referring to
the block-factorization and the explicit part to the approximate inverses used to explicitly
approximate A7 ',

e
PRECONDITIONERS FOR THE NORMAL EQUATIONS

- B

When the original matrix is strongly indefinite, i.e., when it has eigenvalues spread on both
sides of the imaginary axis, the usual Krylov subspace methods may fail. The Conjugate
Gradient approach applied to the normal equations may then become a good alternative.
Choosing to use this alternative over the standard methods may involve inspecting the spec-
trum of a Hessenberg matrix obtained from a small run of an unpreconditioned GMRES
algorithm.




312 CHAPTER 10 PRECONDITIONING TECHNIQUES

If the normal equations approach is chosen, the question becomes how to precondition
the resulting iteration. An ILU preconditioner can be computed for A and the precondi-
tioned normal equations,

AT(LU)"T(LU) Az = AT(LU)~T(LU) b,

can be solved. However, when A is not diagonally dominant the ILU factorization pro-
cess may encounter a zero pivot. Even when this does not happen, the resulting precon-
ditioner may be of poor quality. An incomplete factorization routine with pivoting, such
as ILUTP, may constitute a good choice. ILUTP can be used to precondition either the
original equations or the normal equations shown above. This section explores a few other
options available for preconditioning the normal equations.

10.7.1 JACOBI, SOR, AND VARIANTS

There are several ways to exploit the relaxation schemes for the Normal Equations seen in
Chapter 8 as preconditioners for the CG method applied to either (8.1) or (8.3). Consider
(8.3), for example, which requires a procedure delivering an approximationto (447) 1y
for any vector v. One such procedure is to perform one step of SSOR to solve the system
(AAT)w = v. Denote by M~ the linear operator that transforms v into the vector result-
ing from this procedure, then the usual Conjugate Gradient method applied to (8.3) can
be recast in the same form as Algorithm 8.5. This algorithm is known as CGNE/SSOR.
Similarly, it is possible to incorporate the SSOR preconditioning in Algorithm 8.4, which
is associated with the Normal Equations (8.1), by defining M —! to be the linear transfor-
mation that maps a vector v into a vector w resulting from the forward sweep of Algorithm
8.2 followed by a backward sweep. We will refer to this algorithm as CGNR/SSOR.

The CGNE/SSOR and CGNR/SSOR algorithms will not break down if A is nonsin-
gular, since then the matrices AA™ and AT A are Symmetric Positive Definite, as are the
preconditioning matrices M. There are several variations to these algorithms. The standard
alternatives based on the same formulation (8.1) are either to use the preconditioner on the
right, solving the system AT AM 1y = b, or to split the preconditioner into a forward
SOR sweep on the left and a backward SOR sweep on the right of the matrix A7 A. Sim-
ilar options can also be written for the Normal Equations (8.3) again with three different
ways of preconditioning. Thus, at least six different algorithms can be defined.

10.7.2 IC(0) FOR THE NORMAL EQUATIONS

The Incomplete Cholesky IC(0) factorization can be used to precondition the Normal
Equations (8.1) or (8.3). This approach may seem attractive because of the success of
incomplete factorization preconditioners. However, a major problem is that the Incom-
plete Cholesky factorization is not guaranteed to exist for an arbitrary Symmetric Pos-
itive Definite matrix B. All the results that guarantee existence rely on some form of
diagonal dominance. One of the first ideas suggested to handle this difficulty was to
use an Incomplete Cholesky factorization on the “shifted” matrix B + al. We refer to
IC(0) applied to B = AT A as ICNR(0), and likewise 1C(0) applied to B = AAT



10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 313

as ICNE(0). Shifted variants correspond to applying IC(0) to the shifted B matrix.

150
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha

Figure 10.14 Iteration count as a function of the shift a.

One issue often debated is how to find good values for the shift «.. There is no easy and
well-founded solution to this problem for irregularly structured symmetric sparse matrices.
One idea is to select the smallest possible « that makes the shifted matrix diagonally dom-
inant. However, this shift tends to be too large in general because IC(0) may exist for much
smaller values of «.. Another approach is to determine the smallest « for which the I1C(0)
factorization exists. Unfortunately, this is not a viable alternative. As is often observed,
the number of steps required for convergence starts decreasing as « increases, and then
increases again. An illustration of this is shown in Figure 10.14. This plot suggests that
there is an optimal value for a which is far from the smallest admissible one. For small «,
the diagonal dominance of B + oI is weak and, as a result, the computed IC factorization
is a poor approximation to the matrix B(«) = B + «al. In other words, B(«) is close to
the original matrix B, but the 1C(0) factorization is far from B(«). For large «, the oppo-
site is true. The matrix B(«) has a large deviation from B(0), but its IC(0) factorization
may be quite good. Therefore, the general shape of the curve shown in the figure is not too
surprising.

To implement the algorithm, the matrix B = AA™ need not be formed explicitly. All
that is required is to be able to access one row of B at a time. This row can be computed,
used, and then discarded. In the following, the i-th row el A of A is denoted by a;. The
algorithm is row-oriented and all vectors denote row vectors. It is adapted from the ILU(0)
factorization of a sparse matrix, i.e., Algorithm 10.4, but it actually computes the LDLT
factorization instead of an LU or LL™ factorization. The main difference with Algorithm
10.4 is that the loop in line 7 is now restricted to j < ¢ because of symmetry. If only the [;;
elements are stored row-wise, then the rows of U = LT which are needed in this loop are
not directly available. Denote the j-th row of U = LT by u;. These rows are accessible by
adding a column data structure for the L matrix which is updated dynamically. A linked
list data structure can be used for this purpose. With this in mind, the 1C(0) algorithm will
have the following structure.

ALGORITHM 10.12: Shifted ICNE(0)




314 CHAPTER 10 PRECONDITIONING TECHNIQUES

1. |Initial step: Setd; := a1 ,l11 =1

2. Fori=2,3,...,n Do:

3 Obtain all the nonzero inner products

4, l,’j = (aj,ai),j =1,2,...,i—1,andl; := ||a,||2 + «
5 Set NZ(i) = {j | l;; # 0}

6 Fork=1,...,i—1andifk € NZ(i) Do:

7 Extract row uy, = (Ley,)T

8 Compute Ly, = l;x /dk,

9. Forj=k+1,...,iandif(i,j) € NZ(i) Do:
10. Compute li :== Lip — lijukj
11. EndDo
12.  EndDo
13. Setd; :=1;,1; =1
14. EndDo

Note that initially the row u in the algorithm is defined as the first row of A. All vectors
in the algorithm are row vectors.

The step represented by lines 3 and 4, which computes the inner products of row
number 4 with all previous rows, needs particular attention. If the inner products

T T T
ay i, 3 Qiy- .., Q; 104

are computed separately, the total cost of the incomplete factorization would be of the
order of n? steps and the algorithm would be of little practical value. However, most of
these inner products are equal to zero because of sparsity. This indicates that it may be
possible to compute only those nonzero inner products at a much lower cost. Indeed, if ¢ is
the column of the ¢ — 1 inner products ¢;;, then ¢ is the product of the rectangular (i —1) xn
matrix A;_; whose rows are af, ..., al_, by the vector a;, i.e.,

Cc = Ai_lai. (1080)

This is a sparse matrix-by-sparse vector product which was discussed in Section 10.5. It
is best performed as a linear combination of the columns of A;_; which are sparse. The
only difficulty with this implementation is that it requires both the row data structure of A
and of its transpose. A standard way to handle this problem is by building a linked-list data
structure for the transpose. There is a similar problem for accessing the transpose of L,
as mentioned earlier. Therefore, two linked lists are needed: one for the L matrix and the
other for the A matrix. These linked lists avoid the storage of an additional real array for
the matrices involved and simplify the process of updating the matrix A when new rows
are obtained. It is important to note that these linked lists are used only in the preprocessing
phase and are discarded once the incomplete factorization terminates.



10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 315

10.7.3 INCOMPLETE GRAM-SCHMIDT AND ILQ

Consider a general sparse matrix A and denote its rows by a1, as, . .., a, . The (complete)
LQ factorization of A is defined by

A=1LQ,

where L is a lower triangular matrix and @ is unitary, i.e., Q7Q = I. The L factor in the
above factorization is identical with the Cholesky factor of the matrix B = AAT. Indeed,
if A= L@ where L is a lower triangular matrix having positive diagonal elements, then

B=AAT = LQQTLT = LL".

The uniqueness of the Cholesky factorization with a factor L having positive diagonal ele-
ments shows that L is equal to the Cholesky factor of B. This relationship can be exploited
to obtain preconditioners for the Normal Equations.

Thus, there are two ways to obtain the matrix L. The first is to form the matrix B
explicitly and use a sparse Cholesky factorization. This requires forming the data structure
of the matrix AAT, which may be much denser than A. However, reordering techniques
can be used to reduce the amount of work required to compute L. This approach is known
as symmetric squaring.

A second approach is to use the Gram-Schmidt process. This idea may seem undesir-
able at first because of its poor numerical properties when orthogonalizing a large number
of vectors. However, because the rows remain very sparse in the incomplete LQ factoriza-
tion (to be described shortly), any given row of A will be orthogonal typically to most of the
previous rows of (). As a result, the Gram-Schmidt process is much less prone to numerical
difficulties. From the data structure point of view, Gram-Schmidt is optimal because it does
not require allocating more space than is necessary, as is the case with approaches based
on symmetric squaring. Another advantage over symmetric squaring is the simplicity of
the orthogonalization process and its strong similarity with the LU factorization. At every
step, a given row is combined with previous rows and then normalized. The incomplete
Gram-Schmidt procedure is modeled after the following algorithm.

ALGORITHM 10.13: LQ Factorization of A

1. Fori=1,...,nDo:
Compute l;; := (as,q;) , forj =1,2,...,i—1,

2
3. Compute q; -=a; — Z;;ll lz'jq]' , andli,- = ||qi||2
4
5

Ifl;; := 0 then Stop; else Compute q; := ¢;/l;;.

. EndDo

If the algorithm completes, then it will result in the factorization A = L) where the rows
of @ and L are the rows defined in the algorithm. To define an incomplete factorization, a
dropping strategy similar to those defined for Incomplete LU factorizations must be incor-
porated. This can be done in very general terms as follows. Let P, and Py be the chosen
zero patterns for the matrices L, and @, respectively. The only restriction on Py, is that

P, C {@i,5) i #j}-



316 CHAPTER 10 PRECONDITIONING TECHNIQUES

As for Pg, for each row there must be at least one nonzero element, i.e.,

{jl,7) e Po} #{1,2,...,n}, fori=1,...,n.

These two sets can be selected in various ways. For example, similar to ILUT, they can be
determined dynamically by using a drop strategy based on the magnitude of the elements
generated. As before, ; denotes the i-th row of a matrix X and z;; its (¢, j)-th entry.

ALGORITHM 10.14: Incomplete Gram-Schmidt

1. Fori=1,...,nDo:

2. Computel;j == (ai,q;), forj=1,2,...,i—1,

3. Replacel;; by zeroif (i, j) € Pp

4. Compute g; :== a; — Z;; Lijgj

5. Replace eachq;;,j = 1,...,n by zeroif (i,j) € Pg
6
7
8

Lii == |lgill2
Ifl;; = 0 then Stop; else compute q; := q;/li;.
EndDo

We recognize in line 2 the same practical problem encountered in the previous section
for 1C(0) for the Normal Equations. It can be handled in the same manner. Therefore, the
row structures of A, L, and @ are needed, as well as a linked list for the column structure
of Q.

After the i-th step is performed, the following relation holds:

j—1
¢ = lygi +7r;i = a; — le‘qu‘
Jj=1
or
J
a; = Zlijqj —+7r; (10.81)
j=1

where r; is the row of elements that have been dropped from the row g; in line 5. The above
equation translates into

A=LQ+R (10.82)

where R is the matrix whose i-th row is r;, and the notation for L and @ is as before.

The case where the elements in () are not dropped, i.e., the case when Pg is the empty
set, is of particular interest. Indeed, in this situation, R = 0 and we have the exact relation
A = LQ. However, @ is not unitary in general because elements are dropped from L. If
at a given step I;; = 0, then (10.81) implies that a; is a linear combination of the rows ¢,
..., gj—1. Each of these g, is, inductively, a linear combination of a4, . . . ax. Therefore, a;
would be a linear combination of the previous rows, a1, . . ., a;—; which cannot be true if
A is nonsingular. As a result, the following proposition can be stated.

PROPOSITION 10.8 If A isnonsingular and Pg = ¢, then the Algorithm 10.14 com-
pletes and computes an incomplete LQ factorization A = LQ, in which @ is nonsingular
and L is a lower triangular matrix with positive elements.



10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 317

A major problem with the decomposition (10.82) is that the matrix ¢ is not orthogonal in
general. In fact, nothing guarantees that it is even nonsingular unless @ is not dropped or
the dropping strategy is made tight enough.

Because the matrix L of the complete LQ factorization of A is identical with the
Cholesky factor of B, one might wonder why the IC(0) factorization of B does not always
exist while the ILQ factorization seems to always exist. In fact, the relationship between
ILQ and ICNE, i.e., the Incomplete Cholesky for B = AAT, can lead to a more rigorous
way of choosing a good pattern for ICNE, as is explained next.

We turn our attention to Modified Gram-Schmidt. The only difference is that the row
g; is updated immediately after an inner product is computed. The algorithm is described
without dropping for @ for simplicity.

ALGORITHM 10.15: Incomplete Modified Gram-Schmidt
1. Fori=1,...,nDo:

2 q; = a;
3. Forj=1,...,i—1,Do:
{0 if (i,5) € Pr,
4 Compute l;; '_{ (¢i,gj) otherwise
5. Compute g; := g; — li;jq;.
6 EndDo
7. L=l
8. Ifl; = 0 then Stop; else Compute q; := q;/l;;.
9. EndDo

When A is nonsingular, the same result as before is obtained if no dropping is used on
@, namely, that the factorization will exist and be exact in that A = L. Regarding the
implementation, if the zero pattern Py, is known in advance, the computation of the inner
products in line 4 does not pose a particular problem. Without any dropping in @, this
algorithm may be too costly in terms of storage. It is interesting to see that this algorithm
has a connection with ICNE, the incomplete Cholesky applied to the matrix AAT. The
following result is stated without proof.

THEOREM 10.5 Let A beann x m matrix and let B = AAT . Consider a zero-pattern
set Pr, which is such that for any 1 < 4,5,k < n, withi < j andi < k, the following
holds:

(i,7) € Pr and (i,k) ¢ P, — (j,k) € Pr.

Then the matrix L obtained from Algorithm 10.15 with the zero-pattern set Py, is identi-
cal with the L factor that would be obtained from the Incomplete Cholesky factorization
applied to B with the zero-pattern set Pry,.

For a proof, see [222]. This result shows how a zero-pattern can be defined which guaran-
tees the existence of an Incomplete Cholesky factorization on AAT .



318 CHAPTER 10 PRECONDITIONING TECHNIQUES

—
EXERCISES

1. Assume that A is the Symmetric Positive Definite matrix arising from the 5-point finite differ-
ence discretization of the Laplacean on a given mesh. We reorder the matrix using the red-black
ordering and obtain the reordered matrix

(D, E
B_(ET D2).

We then form the Incomplete Cholesky factorization on this matrix.

a. Show the fill-in pattern for the 1C(0) factorization for a matrix of size n = 12 associated
with a4 x 3 mesh.

b. Show the nodes associated with these fill-ins on the 5-point stencil in the finite difference
mesh.

c. Give an approximate count of the total number of fill-ins when the original mesh is square,
with the same number of mesh points in each direction. How does this compare with the
natural ordering? Any conclusions?

2. Consider a 6 x 6 tridiagonal nonsingular matrix A.

a. What can be said about its ILU(O) factorization (when it exists)?

b. Suppose that the matrix is permuted (symmetrically, i.e., both rows and columns) using the
permutation

7 =11,3,5,2,4,6].
2. Show the pattern of the permuted matrix.
#¢.  Show the locations of the fill-in elements in the ILU(0) factorization.
25. Show the pattern of the ILU(1) factorization as well as the fill-ins generated.
2v. Show the level of fill of each element at the end of the ILU(1) process (including the
fill-ins).
v.  What can be said of the ILU(2) factorization for this permuted matrix?

3. Assume that A is the matrix arising from the 5-point finite difference discretization of an elliptic
operator on a given mesh. We reorder the original linear system using the red-black ordering and
obtain the reordered linear system

(% 5) ()= (h):

a. Show how to obtain a system (called the reduced system) which involves the variable
only.

b. Show that this reduced system is also a sparse matrix. Show the stencil associated with
the reduced system matrix on the original finite difference mesh and give a graph-theory
interpretation of the reduction process. What is the maximum number of nonzero elements
in each row of the reduced system.

4. It was stated in Section 10.3.2 that for some specific matrices the ILU(0) factorization of A can
be put in the form
M =(D—-E)D"'(D-F)
in which —F and — F are the strict-lower and -upper parts of A, respectively.



EXERCISES AND NOTES 319

10.

11.

a. Characterize these matrices carefully and give an interpretation with respect to their adja-
cency graphs.

b. Verify that this is true for standard 5-point matrices associated with any domain €2.
c. Isittrue for 9-point matrices?
d. Is ittrue for the higher level ILU factorizations?

. Let A be a pentadiagonal matrix having diagonals in offset positions —m,—1,0,1,m. The

coefficients in these diagonals are all constants: a for the main diagonal and -1 for all others. It
is assumed that @ > /8. Consider the ILU(0) factorization of A as given in the form (10.20).
The elements d; of the diagonal D are determined by a recurrence of the form (10.19).

a. Showthat $ <d; <afori=1,...,n.
b. Show that d; is a decreasing sequence. [Hint: Use induction].

c. Prove that the formal (infinite) sequence defined by the recurrence converges. What is its
limit?

. Consider a matrix A which is split in the form A = Dy — E — F, where Dy is a block diag-

onal matrix whose block-diagonal entries are the same as those of A, and where —E is strictly
lower triangular and —F is strictly upper triangular. In some cases the block form of the ILU(0)
factorization can be put in the form (Section 10.3.2):

M= (D—-E)D™'(D-F).

The block entries of D can be defined by a simple matrix recurrence. Find this recurrence rela-
tion. The algorithm may be expressed in terms of the block entries the matrix A.

. Generalize the formulas developed at the end of Section 10.6.1 for the inverses of symmetric

tridiagonal matrices, to the nonsymmetric case.

. Develop recurrence relations for Incomplete Cholesky with no fill-in (1C(0)), for 5-point matri-

ces, similar to those seen in Section 10.3.4 for ILU(0). Same question for 1C(1).

. What becomes of the formulas seen in Section 10.3.4 in the case of a 7-point matrix (for three-

dimensional problems)? In particular, can the ILU(O) factorization be cast in the form (10.20) in
which —E is the strict-lower diagonal of A and —F is the strict upper triangular part of A, and
D is a certain diagonal?

Consider an arbitrary matrix A which is split in the usual manner as A = Do — E — F', in which
—FE and —F are the strict-lower and -upper parts of A, respectively, and define, for any diagonal
matrix D, the approximate factorization of A given by

M= (D—-E)D™'(D-F).

Show how a diagonal D can be determined such that A and M have the same diagonal elements.
Find a recurrence relation for the elements of D. Consider now the symmetric case and assume
that the matrix D which is positive can be found. Write M in the form

M = (DY?* - ED '?\(DY?* —ED '*)T =, LY.

What is the relation between this matrix and the matrix of the SSOR(w) preconditioning, in the
particular case when D~!/2 = I? Conclude that this form of ILU factorization is in effect an
SSOR preconditioning with a different relaxation factor w for each equation.

Consider a general sparse matrix A (irregularly structured). We seek an approximate LU factor-
ization of the form
M =(D-E)D™'"(D-F)



320

12.

13.

14.

15.

16.

CHAPTER 10 PRECONDITIONING TECHNIQUES

in which — E and — F are the strict-lower and -upper parts of A, respectively. It is assumed that
A is such that
ai; > 0, asja5; >0 for 4,5=1,...,n.
a. By identifying the diagonal elements of A with those of M, derive an algorithm for generat-
ing the elements of the diagonal matrix D recursively.
b. Establish that if d; > 0 for j < 4 then d; < a4;. Is it true in general that d; > 0 for all 5?
c. Assume that fors = 1,...,5 — 1 we have d; > « > 0. Show a sufficient condition under
which d; > a. Are there cases in which this condition cannot be satisfied for any o?

d. Assume now that all diagonal elements of A are equal to a constant, i.e., a;; = a for j =
1,...,n. Definea = § and let

j—1
Sj = E AijQji, o = max Sj.
j=1,...,n
i=1
Show a condition on ¢ under whichd; > «, j =1,2,...,n.

Show the second part of (10.79). [Hint: Exploit the formula AB™ = >~"__ a;b] where a;,b;
=
are the j-th columns of A and B, respectively].

Let a preconditioning matrix M be related to the original matrix A by M = A + E, in which
E is a matrix of rank k.

a. Assume that both A and M are Symmetric Positive Definite. How many steps at most are
required for the preconditioned Conjugate Gradient method to converge when M is used as
a preconditioner?

b. Answer the same question for the case when A and M are nonsymmetric and the full GM-
RES is used on the preconditioned system.

Formulate the problem for finding an approximate inverse M to a matrix A as a large n? x n?

linear system. What is the Frobenius norm in the space in which you formulate this problem?

The concept of mask is useful in the global iteration technique. For a sparsity pattern S, i.e., a set
of pairs (4, 7) and a matrix B, we define the product C = B® S to be the matrix whose elements
ci; are zero if (¢, j) does not belong to .S, and b;; otherwise. This is called a mask operation
since its effect is to ignore every value not in the pattern S. Consider a global minimization of
the function Fs(M) = ||S © (I — AM)||F.

a. What does the result of Proposition 10.3 become for this new objective function?

b. Formulate an algorithm based on a global masked iteration, in which the mask is fixed and
equal to the pattern of A.

c. Formulate an algorithm in which the mask is adapted at each outer step. What criteria would
you use to select the mask?

Consider the global self preconditioned MR iteration algorithm seen in Section 10.5.5. Define
the acute angle between two matrices as

__(XY)
C XY ]e
a. Following what was done for the (standard) Minimal Residual algorithm seen in Chapter 5,

establish that the matrices By, = AM;, and Ry, = I — By, produced by global MR without
dropping are such that

cos L(X,Y)

|Re+1llp < || Rillr sin Z(Ry, BeRi).



EXERCISES AND NOTES 321

b. Letnow My = aAT so that By, is symmetric for all k& (see Section 10.5.5). Assume that, at
a given step k the matrix By, is positive definite. Show that

VA B > —"
cos /(Ry, BxRr) > Nnae (Br)
in which Amin (B ) and Amaz (Br) are, respectively, the smallest and largest eigenvalues of
B;.

17. In the two-sided version of approximate inverse preconditioners, the option of minimizing
F(L,U) = |[I - LAU|%

was mentioned, where L is unit lower triangular and U is upper triangular.
a. What is the gradient of f(L,U)?
b. Formulate an algorithm based on minimizing this function globally.

18. Consider the two-sided version of approximate inverse preconditioners, in which a unit lower
triangular L and an upper triangular U are sought so that LAU = I. One idea is to use an
alternating procedure in which the first half-step computes a right approximate inverse U to LA,
which is restricted to be upper triangular, and the second half-step computes a left approximate
inverse L to AU, which is restricted to be lower triangular.

a. Consider the first half-step. Since the candidate matrix U is restricted to be upper trian-
gular, special care must be exercised when writing a column-oriented approximate inverse
algorithm. What are the differences with the standard MR approach described by Algorithm
10.10?

b. Now consider seeking an upper triangular matrix U such that the matrix (LA)U is close to
the identity only in its upper triangular part. A similar approach is to be taken for the second
half-step. Formulate an algorithm based on this approach.

19. Write all six variants of the preconditioned Conjugate Gradient algorithm applied to the Normal
Equations, mentioned at the end of Section 10.7.1.

20. With the standard splitting A = D — E — F, in which D is the diagonal of A and —E, —F
its lower- and upper triangular parts, respectively, we associate the factored approximate inverse
factorization,

(I+ED YA(I+D 'F)=D+R. (10.83)

a. Determine R and show that it consists of second order terms, i.e., terms involving products
of at least two matrices from the pair E, F.

b. Now use the previous approximation for D + R = D1 — E1 — Fi,
(I+ E\D;"(D+ R)(I+ D;'Fi) =D +Ru.

Show how the approximate inverse factorization (10.83) can be improved using this new
approximation. What is the order of the resulting approximation?

NOTES AND REFERENCES. A breakthrough paper on preconditioners is the article [149] by Mei-
jerink and van der Vorst who established existence of the incomplete factorization for M -matrices
and showed that preconditioning the Conjugate Gradient by using an ILU factorization can result in
an extremely efficient combination. The idea of preconditioning was exploited in many earlier papers.
For example, in [11, 12] Axelsson discusses SSOR iteration, “accelerated” by either the Conjugate



322 CHAPTER 10 PRECONDITIONING TECHNIQUES

Gradient or Chebyshev acceleration. Incomplete factorizations were also discussed in early papers,
for example, by Varga [212] and Buleev [45]. Thus, Meijerink and van der Vorst’s paper played an
essential role in directing the attention of researchers and practitioners to a rather important topic and
marked a turning point. Many of the early techniques were developed for regularly structured matri-
ces. The generalization, using the definition of level of fill for high-order Incomplete LU factoriza-
tions for unstructured matrices, was introduced by Watts [223] for petroleum engineering problems.

Recent research on iterative techniques has been devoted in great part to the development of
better iterative accelerators, while “robust” preconditioners have by and large been neglected. This
is certainly caused by the inherent lack of theory to support such methods. Yet these techniques
are vital to the success of iterative methods in real-life applications. A general approach based on
modifying a given direct solver by including a drop-off rule was one of the first in this category
[151, 157, 235, 98]. More economical alternatives, akin to ILU(p), were developed later [179, 183,
68, 67, 226, 233]. ILUT and ILUTP, are inexpensive general purpose preconditioners which are
fairly robust and efficient. However, many of these preconditioners, including ILUT and ILUTP, can
fail. Occasionally, a more accurate ILUT factorization leads to a larger number of steps needed
for convergence. One source of failure is the instability of the preconditioning operation. These
phenomena of instability have been studied by Elman [81] who proposed a detailed analysis of ILU
and MILU preconditioners for model problems. The theoretical analysis on ILUT stated as Theorem
10.3 is modeled after Theorem 1.14 in Axelsson and Barker [16] for ILU(0).

Some theory for block preconditioners is discussed in Axelsson’s book [15]. Different forms of
block preconditioners were developed independently by Axelsson, Brinkkemper, and II’in [17] and
by Concus, Golub, and Meurant [61], initially for block matrices arising from PDEs in two dimen-
sions. Later, some generalizations were proposed [137]. Thus, the 2-level implicit-explicit precon-
ditioning introduced in [137] consists of using sparse inverse approximations to A;l for obtaining
Q.

The current rebirth of approximate inverse preconditioners [112, 62, 137, 54] is spurred by both
parallel processing and robustness considerations. Other preconditioners which are not covered here
are those based on domain decomposition techniques. Some of these techniques will be reviewed in
Chapter 13.

On another front, there is also increased interest in methods that utilize Normal Equations in
one way or another. Earlier, ideas revolved around shifting the matrix B = AT A before applying the
IC(0) factorization as was suggested by Kershaw [134] in 1977. Manteuffel [148] also made some
suggestions on how to select a good « in the context of the CGW algorithm. Currently, new ways
of exploiting the relationship with the QR (or LQ) factorization to define 1C(0) more rigorously are
being explored; see the recent work in [222]. |



C H A P TE R

11
PARALLEL IMPLEMENTATIONS

Parallel computing is fast becoming an inexpensive alternative to the stan-
dard supercomputer approach for solving large scale problems that arise in
scientific and engineering applications. Since iterative methods are appeal-
ing for large linear systems of equations, it is no surprise that they are the
prime candidates for implementations on parallel architectures. There have
been two traditional approaches for developing parallel iterative techniques
thus far. The first extracts parallelism whenever possible from standard al-
gorithms. The advantage of this viewpoint is that it is easier to understand
in general since the underlying method has not changed from its sequential
equivalent. The second approach is to develop alternative algorithms which
have enhanced parallelism. This chapter will give an overview of implemen-
tations and will emphasize methods in the first category. The later chapters
will consider alternative algorithms that have been developed specifically for
parallel computing environments.

e
INTRODUCTION

B8

The remaining chapters of this book will examine the impact of high performance com-
puting on the design of iterative methods for solving large linear systems of equations.
Because of the increased importance of three-dimensional models combined with the high
cost associated with sparse direct methods for solving these problems, iterative techniques
are starting to play a major role in many application areas. The main appeal of iterative
methods is their low storage requirement. Another advantage is that they are far easier to
implement on parallel computers than sparse direct methods because they only require a
rather small set of computational kernels. Increasingly, direct solvers are being used in
conjunction with iterative solvers to develop robust preconditioners.

The first considerations for high-performance implementations of iterative methods in-
volved implementations on vector computers. These efforts started in the mid 1970s when
the first vector computers appeared. Currently, there is a larger effort to develop new prac-

323



324 CHAPTER 11  PARALLEL IMPLEMENTATIONS

tical iterative methods that are not only efficient in a parallel environment, but also robust.
Often, however, these two requirements seem to be in conflict.

This chapter begins with a short overview of the various ways in which parallelism has
been exploited in the past and a description of the current architectural models for existing
commercial parallel computers. Then, the basic computations required in Krylov subspace
methods will be discussed along with their implementations.

I
FORMS OF PARALLELISM

Parallelism has been exploited in a number of different forms since the first computers were
built. The six major forms of parallelism are: (1) multiple functional units; (2) pipelining;
(3) vector processing; (4) multiple vector pipelines; (5) multiprocessing; and (6) distributed
computing. Next is a brief description of each of these approaches.

11.2.1 MULTIPLE FUNCTIONAL UNITS

This is one of the earliest forms of parallelism. It consists of multiplying the number of
functional units such as adders and multipliers. Thus, the control units and the registers
are shared by the functional units. The detection of parallelism is done at compilation time
with a “Dependence Analysis Graph,” an example of which is shown in Figure 11.1.

Figure 11.1 Dependence analysis for arithmetic expression:
(a+b)+ (cxd+d=xe).

In the example of Figure 11.1, the two multiplications can be performed simultaneously,
then the two additions in the middle are performed simultaneously. Finally, the addition at
the root is performed.



11.2 FORMS OF PARALLELISM 325

11.2.2 PIPELINING

The pipelining concept is essentially the same as that of an assembly line used in car
manufacturing. Assume that an operation takes s stages to complete. Then the operands
can be passed through the s stages instead of waiting for all stages to be completed for the
first two operands.

—_—
Ti-3 Ti—-2 Ti—-1 ZT;
Yi—3 Yi—2 Yi—1 Yi
|
stage 1 stage 2 stage 3 stage 4

If each stage takes a time 7 to complete, then an operation with n numbers will take
the time s7 + (n — 1)7 = (n + s — 1)7. The speed-up would be the ratio of the time to
complete the s stages in a non-pipelined unit versus, i.e., s x n x 7, over the above obtained
time,

ns
5= n+s—1
For large n, this would be close to s.

11.2.3 VECTOR PROCESSORS

Vector computers appeared in the beginning of the 1970s with the CDC Star 100 and
then the CRAY-1 and Cyber 205. These are computers which are equipped with vector
pipelines, i.e., pipelined functional units, such as a pipelined floating-point adder, or a
pipelined floating-point multiplier. In addition, they incorporate vector instructions explic-
itly as part of their instruction sets. Typical vector instructions are, for example:

VLOAD To load a vector from memory to a vector register
VADD To add the content of two vector registers
VMUL To multiply the content of two vector registers.

Similar to the case of multiple functional units for scalar machines, vector pipelines
can be duplicated to take advantage of any fine grain parallelism available in loops. For
example, the Fujitsu and NEC computers tend to obtain a substantial portion of their per-
formance in this fashion. There are many vector operations that can take advantage of
multiple vector pipelines.

11.2.4 MULTIPROCESSING AND DISTRIBUTED COMPUTING

A multiprocessor system is a computer, or a set of several computers, consisting of several
processing elements (PEs), each consisting of a CPU, a memory, an 1/O subsystem, etc.
These PEs are connected to one another with some communication medium, either a bus
or some multistage network. There are numerous possible configurations, some of which
will be covered in the next section.



326 CHAPTER 11  PARALLEL IMPLEMENTATIONS

Distributed computing is a more general form of multiprocessing, in which the pro-
cessors are actually computers linked by some Local Area Network. Currently, there are a
number of libraries that offer communication mechanisms for exchanging messages be-
tween Unix-based systems. The best known of these are the Parallel Virtual Machine
(PVM) and the Message Passing Interface (MPI). In heterogeneous networks of computers,
the processors are separated by relatively large distances and that has a negative impact on
the performance of distributed applications. In fact, this approach is cost-effective only for
large applications, in which a high volume of computation can be performed before more
data is to be exchanged.

—
TYPES OF PARALLEL ARCHITECTURES

There are currently three leading architecture models. These are:

e The shared memory model.
e SIMD or data parallel models.
e The distributed memory message passing model.

A brief overview of the characteristics of each of the three groups follows. Emphasis is on
the possible effects these characteristics have on the implementations of iterative methods.

11.3.1 SHARED MEMORY COMPUTERS

A shared memory computer has the processors connected to a large global memory with
the same global view, meaning the address space is the same for all processors. One of
the main benefits of shared memory models is that access to data depends very little on its
location in memory. In a shared memory environment, transparent data access facilitates
programming to a great extent. From the user’s point of view, data are stored in a large
global memory that is readily accessible to any processor. However, memory conflicts
as well as the necessity to maintain data coherence can lead to degraded performance.
In addition, shared memory computers cannot easily take advantage of data locality in
problems which have an intrinsically local nature, as is the case with most discretized
PDEs. Some current machines have a physically distributed memory but they are logically
shared, i.e., each processor has the same view of the global address space.

There are two possible implementations of shared memory machines: (1) bus-based
architectures, and (2) switch-based architecture. These two model architectures are illus-
trated in Figure 11.2 and Figure 11.3, respectively. So far, shared memory computers have
been implemented more often with buses than with switching networks.



11.3 TYPES OF PARALLEL ARCHITECTURES 327

HIGH SPEED BUS

SHARED MEMORY

Figure 11.2 A bus-based shared memory computer.
M) M) M) [ M) ][]
| SWITCHING NETWORK |

LI I (I [ B T LI L

Figure 11.3 A switch-based shared memory computer.

Buses are the backbone for communication between the different units of most computers.
Physically, a bus is nothing but a bundle of wires, made of either fiber or copper. These
wires carry information consisting of data, control signals, and error correction bits. The
speed of a bus, often measured in Megabytes per second and called the bandwidth of the
bus, is determined by the number of lines in the bus and the clock rate. Often, the limiting
factor for parallel computers based on bus architectures is the bus bandwidth rather than
the CPU speed.

The primary reason why bus-based multiprocessors are more common than switch-
based ones is that the hardware involved in such implementations is simple. On the other
hand, the difficulty with bus-based machines is that the number of processors which can
be connected to the memory will be small in general. Typically, the bus is timeshared,
meaning slices of time are allocated to the different clients (processors, 10 processors,
etc.) that request its use.

In a multiprocessor environment, the bus can easily be saturated. Several remedies are
possible. The first, and most common, remedy is to attempt to reduce traffic by adding
local memories or caches attached to each processor. Since a data item used by a given
processor is likely to be reused by the same processor in the next instructions, storing
the data item in local memory will help reduce traffic in general. However, this strategy
causes some difficulties due to the requirement to maintain data coherence. If Processor
(A) reads some data from the shared memory, and Processor (B) modifies the same data
in shared memory, immediately after, the result is two copies of the same data that have
different values. A mechanism should be put in place to ensure that the most recent update
of the data is always used. The additional overhead incurred by such memory coherence



328 CHAPTER 11  PARALLEL IMPLEMENTATIONS

operations may well offset the savings involving memory traffic.

The main features here are the switching network and the fact that a global memory
is shared by all processors through the switch. There can be p processors on one side
connected to p memory units or banks on the other side. Alternative designs based on
switches connect p processors to each other instead of p memory banks. The switching
network can be a crossbar switch when the number of processors is small. A crossbar
switch is analogous to a telephone switch board and allows p inputs to be connected to
m outputs without conflict. Since crossbar switches for large numbers of processors are
typically expensive they are replaced by multistage networks. Signals travel across a small
number of stages consisting of an array of elementary switches, e.g., 2 x 2 or 4 x 4 switches.

There have been two ways of exploiting multistage networks. In circuit switching
networks, the elementary switches are set up by sending electronic signals across all of
the switches. The circuit is set up once in much the same way that telephone circuits are
switched in a switchboard. Once the switch has been set up, communication between pro-
cessors Py, ..., P, is open to the memories

My Meyy...,My,,

in which 7 represents the desired permutation. This communication will remain functional
for as long as it is not reset. Setting up the switch can be costly, but once it is done, com-
munication can be quite fast. In packet switching networks, a packet of data will be given
an address token and the switching within the different stages will be determined based
on this address token. The elementary switches have to provide for buffering capabilities,
since messages may have to be queued at different stages.

11.3.2 DISTRIBUTED MEMORY ARCHITECTURES

The distributed memory model refers to the distributed memory message passing archi-
tectures as well as to distributed memory SIMD computers. A typical distributed memory
system consists of a large number of identical processors which have their own memories
and which are interconnected in a regular topology. Examples are depicted in Figures 11.4
and 11.5. In these diagrams, each processor unit can be viewed actually as a complete pro-
cessor with its own memory, CPU, 1/O subsystem, control unit, etc. These processors are
linked to a number of “neighboring” processors which in turn are linked to other neighbor-
ing processors, etc. In “Message Passing” models there is no global synchronization of the
parallel tasks. Instead, computations are data driven because a processor performs a given
task only when the operands it requires become available. The programmer must program
all the data exchanges explicitly between processors.

In SIMD designs, a different approach is used. A host processor stores the program
and each slave processor holds different data. The host then broadcasts instructions to pro-
cessors which execute them simultaneously. One advantage of this approach is that there
is no need for large memories in each node to store large programs since the instructions
are broadcast one by one to all processors.



11.3 TYPES OF PARALLEL ARCHITECTURES 329

O—O——CO—0
O—O——CO—=0

O—CO—_C——0

Figure 11.4 An eight-processor ring (left) and a 4 x 4 multi-
processor mesh (right).

An important advantage of distributed memory computers is their ability to exploit lo-
cality of data in order to keep communication costs to a minimum. Thus, a two-dimensional
processor grid such as the one depicted in Figure 11.4 is perfectly suitable for solving
discretized elliptic Partial Differential Equations (e.g., by assigning each grid point to a
corresponding processor) because some iterative methods for solving the resulting linear
systems will require only interchange of data between adjacent grid points.

A good general purpose multiprocessor must have powerful mapping capabilities be-
cause it should be capable of easily emulating many of the common topologies such as 2-D
and 3-D grids or linear arrays, FFT-butterflies, finite element meshes, etc.

Three-dimensional configurations are also popular. A massively parallel commercial
computer based on a 3-D mesh, called T3D, is marketed by CRAY Research, Inc. For
2-D and 3-D grids of processors, it is common that processors on each side of the grid
are connected to those on the opposite side. When these “wrap-around” connections are
included, the topology is sometimes referred to as a torus.

10 111
100 ////T 10%///
10 11
010 011
. . / l/
0 1 00 01 000 001

Figure 11.5 The n-cubes of dimensionsn = 1,2, 3.

Hypercubes are highly concurrent multiprocessors based on the binary n-cube topol-
ogy which is well known for its rich interconnection capabilities. A parallel processor
based on the n-cube topology, called a hypercube hereafter, consists of 2™ identical pro-
cessors, interconnected with n neighbors. A 3-cube can be represented as an ordinary cube



330 CHAPTER 11  PARALLEL IMPLEMENTATIONS

in three dimensions where the vertices are the 8 = 22 nodes of the 3-cube; see Figure 11.5.
More generally, one can construct an n-cube as follows: First, the 2™ nodes are labeled by
the 2™ binary numbers from 0 to 2™ — 1. Then a link between two nodes is drawn if and
only if their binary numbers differ by one (and only one) bit.

The first property of an n-cube graph is that it can be constructed recursively from
lower dimensional cubes. More precisely, consider two identical (n — 1)-cubes whose
vertices are labeled likewise from 0 to 27—, By joining every vertex of the first (n — 1)-
cube to the vertex of the second having the same number, one obtains an n-cube. Indeed, it
suffices to renumber the nodes of the first cube as 0 A a; and those of the secondas 1 A a;
where a; is a binary number representing the two similar nodes of the (n — 1)-cubes and
where A denotes the concatenation of binary numbers.

Separating an n-cube into the subgraph of all the nodes whose leading bit is 0 and
the subgraph of all the nodes whose leading bit is 1, the two subgraphs are such that each
node of the first is connected to one node of the second. If the edges between these two
graphs is removed, the result is 2 disjoint (n — 1)-cubes. Moreover, generally, for a given
numbering, the graph can be separated into two subgraphs obtained by considering all the
nodes whose 3" bit is 0 and those whose i** bit is 1. This will be called tearing along the
it* direction. Since there are n bits, there are n directions. One important consequence of
this is that arbitrary meshes with dimension < n can be mapped on hypercubes. However,
the hardware cost for building a hypercube is high, because each node becomes difficult
to design for larger dimensions. For this reason, recent commercial vendors have tended to
prefer simpler solutions based on two- or three-dimensional meshes.

Distributed memory computers come in two different designs, namely, SIMD and
MIMD. Many of the early projects have adopted the SIMD organization. For example,
the historical ILLIAC IV Project of the University of Illinois was a machine based on a
mesh topology where all processors execute the same instructions.

SIMD distributed processors are sometimes called array processors because of the
regular arrays that they constitute. In this category, systolic arrays can be classified as an
example of distributed computing. Systolic arrays are distributed memory computers in
which each processor is a cell which is programmed (possibly micro-coded) to perform
only one of a few operations. All the cells are synchronized and perform the same task.
Systolic arrays are designed in VLSI technology and are meant to be used for special
purpose applications, primarily in signal processing.

I
TYPES OF OPERATIONS

Now consider two prototype Krylov subspace techniques, namely, the preconditioned Con-
jugate Gradient method for the symmetric case and the preconditioned GMRES algorithm
for the nonsymmetric case. For each of these two techniques, we analyze the types of oper-
ations that are performed. It should be emphasized that other Krylov subspace techniques
require similar operations.




11.4 TYPES OF OPERATIONS 331

11.4.1 PRECONDITIONED CG

Consider Algorithm 9.1. The first step when implementing this algorithm on a high-
performance computer is identifying the main operations that it requires. We distinguish
five types of operations, which are:

1. Preconditioner setup.

2. Matrix vector multiplications.
3. Vector updates.

4. Dot products.

5. Preconditioning operations.

In the above list the potential bottlenecks are (1), setting up the preconditioner and (5),
solving linear systems with A7, i.e., the preconditioning operation. Section 11.6 discusses
the implementation of traditional preconditioners, and the last two chapters are devoted
to preconditioners that are specialized to parallel environments. Next come the matrix-
by-vector products which deserve particular attention. The rest of the algorithm consists
essentially of dot products and vector updates which do not cause significant difficulties in
parallel machines, although inner products can lead to some loss of efficiency on certain
types of computers with large numbers of processors.

11.4.2 GMRES

The only new operation here with respect to the Conjugate Gradient method is the orthog-
onalization of the vector Aw; against the previous v’s. The usual way to accomplish this is
via the modified Gram-Schmidt process, which is basically a sequence of subprocesses of
the form:

e Compute a = (y,v).
e Compute § := y — aw.

This orthogonalizes a vector y against another vector v of norm one. Thus, the outer loop of
the modified Gram-Schmidt is sequential, but the inner loop, i.e., each subprocess, can be
parallelized by dividing the inner product and SAXPY operations among processors. Al-
though this constitutes a perfectly acceptable approach for a small number of processors,
the elementary subtasks may be too small to be efficient on a large number of processors.
An alternative for this case is to use a standard Gram-Schmidt process with reorthogonal-
ization. This replaces the previous sequential orthogonalization process by a matrix opera-
tion of the form §j = y — VV Ty, i.e., BLAS-1 kernels are replaced by BLAS-2 kernels.

Recall that the next level of BLAS, i.e., level 3 BLAS, exploits blocking in dense
matrix operations in order to obtain performance on machines with hierarchical memories.
Unfortunately, level 3 BLAS kernels cannot be exploited here because at every step, there
is only one vector to orthogonalize against all previous ones. This may be remedied by
using block Krylov methods.



332 CHAPTER 11  PARALLEL IMPLEMENTATIONS

11.4.3 VECTOR OPERATIONS

These are usually the simplest operations to implement on any computer. In many cases,
compilers are capable of recognizing them and invoking the appropriate machine instruc-
tions, possibly vector instructions. In the specific case of CG-like algorithms, there are two
types of operations: vector updates and dot products.

Vector Updates Operations of the form
y(1:n) = y(1:n) + a * x(1:n),

where o is a scalar and y and x two vectors, are known as vector updates or SAXPY
operations. They are typically straightforward to implement in all three machine models
discussed earlier. On an SIMD computer, the above code segment can be used on many
of the recent systems and the compiler will translate it into the proper parallel version.
The above line of code is written in FORTRAN 90, which is the prototype programming
language for this type of computers. On shared memory computers, we can simply write
the usual FORTRAN loop, possibly in the above FORTRAN 90 style on some computers,
and the compiler will translate it again in the appropriate parallel executable code.

On distributed memory computers, some assumptions must be made about the way
in which the vectors are distributed. The main assumption is that the vectors x and y are
distributed in the same manner among the processors, meaning the indices of the compo-
nents of any vector that are mapped to a given processor are the same. In this case, the
vector-update operation will be translated into p independent vector updates, requiring no
communication. Specifically, if nloc is the number of variables local to a given processor,
this processor will simply execute a vector loop of the form

y(2:nloc) = y(2:nloc) + a * x(1:nloc)

and all processors will execute a similar operation simultaneously.

Dot products A number of operations use all the components of a given vector to com-
pute a single floating-point result which is then needed by all processors. These are termed
Reduction Operations and the dot product is the prototype example. A distributed version
of the dot-product is needed to compute the inner product of two vectors = and y that are
distributed the same way across the processors. In fact, to be more specific, this distributed
dot-product operation should compute the inner product ¢ = 27y of these two vectors and
then make the result ¢ available in each processor. Typically, this result is needed to per-
form vector updates or other operations in each node. For a large number of processors, this
sort of operation can be demanding in terms of communication costs. On the other hand,
parallel computer designers have become aware of their importance and are starting to pro-
vide hardware and software support for performing global reduction operations efficiently.
Reduction operations that can be useful include global sums, global max/min calculations,
etc. A commonly adopted convention provides a single subroutine for all these operations,
and passes the type of operation to be performed (add, max, min, multiply,...) as one of
the arguments. With this in mind, a distributed dot-product function can be programmed
roughly as follows.



11.4 TYPES OF OPERATIONS 333

function distdot(nloc, x, incx, y, incy)
integer nloc

real*8 x(nloc), y(nloc)

tloc = DDOT (nloc, x, incx, y, incy)
distdot = REDUCE(tloc,’add’)

end

The function DDOT performs the usual BLAS-1 dot product of x and y with strides
incx and incy, respectively. The REDUCE operation, which is called with “add” as the
operation-type parameter, sums all the variables “tloc” from each processor and put the
resulting global sum in the variable distdot in each processor.

11.4.4 REVERSE COMMUNICATION

To conclude this section, the following important observation can be made regarding the
practical implementation of Krylov subspace accelerators, such as PCG or GMRES. The
only operations that involve communication are the dot product, the matrix-by-vector prod-
uct, and, potentially, the preconditioning operation. There is a mechanism for delegating
the last two operations to a calling program, outside of the Krylov accelerator. The result of
this is that the Krylov acceleration routine will be free of any matrix data structures as well
as communication calls. This makes the Krylov routines portable, except for the possible
redefinition of the inner product distdot.

This mechanism, particular to FORTRAN programming, is known as reverse commu-
nication. Whenever a matrix-by-vector product or a preconditioning operation is needed,
the subroutine is exited and the calling program unit performs the desired operation. Then
the subroutine is called again, after placing the desired result in one of its vector arguments.

A typical execution of a flexible GMRES routine with reverse communication is
shown in the code segment below. The integer parameter icode indicates the type of oper-
ation needed by the subroutine. When icode is set to one, then a preconditioning operation
must be applied to the vector wk1. The result is copied in wk2 and FGMRES is called
again. If it is equal to two, then the vector wk1 must be multiplied by the matrix A. The
result is then copied in wk2 and FGMRES is called again.

icode = 0
1 continue

call fgmres (n,im,rhs,sol,i,vv,w,wkl, wk2,eps,

* maxits,iout,icode)

if (icode .eq. 1) then
call precon(n, wkl, wk2) ! user’s preconditioner
goto 1

else if (icode .eq. 2) then
call matvec (n,wkl, wk2) ! user’s matvec
goto 1

endif

Reverse communication enhances the flexibility of the FGMRES routine substantially.
For example, when changing preconditioners, we can iterate on a coarse mesh and do the



334 CHAPTER 11  PARALLEL IMPLEMENTATIONS

necessary interpolations to get the result in wk?2 in a given step and then iterate on the fine
mesh in the following step. This can be done without having to pass any data regarding the
matrix or the preconditioner to the FGMRES accelerator.

Note that the purpose of reverse communication simply is to avoid passing data struc-
tures related to the matrices, to the accelerator FGMRES. The problem is that these data
structures are not fixed. For example, it may be desirable to use different storage formats
for different architectures. A more elegant solution to this problem is Object-Oriented
Programming. In Object-Oriented Programming languages such as C++, a class can be
declared, e.g., a class of sparse matrices, and operators can be defined on them. Data struc-
tures are not passed to these operators. Instead, the implementation will recognize the types
of the operands and invoke the proper functions. This is similar to what exists currently for
arithmetic. For operation s = z + y, the compiler will recognize what type of operand is
involved and invoke the proper operation, either integer, double real, or complex, etc.

I
MATRIX-BY-VECTOR PRODUCTS

Matrix-by-vector multiplications (sometimes called “Matvecs” for short) are relatively
easy to implement efficiently on high performance computers. For a description of storage
formats for sparse matrices, see Chapter 3. We will first discuss matrix-by-vector algo-
rithms without consideration of sparsity. Then we will cover sparse Matvec operations for
a few different storage formats.

11.5.1 THE CASE OF DENSE MATRICES

The computational kernels for performing sparse matrix operations such as matrix-by-
-vector products are intimately associated with the data structures used. However, there
are a few general approaches that are common to different algorithms for matrix-by-vector
products which can be described for dense matrices. Two popular ways of performing these
operations are (1) the inner product form described in Algorithm 11.1, and (2) the SAXPY
form described by Algorithm 11.2.

ALGORITHM 11.1: Dot Product Form — Dense Case

1. Doi=1,n
2. y(i) =dotproduct(a(i,1:n),x(1:n))
3. EndDo

The dot product operation dotproduct(v(1:n),w(1:n)) computes the dot product of the two
vectors v and w of length n each. If there is no ambiguity on the bounds, we simply write
dotproduct(v,w). The above algorithm proceeds by rows. It computes the dot-product of
row ¢ of the matrix A with the vector z and assigns the result to y(¢). The next algorithm



11.5 MATRIX-BY-VECTOR PRODUCTS 335

uses columns instead and results in the use of the SAXPY operations.

ALGORITHM 11.2: SAXPY Form — Dense Case

1. y(1:n)=0.0

2. Doj=1,n

3. y(:n)=y(:n) +x(j) *a(1:n))
4. EndDo

The SAXPY form of the Matvec operation computes the result y = Az as a linear com-
bination of the columns of the matrix A. A third possibility consists of performing the
product by diagonals. This option bears no interest in the dense case, but it is at the basis
of many important matrix-by-vector algorithms in the sparse case.

ALGORITHM 11.3: DIA Form — Dense Case

1. y(1:n)=0

2. Dok=-n+l,n-1

3. Doi=1-min(k,0), n—max(k,0)
4. y(i) = y(i) + a(i,k+i)*x(k+i)
5

6

EndDo

L6 EndDo

The product is performed by diagonals, starting from the leftmost diagonal whose offset is
—n + 1 to the rightmost diagonal whose offset is n — 1.

11.5.2 THE CSR AND CSC FORMATS

One of the most general schemes for storing sparse matrices is the Compressed Sparse Row
storage format described in Chapter 3. Recall that the data structure consists of three arrays:
a real array A(1:nnz) to store the nonzero elements of the matrix row-wise, an integer array
JA(1:nnz) to store the column positions of the elements in the real array A, and, finally, a
pointer array 1A(1:n+1), the i-th entry of which points to the beginning of the i-th row in
the arrays A and JA. To perform the matrix-by-vector product y = Az in parallel using this
format, note that each component of the resulting vector ¢ can be computed independently
as the dot product of the ¢-th row of the matrix with the vector z. This yields the following
sparse version of Algorithm 11.1 for the case where the matrix is stored in CSR format.

ALGORITHM 11.4: CSR Format — Dot Product Form

Doi=1,n

k1 = ia(i)

k2 =ia(i+1)-1

y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))
EndDo

O~ WNR




336 CHAPTER 11  PARALLEL IMPLEMENTATIONS

Line 4 of the above algorithm computes the dot product of the vector with components
a(kl), a(k1+1), ---, a(k2) with the vector with components x(ja(k1)), x(ja(k1+1)), - --,
x(ja(k2)).

The fact that the outer loop can be performed in parallel can be exploited on any par-
allel platform. On some shared-memory machines, the synchronization of this outer loop
is inexpensive and the performance of the above program can be excellent. On distributed
memory machines, the outer loop can be split in a number of steps to be executed on each
processor. Thus, each processor will handle a few rows that are assigned to it. It is common
to assign a certain number of rows (often contiguous) to each processor and to also assign
the component of each of the vectors similarly. The part of the matrix that is needed is
loaded in each processor initially. When performing a matrix-by-vector product, interpro-
cessor communication will be necessary to get the needed components of the vector x that
do not reside in a given processor. This important case will return in Section 11.5.6.

) Gther
. DotProduct

R i |

() ali®)

o

;(1: n)

Figure 11.6 lllustration of the row-oriented matrix-by-
vector multiplication.

The indirect addressing involved in the second vector in the dot product is called a
gather operation. The vector x(ja(k1:k2)) is first “gathered” from memory into a vector of
contiguous elements. The dot product is then carried out as a standard dot-product opera-
tion between two dense vectors. This is illustrated in Figure 11.6.

Example 11.1 This example illustrates the use of scientific libraries for performing
sparse matrix operations. If the pseudo-code for Algorithm 11.4 is compiled as it is on
the Connection Machine, in CM-FORTRAN (Thinking Machine’s early version of FOR-
TRAN 90), the resulting computations will be executed on the front-end host of the CM-2
or the Control Processor (CP) of the CM-5, rather than on the PEs. This is due to the fact
that the code does not involve any vector constructs. The scientific library (CMSSL) pro-
vides gather and scatter operations as well as scan_add operations which can be exploited
to implement this algorithm more efficiently as is show in the following code segment:

y=0.0

call sparse_util_gather ( tmp, X, gather_trace, . ..)

tmp = a*tmp

call cmf_scan_add (tmp, tmp, cmf_upward, cmf_inclusive, . ..)



11.5 MATRIX-BY-VECTOR PRODUCTS 337

call sparse_util_scatter ( vy, scatter_pointer, tmp,
scatter_trace, ...)

The sparse_util_gather routine is first called to gather the corresponding entries from the
vector x into a temporary array tmp, then the multiplications are carried out element-by-
element in parallel. The cmf_scan_add routine from the CM Fortran Utility Library is used
to perform the summation for each row. Finally, the call to sparse_util scatter copies the
results. Segmented scan-adds are particularly useful for implementing sparse matrix-by-
vector products when they are provided as part of the libraries. Note that the sparse _util-
_gather_setup and sparse_util_scatter_setup routines must be called to compute the com-
munication patterns, gather_trace and scatter_trace, before this algorithm is called. These
tend to be expensive operations.

Now assume that the matrix is stored by columns (CSC format). The matrix-by-vector
product can be performed by the following algorithm which is a sparse version of Algo-
rithm 11.2.

ALGORITHM 11.5: CSC Format — SAXPY Form

y(1:n)=0.0
Doi=1,n
k1 =ia(i)

k2 =ia(i + 1)-1
y(jak1:k2)) = y(ja(k1:k2)) + x(j) * a(k1:k2)
EndDo

S AWM=

The above code initializes y to zero and then adds the vectors z(j) x a(1 : n,j) for
j=1,...,ntoit It can also be used to compute the product of the transpose of a matrix
by a vector, when the matrix is stored (row-wise) in the CSR format. Normally, the vector
y(ja(k1:k2)) is gathered and the SAXPY operation is performed in vector mode. Then the
resulting vector is “scattered” back into the positions ja(*), by what is called a Scatter
operation. This is illustrated in Figure 11.7.

A major difficulty with the above FORTRAN program is that it is intrinsically sequen-
tial. First, the outer loop is not parallelizable as it is, but this may be remedied as will be
seen shortly. Second, the inner loop involves writing back results of the right-hand side
into memory positions that are determined by the indirect address function ja. To be cor-
rect, y(ja(1)) must be copied first, followed by y(ja(2)), etc. However, if it is known that
the mapping ja(i) is one-to-one, then the order of the assignments no longer matters. Since
compilers are not capable of deciding whether this is the case, a compiler directive from
the user is necessary for the Scatter to be invoked.



338 CHAPTER 11  PARALLEL IMPLEMENTATIONS

+

] __ Gather Scatter A

yo) aty) oy

+r7 N+

y(L:n) y(I: n)

Figure 11.7 lllustration of the column-oriented matrix-by-
vector multiplication.

Going back to the outer loop, p subsums can be computed (independently) into p
separate temporary vectors and then these p subsums can be added at the completion of
all these partial sums to obtain the final result. For example, an optimized version of the
previous algorithm can be implemented as follows:

ALGORITHM 11.6: CSC Format — Split SAXPY Form

tmp(1:n,1:p) = 0.0
Dom=1,p
Doj=m,n,p
k1 =ia(j)
k2 =ia(j +1)-1
tmp(ja(k1:k2),j) = tmp(ja(k1:k2),j) + x(j) * a(k1:k2)
EndDo
EndDo
y(1:n) = SUM(tmp,dim=2)

©oONSDORAWNR

The SUM across the second dimension at the end of the algorithm constitutes additional
work, but it is highly vectorizable and parallelizable.

11.5.3 MATVECS IN THE DIAGONAL FORMAT

The above storage schemes are general but they do not exploit any special structure of the
matrix. The diagonal storage format was one of the first data structures used in the context
of high performance computing to take advantage of special sparse structures. Often, sparse
matrices consist of a small number of diagonals in which case the matrix-by-vector product
can be performed by diagonals as in Algorithm 11.3. For sparse matrices, most of the 2n—1
diagonals invoked in the outer loop of Algorithm 11.3 are zero. There are again different
variants of Matvec algorithms for the diagonal format, related to different orderings of the
loops in the basic FORTRAN program. Recall that the matrix is stored in a rectangular
array diag(1:n,1:ndiag) and the offsets of these diagonals from the main diagonal may be
stored in a small integer array offset(1:ndiag). Consider a “dot-product” variant first.



11.5 MATRIX-BY-VECTOR PRODUCTS 339

ALGORITHM 11.7: DIA Format — Dot Product Form

1. Doi=1,n

2. tmp = 0.0d0

3. Doj=1,ndiag

4. tmp = tmp + diag(i,j)*x(i+offset(j))
5. EndDo

6. y(@i)=tmp

7. EndDo

In a second variant, the vector y is initialized to zero, and then z is multiplied by each of the
diagonals and the separate results are added to y. The innermost loop in this computation
is sometimes called a Triad operation.

ALGORITHM 11.8: Matvec in Triad Form

1. y=0.0d0
Do j = 1, ndiag

joff = offset(j)

i1 = max(1, 1-offset(j))

i2 = min(n, n-offset(j))

y(i1:i2) = y(i1:i2) + diag(i1:i2,j)*x(i1+joff:i2+joff)
EndDo

NSO WD

Good speeds can be reached on vector machines when the matrix is large enough.

One drawback with diagonal storage is that it is not general enough. For general sparse
matrices, we can either generalize the diagonal storage scheme or reorder the matrix in or-
der to obtain a diagonal structure. The simplest generalization is the Ellpack-1tpack Format.

11.5.4 THE ELLPACK-ITPACK FORMAT

The Ellpack-Itpack (or Ellpack) format is of interest only for matrices whose maximum
number of nonzeros per row, jmax, is small. The nonzero entries are stored in a real array
ae(1:n,1:jmax). Along with this is integer array jae(1:n,1:jmax) which stores the column
indices of each corresponding entry in ae. Similar to the diagonal scheme, there are also
two basic ways of implementing a matrix-by-vector product when using the Ellpack for-
mat. We begin with an analogue of Algorithm 11.7.

ALGORITHM 11.9: Ellpack Format — Dot-Product Form

1. Doi=1n
2. yi=0

3. Doj=1,ncol
4

5

yi = yi + ae(j,i) * x(jae(j,i))
EndDo



340 CHAPTER 11  PARALLEL IMPLEMENTATIONS

6. y(i) =yi
. 7. EndDo

In data-parallel mode, the above algorithm can be implemented by using a temporary
two-dimensional array to store the values z(ja(j,7)), and then performing a pointwise
array product of a and this two-dimensional array. The result is then summed along the
rows

forall (i=1:n, j=1:ncol ) tmp(i,j) = x(jae(i,j))
y = SUM(ae*tmp, dim=2).

The FORTRAN forall construct performs the operations as controlled by the loop
heading, in parallel. Alternatively, use of the temporary array can be avoided by recoding
the above lines as follows:

forall (i = 1:n) y(i) = SUM(ae(i,1:ncol)*x(jae(i,1:ncol))) .

The main difference between these loops and the previous ones for the diagonal format is
the presence of indirect addressing in the innermost computation. A disadvantage of the
Ellpack format is that if the number of nonzero elements per row varies substantially, many
zero elements must be stored unnecessarily. Then the scheme becomes inefficient. As an
extreme example, if all rows are very sparse except for one of them which is full, then the
arrays ae, jae must be full n x n arrays, containing mostly zeros. This is remedied by a
variant of the format which is called the jagged diagonal format.

11.5.5 THE JAGGED DIAGONAL FORMAT

A more general alternative to the diagonal or Ellpack format is the Jagged Diagonal (JAD)
format. This can be viewed as a generalization of the Ellpack-Itpack format which removes
the assumption on the fixed length rows. To build the jagged diagonal structure, start from
the CSR data structure and sort the rows of the matrix by decreasing number of nonzero
elements. To build the first “jagged diagonal” (j-diagonal), extract the first element from
each row of the CSR data structure. The second jagged diagonal consists of the second
elements of each row in the CSR data structure. The third, fourth, .. ., jagged diagonals can
then be extracted in the same fashion. The lengths of the successive j-diagonals decreases.
The number of j-diagonals that can be extracted is equal to the number of nonzero elements
of the first row of the permuted matrix, i.e., to the largest number of nonzero elements per
row. To store this data structure, three arrays are needed: a real array DJ to store the values
of the jagged diagonals, the associated array JDIAG which stores the column positions of
these values, and a pointer array IDIAG which points to the beginning of each j-diagonal
in the DJ, JDIAG arrays.



11.5 MATRIX-BY-VECTOR PRODUCTS 341

Example 11.2 Consider the following matrix and its sorted version PA:

1. 0. 2. 0. O. 3. 4. 0. 5. 0.
3. 4. 0. 5 0. 0. 6. 7. 0. &
A=1 0. 6. 7. 0. & - PA=] 1. 0. 2. 0. 0.
0. 0. 9. 10. 0. 0. 0. 9. 10. O
0. 0. 0. 11. 12. 0. 0. 0. 11. 12.

The rows of P A have been obtained from those of A by sorting them by number of nonzero
elements, from the largest to the smallest number. Then the JAD data structure for A is as
follows:
| DJ [3. 6. 1. 9 11.[4 7. 2. 10. 12.]5.
[JDIAG |1 2 1 3 4 |2 3 3 4 5 |4
[IDIAG |1 6 11 13|

Thus, there are two j-diagonals of full length (five) and one of length two.

A matrix-by-vector product with this storage scheme can be performed by the follow-
ing code segment.

Do j=1, ndiag
k1 = idiag(j)
k2 = idiag(j+1) - 1
len = idiag(j+1) — k1
y(1:len) = y(1:len) + dj(k1:k2)*x(jdiag(k1:k2))
EndDo
Since the rows of the matrix A have been permuted, the above code will compute
P Az, a permutation of the vector Az, rather than the desired Az. It is possible to permute
the result back to the original ordering after the execution of the above program. This
operation can also be performed until the final solution has been computed, so that only
two permutations on the solution vector are needed, one at the beginning and one at the
end. For preconditioning operations, it may be necessary to perform a permutation before
or within each call to the preconditioning subroutines. There are many possible variants
of the jagged diagonal format. One variant which does not require permuting the rows is
described in Exercise 8.

SO A WNR

11.5.6 THE CASE OF DISTRIBUTED SPARSE MATRICES

Given a sparse linear system to be solved on a distributed memory environment, it is natural
to map pairs of equations-unknowns to the same processor in a certain predetermined way.
This mapping can be determined automatically by a graph partitioner or it can be assigned
ad hoc from knowledge of the problem. Assume that there is a convenient partitioning of
the adjacency graph. Without any loss of generality, the matrix under consideration can be
viewed as originating from the discretization of a Partial Differential Equation on a certain
domain. This is illustrated in Figure 11.8. Initially, assume that each subgraph (or subdo-
main, in the PDE literature) is assigned to a different processor, although this restriction



342 CHAPTER 11  PARALLEL IMPLEMENTATIONS

can be relaxed, i.e., a processor can hold several subgraphs to increase parallelism.

T T
o

External interface
Internal points

points

T N
‘
‘
e
|
v

Tl ‘ Internal interface
points

Figure 11.8 Decomposition of physical domain or adjacency
graph and the local data structure.

A local data structure must be set up in each processor (or subdomain, or subgraph)
which will allow the basic operations such as (global) matrix-by-vector products and pre-
conditioning operations to be performed efficiently. The only assumption to make regard-
ing the mapping is that if row number ¢ is mapped into processor p, then so is the unknown
1, 1.e., the matrix is distributed row-wise across the processors according to the distribution
of the variables. The graph is assumed to be undirected, i.e., the matrix has a symmetric
pattern.

It is important to “preprocess the data” in order to facilitate the implementation of the
communication tasks and to gain efficiency during the iterative process. The preprocessing
requires setting up the following: information in each processor.

1. List of processors with which communication will take place. These are called
“neighboring processors” although they may not be physically nearest neighbors.

2. List of local nodes that are coupled with external nodes. These are the local inter-
face nodes.

3. Local representation of the distributed matrix in each processor.



11.5 MATRIX-BY-VECTOR PRODUCTS 343

In order to perform a matrix-by-vector product with a distributed sparse matrix, the matrix
consisting of rows that are local to a given processor must be multiplied by some global
vector v. Some components of this vector will be local, and some components must be
brought from external processors. These external variables correspond to interface points
belonging to adjacent subdomains. When performing a matrix-by-vector product, neigh-
boring processors must exchange values of their adjacent interface nodes.

Internal points (z;y:)

Local interface points (zp.q)

Byt External interface matrix

Figure 11.9 The local matrices and data structure associ-
ated with each subdomain.

Let A;,. be the local part of the matrix, i.e., the (rectangular) matrix consisting of all
the rows that are mapped to myproc. Call By, the “diagonal block” of A located in A4;,.,
i.e., the submatrix of A4;,. whose nonzero elements a;; are such that j is a local variable.
Similarly, call B.;; the “offdiagonal” block, i.e., the submatrix of A;,. whose nonzero
elements a;; are such that j is not a local variable. To perform a matrix-by-vector product,
start multiplying the diagonal block By, by the local variables. Then, multiply the external
variables by the sparse matrix B.,;. Notice that since the external interface points are not
coupled with local internal points, only the rows n;,: + 1 t0 ngec in the matrix Beg:
will have nonzero elements. Thus, the matrix-by-vector product can be separated into two
such operations, one involving only the local variables and the other involving external
variables. It is necessary to construct these two matrices and define a local numbering of
the local variables in order to perform the two matrix-by-vector products efficiently each
time.

To perform a global matrix-by-vector product, with the distributed data structure de-
scribed above, each processor must perform the following operations. First, multiply the
local variables by the matrix B;,.. Second, obtain the external variables from the neigh-
boring processors in a certain order. Third, multiply these by the matrix B.,; and add the
resulting vector to the one obtained from the first multiplication by B;,.. Note that the
first and second steps can be done in parallel. With this decomposition, the global matrix-
by-vector product can be implemented as indicated in Algorithm 11.10 below. In what
follows, z;,. is a vector of variables that are local to a given processor. The components
corresponding to the local interface points (ordered to be the last components in z,. for
convenience) are called z;,4. The external interface points, listed in a certain order, con-
stitute a vector which is called z ;. The matrix By, is a sparse nloc x nloc matrix which
represents the restriction of A to the local variables z;,.. The matrix B,,; operates on the



344 CHAPTER 11  PARALLEL IMPLEMENTATIONS

external variables ., to give the correction which must be added to the vector Bj,.Z;oc
in order to obtain the desired result (Az) ;..

ALGORITHM 11.10: Distributed Sparse Matrix Product Kernel

1 Exchange interface data, i.e.,

2 Scatter xy,,q to neighbors and
3. Gather x.,; from neighbors
4 Do Local Matvec: y = BjocZioe
5

Do External Matvec: y = y + BeytTept
1

An important observation is that the matrix-by-vector products in lines 4 and 5 can use any
convenient data structure that will improve efficiency by exploiting knowledge on the local
architecture. An example of the implementation of this operation is illustrated next:

call bdxchg(nloc,x,y,nproc,proc,ix,ipr,type,xlen,iout)
y(1:nloc) = 0.0

call amux1 (nloc,x,y,aloc,jaloc,ialoc)

nrow = nloc — nbnd + 1

call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

In the above code segment, bdxchg is the only routine requiring communication. Its
purpose is to exchange interface values between nearest neighbor processors. The first call
to amux1 performs the operation y := y + BjocZ10c, Where y has been initialized to zero
prior to the call. The second call to amuxl performs y := y + By Zese. NOtice that the
data for the matrix B, is simply appended to that of By, a standard technique used for
storing a succession of sparse matrices. The B.;; matrix acts only on the subvector of x
which starts at location nbnd of z. The size of the B,,; matrix is nrow = nloc—nbnd+1.

—
STANDARD PRECONDITIONING OPERATIONS

Each step of a preconditioned iterative method requires the solution of a linear system of
equations

Mz =y.

This section only considers those traditional preconditioners, such as ILU or SOR or
SSOR, in which the solution with A is the result of solving triangular systems. Since
these are commonly used, it is important to explore ways to implement them efficiently in
a parallel environment. We only consider lower triangular systems of the form

Lz =b. (11.1)

Without loss of generality, it is assumed that L is unit lower triangular.



11.6 STANDARD PRECONDITIONING OPERATIONS 345

11.6.1 PARALLELISM IN FORWARD SWEEPS

Typically in solving a lower triangular system, the solution is overwritten onto the right-
hand side on return. In other words, there is one array x for both the solution and the
right-hand side. Therefore, the forward sweep for solving a lower triangular system with
coefficients al(3, ) and right-hand-side z is as follows.

ALGORITHM 11.11: Sparse Forward Elimination

1. Doi=2,n

2. For (all j such that al(i,j) is nonzero) Do:
3. x(i) := x(i) - al(i,j) * x(j)

4 EndDo

5. EndDo

Assume that the matrix is stored row wise in the general Compressed Sparse Row (CSR)
format, except that the diagonal elements (ones) are not stored. Then the above algorithm
translates into the following code segment:

1. Doi=2,n

2. Do j=ial(i), ial(i+1) - 1

3. x(i)=x(i) — al(j) * x@jal(j))
4 EndDo

5. EndDo

The outer loop corresponding to the variable 7 is sequential. The 5 loop is a sparse dot
product of the it" row of L and the (dense) vector z. This dot product may be split among
the processors and the partial results may be added at the end. However, the length of the
vector involved in the dot product is typically short. So, this approach is quite inefficient
in general. We examine next a few alternative approaches. The regularly structured and the
irregularly structured cases are treated separately.

11.6.2 LEVEL SCHEDULING: THE CASE OF 5-POINT
MATRICES

First, consider an example which consists of a 5-point matrix associated with a 4 x 3 mesh
as represented in Figure 11.10. The lower triangular matrix associated with this mesh is
represented in the left side of Figure 11.10. The stencil represented in the right side of
Figure 11.10 establishes the data dependence between the unknowns in the lower triangular
system solution when considered from the point of view of a grid of unknowns. It tells us
that in order to compute the unknown in position (4, 5), only the two unknowns in positions
(i —1,7) and (4,7 — 1) are needed . The unknown 11 does not depend on any other
variable and can be computed first. Then the value of x4, can be used to get z; » and z2 1
simultaneously. Then these two values will in turn enable 3 1, z2 » and z1_3 to be obtained
simultaneously, and so on. Thus, the computation can proceed in wavefronts. The steps for
this wavefront algorithm are shown with dashed lines in Figure 11.10. Observe that the



346 CHAPTER 11  PARALLEL IMPLEMENTATIONS

maximum degree of parallelism (or vector length, in the case of vector processing) that can
be reached is the minimum of n,, n,, the number of mesh points in the z and y directions,
respectively, for 2-D problems. For 3-D problems, the parallelism is of the order of the
maximum size of the sets of domain points z; ; », Where i + j + k = lev, a constant level
lev. It is important to note that there is little parallelism or vectorization at the beginning
and at the end of the sweep. The degree of parallelism is equal to one initially, and then
increases by one for each wave reaching its maximum, and then decreasing back down to
one at the end of the sweep. For example, for a 4 x 3 grid, the levels (sets of equations that
can be solved in parallel) are {1}, {2,5}, {3,6,9}, {4,7,10}, {8,11}, and finally {12}.
The first and last few steps may take a heavy toll on achievable speed-ups.

o o
O 1) ) @© . N
\\\ \\\ \\\ \\ (27.7 - 1) (/L’J)
N \ N \
\\ \\ \\ 6
AN AN AN
AN AN AN
o) BN e
L
(5/\ (&) D \@\
AN AN AN AN
AN N N N
N N AN \\
\\ \\ \\ 5
AN AN AN
N N N (i —1,5)
RPN PN o,
L
@ (@) (3 O .
AN AN AN AN Stencil
1 2 3 4

Figure 11.10 Level scheduling for a4 x 3 grid problem.

The idea of proceeding by levels or wavefronts is a natural one for finite difference
matrices on rectangles. Discussed next is the more general case of irregular matrices, a
textbook example of scheduling, or topological sorting, and is well known in different
forms to computer scientists.

11.6.3 LEVEL SCHEDULING FOR IRREGULAR GRAPHS

The simple scheme described above can be generalized for irregular grids. The objective
of the technique, called level scheduling, is to group the unknowns in subsets so that they
can be determined simultaneously. To explain the idea, consider again Algorithm 11.11 for
solving a unit lower triangular system. The i-th unknown can be determined once all the
other ones that participate in equation ¢ become available. In the i-th step, all unknowns j
that al(i,7) # 0 must be known. To use graph terminology, these unknowns are adjacent
to unknown number 4. Since L is lower triangular, the adjacency graph is a directed acyclic
graph. The edge j — 4 in the graph simply indicates that =; must be known before x; can
be determined. It is possible and quite easy to find a labeling of the nodes that satisfy the
property that if label(j) < label(i), then task j must be executed before task 4. This is
called a topological sorting of the unknowns.

The first step computes z; and any other unknowns for which there are no predecessors



11.6 STANDARD PRECONDITIONING OPERATIONS 347

in the graph, i.e., all those unknowns z; for which the offdiagonal elements of row ¢ are
zero. These unknowns will constitute the elements of the first level. The next step computes
in parallel all those unknowns that will have the nodes of the first level as their (only)
predecessors in the graph. The following steps can be defined similarly: The unknowns
that can be determined at step [ are all those that have as predecessors equations that have
been determined in steps 1,2,...,1 — 1. This leads naturally to the definition of a depth
for each unknown. The depth of a vertex is defined by performing the following loop for
=1,2,...,n, after initializing depth(j) to zero for all 5.

depth(i) = 1 + max{depth(j), forall j such that al(, j) # 0}.
J
By definition, a level of the graph is the set of nodes with the same depth. A data struc-

ture for the levels can be defined: A permutation ¢(1 : n) defines the new ordering and
level(i),i = 1,---,nlev + 1 points to the beginning of the -th level in that array.

Natural ordering Wavefront ordering
u | i N | L]
L I mE I |
C L : m__m ]
] HELE
. Em | -
I I { t e ——— 4 ———}—
H | EHNE I | | I I
n EE EE | |
| |
[ [ ] mm_m !
[ | N EE m
[ | EE EN_N
[ (1 ‘ma'm

Figure 11.11 Lower triangular matrix associated with mesh
of Figure 11.10.

Once these level sets are found, there are two different ways to proceed. The permu-
tation vector ¢ can be used to permute the matrix according to the new order. Inthe 4 x 3
example mentioned in the previous subsection, this means renumbering the variables {1},
{2,5},{3,6,9},..., consecutively, i.e., as {1, 2, 3, ...}. The resulting matrix after the per-
mutation is shown in the right side of Figure 11.11. An alternative is simply to keep the
permutation array and use it to identify unknowns that correspond to a given level in the
solution. Then the algorithm for solving the triangular systems can be written as follows,
assuming that the matrix is stored in the usual row sparse matrix format.

ALGORITHM 11.12: Forward Elimination with Level Scheduling

1. Do lev=1, nlev

2. jl=level(lev)

3. j2=level(lev+1) -1
4.  Dok=j1,j2

5. i=q(k)

6.

Do j= ial(i), ial(i+1) - 1



348 CHAPTER 11  PARALLEL IMPLEMENTATIONS

7. x(i) = x(i) - al(j) * x(jal(j))
8. EndDo
9. EndDo

. 10. EndDo

An important observation here is that the outer loop, which corresponds to a level,
performs an operation of the form

T :=x — Bx

where B is a submatrix consisting only of the rows of level lev, and excluding the diagonal
elements. This operation can in turn be optimized by using a proper data structure for these
submatrices. For example, the JAD data structure can be used. The resulting performance
can be quite good. On the other hand, implementation can be quite involved since two
embedded data structures are required.

Natural ordering Level-Scheduling ordering

e e — — ]

I PN R S U S S

B — —j— — —

Figure 11.12 Lower-triangular matrix associated with a fi-
nite element matrix and its level-ordered version.

Example 11.3 Consider a finite element matrix obtained from the example shown in
Figure 3.1. After an additional level of refinement, done in the same way as was described
in Chapter 3, the resulting matrix, shown in the left part of Figure 11.12, is of size n = 145.
In this case, 8 levels are obtained. If the matrix is reordered by levels, the matrix shown in
the right side of the figure results. The last level consists of only one element.



EXERCISES AND NOTES 349

— e—
EXERCISES

N

1. Give a short answer to each of the following questions:

a. What is the main disadvantage of shared memory computers based on a bus architecture?
b. What is the main factor in yielding the speed-up in pipelined processors?

c. Related to the previous question: What is the main limitation of pipelined processors in
regards to their potential for providing high speed-ups?

2. Show that the number of edges in a binary n-cube is n2" .

3. Show that a binary 4-cube is identical with a torus which is a 4 x 4 mesh with wrap-around
connections. Are there hypercubes of any other dimensions that are equivalent topologically to
toruses?

4. A Gray code of length k£ = 2™ is a sequence ao, . . . , ax—1 Of n-bit binary numbers such that (a)
any two successive numbers in the sequence differ by one and only one bit; (b) all n-bit binary
numbers are represented in the sequence; and (c) ao and ax—1 differ by one bit.

a. Find a Gray code sequence of length & = 8 and show the (closed) path defined by the
sequence of nodes of a 3-cube, whose labels are the elements of the Gray code sequence.
What type of paths does a Gray code define in a hypercube?

b. To build a “binary reflected” Gray code, start with the trivial Gray code sequence consisting
of the two one-bit numbers 0 and 1. To build a two-bit Gray code, take the same sequence
and insert a zero in front of each number, then take the sequence in reverse order and insert a
one in front of each number. This gives G2 = {00, 01,11, 10}. The process is repeated until
an n-bit sequence is generated. Show the binary reflected Gray code sequences of length 2,
4, 8, and 16. Prove (by induction) that this process does indeed produce a valid Gray code
sequence.

c. Let an n-hit Gray code be given and consider the sub-sequence of all elements whose first
bit is constant (e.g., zero). Is this an n — 1 bit Gray code sequence? Generalize this to any of
the n-bit positions. Generalize further to any set of k& < n bit positions.

d. Use the previous question to find a strategy to map a 2! x 2"2 mesh into an (n1 +n2)-cube.

5. Consider a ring of k£ processors which are characterized by the following communication perfor-
mance characteristics. Each processor can communicate with its two neighbors simultaneously,
i.e., it can send or receive a message while sending or receiving another message. The time for
a message of length m to be transmitted between two nearest neighbors is of the form

B+ mr.

a. A message of length m is “broadcast” to all processors by sending it from P; to P> and then
from P, to Ps, etc., until it reaches all destinations, i.e., until it reaches P,. How much time
does it take for the message to complete this process?

b. Now split the message into packets of equal size and pipeline the data transfer. Typically,
each processor will receive packet number ¢ from the previous processor, while sending
packet 4 — 1 it has already received to the next processor. The packets will travel in chain
from P; to P, .. ., to Py. In other words, each processor executes a program that is described
roughly as follows:

Do i=1, Num_packets



350 CHAPTER 11  PARALLEL IMPLEMENTATIONS

Receive Packet number i from Previous Processor
Send Packet number i to Next Processor
EndDo

There are a few additional conditionals. Assume that the number of packets is equal to & — 1.
How much time does it take for all packets to reach all k& processors? How does this compare
with the simple method in (a)?

6. (a) Write a short FORTRAN routine (or C function) which sets up the level number of each
unknown of an upper triangular matrix. The input matrix is in CSR format and the output should
be an array of length n containing the level number of each node. (b) What data structure should
be used to represent levels? Without writing the code, show how to determine this data structure
from the output of your routine. (c) Assuming the data structure of the levels has been deter-
mined, write a short FORTRAN routine (or C function) to solve an upper triangular system
using the data structure resulting in the previous question. Show clearly which loop should be
executed in parallel.

7. Inthe jagged diagonal format described in Section 11.5.5, it is necessary to preprocess the matrix
by sorting its rows by decreasing number of rows. What type of sorting should be used for this
purpose?

8. In the jagged diagonal format described in Section 11.5.5, the matrix had to be preprocessed by
sorting it by rows of decreasing number of elements.

a. What is the main reason it is necessary to reorder the rows?

b. Assume that the same process of extracting one element per row is used. At some point the
extraction process will come to a stop and the remainder of the matrix can be put into a
CSR data structure. Write down a good data structure to store the two pieces of data and a
corresponding algorithm for matrix-by-vector products.

c. This scheme is efficient in many situations but can lead to problems if the first row is very
short. Suggest how to remedy the situation by padding with zero elements, as is done for the
Ellpack format.

9. Many matrices that arise in PDE applications have a structure that consists of a few diagonals
and a small number of nonzero elements scattered irregularly in the matrix. In such cases, it is
advantageous to extract the diagonal part and put the rest in a general sparse (e.g., CSR) format.
Write a pseudo-code to extract the main diagonals and the sparse part. As input parameter, the
number of diagonals desired must be specified.

NOTES AND REFERENCES. Kai Hwang’s book [124] is recommended for an overview of parallel
architectures. More general recommended reading on parallel computing are the book by Bertsekas
and Tsitsiklis [25] and a more recent volume by Kumar et al. [139]. One characteristic of high-
performance architectures is that trends come and go rapidly. A few years ago, it seemed that mas-
sive parallelism was synonymous with distributed memory computing, specifically of the hypercube
type. Currently, many computer vendors are mixing message-passing paradigms with “global address
space,” i.e., shared memory viewpoint. This is illustrated in the recent T3D machine built by CRAY
Research. This machine is configured as a three-dimensional torus and allows all three programming
paradigms discussed in this chapter, namely, data-parallel, shared memory, and message-passing. It
is likely that the T3D will set a certain trend. However, another recent development is the advent of
network supercomputing which is motivated by astounding gains both in workstation performance
and in high-speed networks. It is possible to solve large problems on clusters of workstations and to



EXERCISES AND NOTES 351

obtain excellent performance at a fraction of the cost of a massively parallel computer.

Regarding parallel algorithms, the survey paper of Ortega and Voigt [156] gives an exhaustive
bibliography for research done before 1985 in the general area of solution of Partial Differential
Equations on supercomputers. An updated bibliography by Ortega, Voigt, and Romine is available in
[99]. See also the survey [178] and the monograph [71]. Until the advent of supercomputing in the
mid 1970s, storage schemes for sparse matrices were chosen mostly for convenience as performance
was not an issue, in general. The first paper showing the advantage of diagonal storage schemes in
sparse matrix computations is probably [133]. The first discovery by supercomputer manufacturers of
the specificity of sparse matrix computations was the painful realization that without hardware sup-
port, vector computers could be inefficient. Indeed, the early CRAY machines did not have hardware
instructions for gather and scatter operations but this was soon remedied in the second-generation
machines. For a detailed account of the beneficial impact of hardware for “scatter” and “gather” on
vector machines, see [146].

Level scheduling is a textbook example of topological sorting in graph theory and was discussed
from this viewpoint in, e.g., [8, 190, 228]. For the special case of finite difference matrices on rectan-
gular domains, the idea was suggested by several authors independently, [208, 209, 111, 186, 10]. In
fact, the level scheduling approach described in this chapter is a “greedy” approach and is unlikely
to be optimal. There is no reason why an equation should be solved as soon as it is possible. For
example, it may be preferable to use a backward scheduling [7] which consists of defining the levels
from bottom up in the graph. Thus, the last level consists of the leaves of the graph, the previous level
consists of their predecessors, etc. Dynamic scheduling can also be used as opposed to static schedul-
ing. The main difference is that the level structure is not preset; rather, the order of the computation is
determined at run-time. The advantage over pre-scheduled triangular solutions is that it allows pro-
cessors to always execute a task as soon as its predecessors have been completed, which reduces idle
time. On loosely coupled distributed memory machines, this approach may be the most viable since
it will adjust dynamically to irregularities in the execution and communication times that can cause
a lock-step technique to become inefficient. However, for those shared memory machines in which
hardware synchronization is available and inexpensive, dynamic scheduling would have some dis-
advantages since it requires managing queues and generates explicitly busy waits. Both approaches
have been tested and compared in [22, 189] where it was concluded that on the Encore Multimax
dynamic scheduling is usually preferable except for problems with few synchronization points and a
large degree of parallelism. In [118], a combination of prescheduling and dynamic scheduling was
found to be the best approach on a Sequent balance 21000. There seems to have been no comparison
of these two approaches on distributed memory machines or on shared memory machines with mi-
crotasking or hardware synchronization features. In [22, 24] and [7, 8], a number of experiments are
presented to study the performance of level scheduling within the context of preconditioned Conju-
gate Gradient methods. Experiments on an Alliant FX-8 indicated that a speed-up of around 4 to 5
can be achieved easily. These techniques have also been tested for problems in Computational Fluid
Dynamics [214, 216]. |



