SOLVING THE 3D HIGH-FREQUENCY HELMHOLTZ EQUATION USING CONTOUR INTEGRATION AND POLYNOMIAL PRECONDITIONING

XIAO LIU *, YUANZHE XI †, YOUSEF SAAD ‡, AND MAARTEN V. DE HOOP §

Abstract. We propose an iterative solution method for the 3D high-frequency Helmholtz equation that exploits a contour integral formulation of spectral projectors. In this framework, the solution in certain invariant subspaces is approximated by solving complex-shifted linear systems, resulting in faster GMRES iterations due to the restricted spectrum. The shifted systems are solved by exploiting a polynomial fixed-point iteration, which is a robust scheme even if the magnitude of the shift is small. Numerical tests in 3D indicate that $O(n^{1/3})$ matrix-vector products are needed to solve a high-frequency problem with a matrix size n with high accuracy. The method has a small storage requirement, can be applied to both dense and sparse linear systems, and is highly parallelizable.

Key words. Helmholtz preconditioner, Cauchy integral, shifted Laplacian, polynomial iteration

AMS subject classifications. 15A06, 65F08, 65F10, 65N22, 65Y20

1. Introduction.

1.1. Problem of interest. Helmholtz-type equations are second-order partial differential equations that model time-harmonic waves in materials with linear constitutive relations. For the scalar case, the Helmholtz operator can be written as

(1.1) $-\Delta - \omega^2/c^2(x),$

where ω is the angular frequency, and $c(x)$ is the wavespeed. After one of several types of discretizations is applied, we end up with an $n \times n$ linear system of the following form to solve:

(1.2) $Au = f.$

The main subject of this paper is the fast iterative solution of (1.2). The linear system (1.2) is challenging to solve because the coefficient matrix A is typically highly indefinite and non-Hermitian.

1.2. Existing work. Iterative methods can show fast convergence for non-Hermitian linear systems, when the spectrum of the coefficient matrix lies in some confined region in the complex plane that excludes the origin. Chebyshev iteration [41, 21, 22, 17] is among the first type of modern iterative methods developed for the non-Hermitian case. It is suitable for well-conditioned cases where the spectrum is enclosed in an ellipse some distance away from the origin. Later, alternatives using least-squares polynomials [30], were designed by minimizing some weighted L2 norm of the residual on a polygon that encloses the spectrum. At the same time Krylov subspace methods, such as GMRES [34], were found appealing as they did not require

*Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005 (xiao.liu@rice.edu)
†Department of Mathematics, Emory University, GA 30322 (yxi26@emory.edu)
‡Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 (saad@umn.edu)
§Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005 (mddehoop@rice.edu)
any prior spectral information. These methods converge well if the numerical range is not close to the origin \[10, 5\]. For (modified) Hermitian and skew-Hermitian splitting methods \[2, 3\], the spectrum is assumed to be in one of the four quadrants. However, the performance of these methods in solving (1.2) is usually unacceptably poor due to the unfavorable spectrum of the discretized Helmholtz operators.

In order to obtain iterative schemes that converge fast when solving (1.2), several efficient preconditioners such as optimized Schwarz method \[6, 14, 13\], PML sweeping preconditioners \[11, 38, 44\], and shifted Laplacian preconditioners \[4, 12, 18\] have recently been proposed. These preconditioners are much more expensive to construct than those for solving standard elliptic PDEs. We highlight specifically the idea of shifted Laplacian preconditioners \[12\] which relies on the fact it is easier to solve linear systems with the shifted matrix \(A - zI\), for some complex number \(z\), than with the original matrix \(A\). The idea of complex shifts is generalized in \[43\] based on contour integration formulations that are formerly used in eigenvalue computations \[40, 42\]. The method draws a circular contour in the complex plane to decompose the spectrum of \(A^{-1}\), and the decomposed sub-problems are then solved separately.

The application of shifted Laplacian–type preconditioners \(A - zI\) is usually based on extending standard elliptic solvers to complex matrices. Two popular choices are incomplete LU (ILU) \[29, 27\] and multigrid methods \[24\]. One major issue associated with these preconditioners is that their performance deteriorates dramatically as the angular frequency \(\omega\) increases. This is because on the one hand, a small magnitude of \(z\) is necessary for convergence when solving high-frequency problems \[15\] and on the other hand, a small \(|z|\) will significantly increase the computational burden to approximate \((A - zI)^{-1}\): standard multigrid methods are no longer guaranteed to be effective \[8\], and ILU factors become dense and even unstable. The aim of this paper is to propose an efficient and robust preconditioning technique to overcome these difficulties.

1.3. Outline of the proposed method. In this paper, we solve the 3D Helmholtz problems in a contour integration framework adapted from \[43\], with a new fixed-point iteration for the shifted systems. The fixed-point iteration is based on a polynomial approximation of the matrix exponential, which is suitable for the case when the spectrum is confined in a rectangle with a small separation away from the origin and the standard Chebyshev iteration diverges. Compared with existing methods for solving shifted problems, the new approach is robust and has a fixed storage requirement even if the imaginary part of the shift nears the origin. In the proposed contour integration framework, the fixed-point iteration is used to resolve components of the sub-problem associated with large eigenvalues of \(A\), and GMRES is used to resolve the remainder.

For the Helmholtz equation with the impedance boundary condition, we show for an idealized case that inside some contour the imaginary part of each eigenvalue is well separated from the real axis. Then, \(iA\) may have a positive definite Hermitian part for the problem inside the contour, in which case the Elman estimate \[10\] gives a rather good estimation of the GMRES convergence rate. We give several techniques to improve the effectiveness of the solver and demonstrate the performance of the proposed scheme for challenging high-frequency variable-coefficient problems in 3D. It is well known that spectral methods require fewer grid points per wavelength relative to finite difference and finite element methods \[36\]. Since the proposed method only accesses the matrix through matrix-vector products, it is ideally suited for solving dense linear systems resulted from spectral discretizations.

The remaining sections are organized as follows. In Section 2, we review the
The following notation will be used throughout the remaining sections:

- \(\text{Range}(G) \) and \(\text{Null}(G) \) denote the range and null space, respectively, of a matrix \(G \);
- \(\rho(G) \) represents the spectral radius of a matrix \(G \);
- \(G \succ (\succeq) 0 \) means \(G \) is Hermitian positive (semi-)definite.

2. Review of the contour integration framework.

The inverse of a matrix \(A \) can be approximated by a linear combination of the resolvent \((A - zI)^{-1} \) with several complex shifts [32, 43]. In this section, we provide theoretical justifications of the key ideas in [43] and also suggest some new improvements.

In [43], the authors only consider circular contours. Here, we first generalize their results to arbitrary contours. Let \(\gamma \) be a closed piece-wise smooth Jordan curve in the complex plane \(C \) that encloses the origin and such that no eigenvalue of \(A \) lies on \(\gamma \).

Then the eigenprojector \(P \) associated with the eigenvalues outside \(\gamma \) can be expressed as

\[
P = \frac{1}{2\pi i} \int_{\gamma} (I - zA^{-1})^{-1} \frac{dz}{z},
\]

where the integral is taken counter-clockwise on \(\gamma \). This is because

\[
P = \frac{-1}{2\pi i} \int_{\gamma} \left(\frac{1}{z} - A^{-1} \right)^{-1} \frac{dz}{z} = \frac{1}{2\pi i} \int_{\gamma^{-1}} (z'I - A^{-1})^{-1} dz',
\]

where \(\gamma^{-1} = \{ z^{-1} : z \in \gamma \} \) and the last integral is taken counter-clockwise on \(\gamma^{-1} \). The right-hand side of (2.2) takes the standard form of an eigenprojector of \(A^{-1} \) associated with eigenvalues enclosed by \(\gamma^{-1} \), see for example [32, Theorem 3.3].

Assuming that the \(1/\lambda_i \)'s are those eigenvalues of \(A^{-1} \) enclosed by \(\gamma^{-1} \), we then have

\[
\text{Range}(P) = \bigoplus_i \text{Null} \left(\frac{1}{\lambda_i} I - A^{-1} \right)^{l_i} = \bigoplus_i \text{Null} (\lambda_i I - A)^{l_i},
\]

where \(l_i \) is the index of \(\lambda_i \) [32, Sec. 1.8.2] The above equality implies that \(P \) in (2.1) is equal to the spectral projector of \(A \) associated with eigenvalues outside \(\gamma \).

The method proposed in [43] is based on the Cauchy integral representation of \(PA^{-1} \):

\[
PA^{-1} = \frac{1}{2\pi i} \int_{\gamma} (A - zI)^{-1} \frac{dz}{z}.
\]

Again, the integral is taken counter-clockwise on \(\gamma \). \(PA^{-1} \) ignores the eigenvalues of \(A \) that are inside \(\gamma \), and attempts to solve the restricted problem for eigenvalues outside \(\gamma \).
If a numerical quadrature rule is applied to discretize the right hand side of (2.3), PA^{-1} can be approximated as

$$PA^{-1} \approx \sum_i \frac{\sigma_i}{z_i} (A - z_i I)^{-1},$$

where \{z_i\} are the quadrature nodes along \(\gamma\) and \{\sigma_i\} are the corresponding weights.

For a given right-hand side \(f\), the method proposed in [43] first approximates $PA^{-1}f \approx w := \sum_i \frac{\sigma_i}{z_i} (A - z_i I)^{-1} f$ and then tries to minimize the residual of the solution in the range of $I - P$ with an iterative method

$$\min_v \|Av - (f - Aw)\|_2.$$

Afterwards, \(v + w\) serves as an approximate solution. The problem (2.5) is easier to solve than the original problem because the spectrum is restricted inside \(\gamma\). This framework has some flexibilities regarding the selection of contours and quadrature points and is summarized in Algorithm 2.1. Since the linear system is not solved to high accuracy in a single run of FCI, it is necessary to use flexible preconditioned GMRES [33] or iterative refinement to improve the accuracy.

Algorithm 2.1 Fast contour integration approximation of $A^{-1}f$

1: **procedure** FCI \((f \in \mathbb{C}^n, A \in \mathbb{C}^{n \times n}, \{z_i \in \gamma\}, \{\sigma_i \in \mathbb{C}\})\)

 \(\triangleright z_i, \sigma_i\) are quadrature points and weights on a contour \(\gamma\)

2: Solve \((A - z_i I)y_i = f\) for each quadrature point \(z_i\)

3: Approximate $PA^{-1}f$ with a quadrature

 $$w = \sum_i \frac{\sigma_i}{z_i} y_i$$

4: Compute the step size \(d\) as follows to compensate quadrature error

 $$d = \arg\min_{d \in \mathbb{C}} \|f - dAw\|_2$$

5: Solve \(v = \arg\min_v \|Av - (f - dAw)\|_2\) with a few steps of GMRES

6: **return** the approximate solution \(v + dw\)

7: **end procedure**

In the following sections, we will discuss how to maximize the efficiency of Algorithm 2.1 to solve (1.2) by exploiting the spectral properties of the discretized Helmholtz operators.

3. Eigenvalue distribution of the discretized Helmholtz operators. In order to apply the FCI preconditioner (Algorithm 2.1) to solve the linear system (1.2), the spectrum information of the coefficient matrix is crucial for the selection of the contour as well as the resulting preconditioning effect. In this section, we will systematically study the eigenvalue distribution of the discretized Helmholtz operators as well as some of its variants. More specifically, we will investigate the spectrum of two types of matrices 1) the coefficient matrix A in (1.2) and 2) a related double-size matrix.

Case One: For this simplest case, Algorithm 2.1 is applied to solve (1.2) directly. The skew-Hermitian part of the coefficient matrix A comes from absorbing boundary
conditions or various types of damping. Here we assume the skew-Hermitian part of
A is $-i$ multiplied by a positive semi-definite matrix. That is,

$$A = A_1 - iA_2,$$

where both A_1 and A_2 are Hermitian, and A_2 is positive semi-definite. This assumption has previously appeared in [18, Equation (12)], and also in [15, Equation (1.7)]. Under this assumption, it is easy to characterize the spectrum of A as follows.

Lemma 3.1. If the Hermitian matrices A_1, A_2 satisfy $A_1 + I \succeq 0$ and $A_2 \succeq 0$, then the spectrum of $A = A_1 - iA_2$ is contained in the closed rectangle

$$\{ \lambda \in \mathbb{C} : \Re(\lambda) \in [-1, \rho_1 - 1], \quad \Im(\lambda) \in [-\rho_2, 0] \},$$

where $\rho_1 = \rho(A_1 + I)$ and $\rho_2 = \rho(A_2)$.

Proof. Let v be a unit right eigenvector of A. Then the corresponding eigenvalue λ satisfies

$$\lambda = v^H A v = v^H A_1 v - i v^H A_2 v.$$

This implies that

$$\Re(\lambda) = v^H A_1 v \in [-1, \rho_1 - 1], \quad \Im(\lambda) = -v^H A_2 v \in [-\rho_2, 0].$$

Remark 3.1. One can always normalize a matrix to make the assumption $A_1 + I \succeq 0$ hold. In Lemma 3.1, ρ_1 and ρ_2 represent the horizontal and vertical stretch of the spectrum, respectively, and ρ_1/ρ_2 measures the aspect ratio of this rectangle.

Case Two: We now consider a double-size linear system:

(3.1) $$(iC - I) \begin{pmatrix} iu \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ f \end{pmatrix}, \quad C = \begin{pmatrix} A_1 + I & I \\ -(A_1 + I) & -A_2 \end{pmatrix}.$$

One can check that u in (3.1) is exactly the solution of (1.2). We can apply Algorithm 2.1 to solve the system (3.1) instead. Although the size of the coefficient matrix $iC - I$ in (3.1) is twice as large as that of (1.2), it could be less costly to solve (3.1) than (1.2). This is because the spectrum of $iC - I$ can be more compact than that of A under some discretization schemes, which is analyzed in the following theorem.

Theorem 3.2. Following the same assumption as in Lemma 3.1, the spectrum of the matrix C defined in (3.1) is contained in

$$\{ \mu \in \mathbb{C} : |\mu| \leq \frac{\rho_2}{2} + \sqrt{(\frac{\rho_2}{2})^2 + \rho_1}, \quad \Re(\mu) \in [-\rho_2, 0] \},$$

where ρ_1 and ρ_2 are defined in Lemma 3.1. Furthermore, if $\rho_2 = 0$, then the set of eigenvalues of C is

$$\{ \pm i \sqrt{\lambda_i} : \lambda_i \text{ is an eigenvalue of } A_1 + I \}.$$

Proof. If μ is a non-zero eigenvalue of C, then the Schur complement S of $\mu I - C$

$$S = \mu I + A_2 + \mu^{-1}(A_1 + I)$$

has to be singular.

Denote μS by E. For a non-zero vector v in the null space of E, we have

$$0 = \left| v^H E v \right| \geq |\mu|^2 - |\mu| |\rho_2 - \rho_1|.$$

Thus, $|\mu| \leq \frac{\rho_2}{2} + \sqrt{\left(\frac{\rho_2}{2}\right)^2 + \rho_1}$.

If μ is real, then for any vector w, we have

$$\left| w^H E w \right| \geq |\mu|^2 - |\mu| |\rho_2|.$$

This implies that $\mu \in [-\rho_2, 0]$. Because otherwise $E \succ 0$ is a contradiction. If μ has a non-zero imaginary part, then the Hermitian part of $E/(\text{Im}(\mu)i)$ is

$$\text{Im}(\mu^2) I + A_2 = 2 \text{Re}(\mu) I + A_2,$$

which is positive definite for $\text{Re}(\mu) > 0$ and is negative definite for $\text{Re}(\mu) < -\rho_2/2$. Therefore, $\text{Re}(\mu) \in [-\rho_2, 0]$.

Finally, we consider the special case when $\rho_2 = 0$. Let $V^{-1} A V$ be the diagonalization of $A_1 + I$. If $\rho_2 = 0$, then $A_2 = 0$ and we have

$$\begin{pmatrix} V & V \\ V^{-1} & V^{-1} \end{pmatrix} C \begin{pmatrix} V^{-1} & V^{-1} \\ -\Lambda & I \end{pmatrix} = \begin{pmatrix} -\Lambda & I \\ \mu I & \mu I \end{pmatrix}.$$

For the characteristic polynomial, we have

$$\text{det}(\mu I - C) = \text{det}(\begin{pmatrix} \mu I & -I \\ \Lambda & \mu I \end{pmatrix}) = \prod_i (\mu^2 + \lambda_i).$$

This shows $\{\pm \sqrt{\lambda_i}\}$ are the eigenvalues of C when $\rho_2 = 0$.

Remark 3.2. Using the notation and result of Theorem 3.2, the spectrum of $iC - I$ is contained in

$$\left\{ \mu \in \mathbb{C} : |\mu + 1| \leq \frac{\rho_2}{2} + \sqrt{\left(\frac{\rho_2}{2}\right)^2 + \rho_1}, \quad -\rho_2 \leq \text{Im}(\mu) \leq 0 \right\}.$$

We can compare $iC - I$ with the matrix A in terms of the spreading of spectrum. The spectrum of $iC - I$ is contained in a $\rho_2 + \sqrt{\rho_2^2 + 4 \rho_1}$ by ρ_2 rectangle; but the spectrum of A is contained in a ρ_1 by ρ_2 rectangle. A can have a more elongated spectrum when ρ_1/ρ_2 is large. Therefore, although $iC - I$ is double in size, it may be more suitable for iterative solvers because the spectrum is less spread out. See Figure 3.1 for a 2D example.

4. Polynomial preconditioners for solving shifted problems. The application of Algorithm 2.1 to solve discretized Helmholtz equations involves several linear system solutions with shifted problems:

$$\begin{align*}
(4.1) \quad (A - z I)y &= f.
\end{align*}$$
Fig. 3.1. Comparison of the spectrum between Case one (1.2) and Case two (3.1). The test matrix is based on finite difference method on a 100^2 grid, with absorbing layers near the boundary. The eigenvalues are computed by eig in MATLAB. The rectangles are the results of Lemma 3.1 and Theorem 3.2, where \(\rho_1 \approx 17.2, \rho_2 \approx 1.3 \).

If \(|\text{Im}(z)| \) is large enough, then according to the previous section \(i(A - z I) \) has a sign definite Hermitian part, and many existing elliptic solvers or preconditioners can be used. However, they become expensive to compute or to store as \(|\text{Im}(z)| \) reduces. In this section, we will propose several efficient polynomial preconditioning techniques to solve (4.1) even when \(|\text{Im}(z)| \) is relatively small.

We can write the general form of a polynomial fixed-point iteration of (4.1) as

\[
y^{(m+1)} = y^{(m)} + p(A - z I)r^{(m)},
\]

where \(p \) is a polynomial, and \(r^{(m)} = f - (A - z I)y^{(m)} \) is the residual at the \(m \)th step. If all the roots of the polynomial \(p \) are known explicitly, then (4.2) can be rewritten as a cyclic Richardson iteration. Motivated from Lemma 3.1 in Section 3, we assume in this section that the spectrum of \(A \) is contained in a closed rectangle \(B \). For fixed \(z \), we define

\[
R(\lambda) = 1 - (\lambda - z)p(\lambda - z).
\]

\(R \) is usually called the residual polynomial. A desirable polynomial \(p \) should solve the following minimax problem in some special set of polynomials denoted by \(P \):

\[
\min_{p \in P} \max_{\lambda \in B} |R(\lambda)| = \min_{p \in P} \max_{\lambda \in \partial B} |R(\lambda)|.
\]

4.1. Stationary Richardson iteration. The scheme (4.2) is a stationary Richardson iteration if \(p \) is a complex constant. The minimax problem (4.4) is essentially solved by the method in [26]. Here, we present a slight generalization to the case of rectangular spectrum. The following theorem shows how to choose the complex constant for optimal convergence rate.

Theorem 4.1. Let \(B \subset \mathbb{C} \) be the rectangle with vertices \(\{b_1, b_2, \beta_1, \beta_2\} \) such that

\[
\text{Im}(b_j) = 0, \quad \text{Im}(\beta_j) < 0, \quad j \in \{1, 2\}.
\]

Assume that \(p \in \mathbb{C} \), the minimax value of \(R(\lambda) \) in (4.3)–(4.4) is taken on the vertices

\[
\min_{p \in \mathbb{C}} \max_{\lambda \in B} |R(\lambda)| = \max_{p \in \mathbb{C}} \min_{\lambda \in \{b_1, b_2, \beta_1, \beta_2\}} |R(\lambda)|.
\]

Furthermore, if \(\text{Im}(z) \notin [\text{Im}(\beta_1), 0] \) and \(z \) is enclosed by the circumcircle of \(B \), then the minimax value of \(R(\lambda) \) equals \(|\alpha_1 - \alpha_2| / (|\alpha_1| + |\alpha_2|) \) at

\[
p^* = \frac{|\alpha_1|/|\alpha_1 + \alpha_2|}{|\alpha_1|/|\alpha_1 + \alpha_2|},
\]

where

\[
\alpha := (\alpha_1, \alpha_2) = \begin{cases} (b_1 - z, b_2 - z) & \text{if } \text{Im}(z) > 0, \\ (\beta_1 - z, \beta_2 - z) & \text{otherwise}. \end{cases}
\]
Therefore, is close to circumcircle of \(p \) and the optimal value of \(z \) imaginary shift \(R(4.5) \) polynomial from the approximation of the exponential function. The absolute value of \(R(\lambda) \) is related to the distance from \(o \)

\[
|R(\lambda)| = |1 - (\lambda - z)p| = \left| 1 - \frac{\lambda - z}{o - z} \right| = \left| \frac{\lambda - o}{z - o} \right|.
\]

For fixed \(z \) and \(o \), \(|R(\lambda)| \) is convex, so the maximum value on each line segment is taken on a vertex. \(\partial B \) has four sides, and the maximum value is taken on one of the four vertices.

For the remaining part of the theorem, it suffices to prove for the case \(\text{Im}(z) > 0 \) because the other case follows from symmetry. The minimax problem restricted to a line segment is solved in [26, Example 5.1], which suggests

\[
\min_{p \in C} \max_{\lambda \in [b_1, b_2]} |1 - (\lambda - z)p| = \frac{|\alpha_1 - \alpha_2|}{|\alpha_1| + |\alpha_2|} < 1,
\]

and the optimal value of \(p \) is \(p^* \). For circles containing \(b_1, b_2 \), the one centered at \(o^* = 1/p^* + z \) does not contain \(z \) because \(|b_1 - o^*| = |b_2 - o^*| < |z - o^*| \), but the circumcircle of \(B \) contains \(z \). So, \(o^* \) is closer to \(\beta_1, \beta_2 \) than to \(b_1, b_2 \). That is,

\[
|\beta_1 - o^*| = |\beta_2 - o^*| < |b_1 - o^*| = |b_2 - o^*|.
\]

Therefore,

\[
\frac{|b_1 - o^*|}{|z - o^*|} = \min_{p \in C} \max_{\lambda \in \{b_1, b_2, \beta_1, \beta_2\}} |R(\lambda)| = \min_{p \in C} \max_{\lambda \in B} |R(\lambda)|.
\]

\(p^* \) solves the minimax problem (4.4) for \(B \).

Remark 4.1. If \(b_1 b_2 < 0 \), which means the matrix \(A \) in (4.1) is indefinite, for an imaginary shift \(z \) (or \(|\text{Re}(z)| \) is much smaller than \(|b_1| \) or \(|b_2| \)), the convergence rate is close to

\[
\frac{|\alpha_1 - \alpha_2|}{|\alpha_1| + |\alpha_2|} = \frac{|b_1| + |b_2|}{\sqrt{b_1^2 + \text{Im}^2(z)} + \sqrt{b_2^2 + \text{Im}^2(z)}}.
\]

Using the Taylor expansion of \(\sqrt{1 + x^2} \), one can check that an \(O(|\text{Im}(z)|^{-2}) \) number of iterations is needed to reach certain relative accuracy. This result can be improved by considering high-order polynomials.

4.2. High-order polynomials. High-order polynomials \(p(\lambda - z) \) have the capability to improve the convergence rate. For well-conditioned problems, existing work such as Chebyshev iterations [41, 21, 22, 17] and Leja points [28] can select the roots of the polynomial near the spectrum for asymptotic optimal convergence. Since the shifted system (4.1) may not be sufficiently well conditioned, we will design such a polynomial from the approximation of the exponential function.

For given \(z \), the residual polynomial \(R(\lambda) \) defined in (4.3) can be reformulated as

\[
R(\lambda) = \frac{\tilde{p}(\lambda)}{\tilde{p}(z)},
\]

\(4.5 \)
for some polynomial \(\tilde{p} \) because this form also takes the value of 1 at \(\lambda = z \). The ideal polynomial should yield small value of \(|R(\lambda)|\) at every eigenvalue \(\lambda \).

The choice of \(\tilde{p} \) is motivated from the exponential function. If \(\text{Im}(\lambda - z) \) has a fixed sign for \(\lambda \in B \), then with a suitable choice of \(\delta \in \mathbb{R} \), the following quantity can be arbitrarily small

\[
|e^{-i\delta \lambda} - e^{-i\delta z}| = e^{\delta \text{Im}(\lambda - z)}.
\]

The simplest choice of \(\tilde{p} \) is based on the Taylor expansion of the exponential function

(4.6) \(\tilde{p}^{(q)}(\lambda) = \sum_{j=0}^{q} \frac{(-i\delta(\lambda - z_0))^j}{j!} \),

where \(z_0 \) is the center of the Taylor expansion. Then the polynomial \(p \) of degree \(q - 1 \) in (4.2) has the form

\[
p(\lambda - z) = \left(1 - \frac{\tilde{p}^{(q)}(\lambda)}{\tilde{p}^{(q)}(z)} \right) / (\lambda - z).
\]

Since it is complicated to expand the above expression in the power basis, we propose an alternative iteration scheme as follows:

(4.7) \[
k_1 = -i\delta (A - z_0 I) y^{(m)} - f, \]

\[
k_j = -i\delta \frac{j}{j!} \left((A - z_0 I) k_{j-1} - \frac{(-i\delta(z - z_0))^{j-1}}{(j-1)!} f \right), \quad j \in \{2, 3, \ldots, q\},
\]

\[
y^{(m+1)} = y^{(m)} + \sum_{j=1}^{q} k_j \frac{\tilde{p}^{(q)}(z)}{\tilde{p}^{(q)}(z)} y.
\]

In the following theorem, we show that the above scheme is equivalent to a fixed point iteration.

Theorem 4.2. The solution of (4.1) is a fixed point of (4.7). The error at the \(m \)th step satisfies

\[
y^{(m)} - y = \left(\frac{\tilde{p}^{(q)}(A)}{\tilde{p}^{(q)}(z)} \right)^m \left(y^{(0)} - y \right).
\]

Proof. If \(y^{(m)} = y \) is the solution of (4.1), then \(k_1 = -i\delta(z - z_0)y \). If \(k_{j-1} = \frac{(-i\delta(z - z_0))^{j-1}}{(j-1)!} y \), then

\[
k_j = -i\delta \frac{j}{j!} \left((A - z_0 I) k_{j-1} - \frac{(-i\delta(z - z_0))^{j-1}}{(j-1)!} f \right)
\]

\[
= \frac{(-i\delta(z - z_0))^{j-1}}{(j-1)!} \frac{-i\delta}{j} \left((A - z_0 I) y - g \right)
\]

\[
= \frac{(-i\delta(z - z_0))^{j}}{j!} y.
\]

For the next iterate,

\[
y^{(m+1)} = \sum_{j=0}^{q} \frac{(-i\delta(z - z_0))^{j}}{j!} / \tilde{p}^{(q)}(z) y = y.
\]
Therefore, \(y \) is a fixed point of (4.1).

If \(y^{(m)} \neq y \), then from a similar induction argument we have

\[
k_j - \frac{(-i\delta(z - z_0))^j}{j!} y = \frac{(-i\delta(A - z_0 I))^j}{j!} \left(y^{(m)} - y \right), \quad 1 \leq j \leq q.
\]

Therefore,

\[
y^{(m+1)} - y = \frac{\tilde{p}^{(q)}(A)}{\tilde{p}^{(q)}(z)} \left(y^{(m)} - y \right).
\]

The optimal parameters \(z_0 \) and \(\delta \) in the scheme (4.7) can be computed by solving an optimization problem for each fixed polynomial degree \(q \). Here we propose a heuristic to simplify this procedure. We choose \(z_0 \) to guarantee robustness and \(\delta \) for fast convergence. By robustness we mean for sufficiently small \(|\delta| \), the spectral radius \(\rho(\tilde{p}^{(q)}(A)/\tilde{p}^{(q)}(z)) \) is less than 1. This is done by considering the following equation:

\[
\left| \frac{\tilde{p}^{(q)}(\lambda)}{\tilde{p}^{(q)}(z)} \right|^2 = \left| \frac{1 - i\delta(\lambda - z_0)}{1 - i\delta(z - z_0)} \right|^2 + o(|\delta|) = \frac{1 + 2\delta \text{Im}(\lambda - z_0)}{1 + 2\delta \text{Im}(z - z_0)} + o(|\delta|).
\]

If we fix \(\text{Im}(z_0) = \text{Im}(z) \) and assume \(\text{Im}(\lambda - z_0) \) has a fixed sign, then we can always find some \(\delta \) with a small absolute value such that \(\delta \text{Im}(\lambda - z_0) < 0 \), which controls the spectral radius. Since \(z_0 = (b_1 + b_2)/2 + i\text{Im}(z) \) is the optimal choice for \(q = 1 \), we will always follow this choice for high order polynomials. After that, \(\delta \) is determined by numerically minimizing the convergence rate

\[
\nu = \min_{\delta \in \mathbb{R}} \max_{\lambda \in \partial B} \left| \frac{\tilde{p}(\lambda)}{\tilde{p}(z)} \right|.
\]

This is a 2D optimization problem which is easy to solve. Table 4.1 compares the convergence rate \(\nu \) for different order \(q \). We prefer choosing \(q \) with a minimum \(\nu^{1/q} \) value since this quantity gives the fastest converging method for a given number of matrix-vector products.

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\delta^*)</th>
<th>(\nu)</th>
<th>(\nu^{1/q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.250</td>
<td>0.866</td>
<td>0.866</td>
</tr>
<tr>
<td>2</td>
<td>0.688</td>
<td>0.537</td>
<td>0.733</td>
</tr>
<tr>
<td>3</td>
<td>0.750</td>
<td>0.530</td>
<td>0.810</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>0.547</td>
<td>0.860</td>
</tr>
<tr>
<td>5</td>
<td>0.938</td>
<td>0.416</td>
<td>0.839</td>
</tr>
</tbody>
</table>

We are also concerned with how the cost increases as \(|\text{Im}(z)| \) reduces in (4.1). Table 4.2 gives the estimated number of matrix-vector products for reducing the residual by \(10^2 \). The cost of the stationary Richardson iteration \((q = 1) \) quadruples as the imaginary shift reduces by \(1/2 \). For high-order methods such as \(q = 3 \), the results are much better. The cost roughly doubles when the imaginary shift reduces by \(1/2 \). As the imaginary shift decreases, one might want to increase \(q \) slightly to approach a desirable performance.
5. Solving the inner problem. After the discussion of the outer problem, the
next topic is the convergence of GMRES iterations for the inner problem in Algorithm
2.1. We analyze the problem by studying the distribution of eigenvalues with small
magnitude for the Helmholtz equation.

5.1. Characterization of small eigenvalues. It is important to study near-
zero eigenvalues because they govern the conditioning of the problem. A stability
estimate is proved in [25, 9, 15] for the constant-coefficient Helmholtz equation in
a star-shaped domain Ω with the impedance boundary condition. The part of the
statement we want to highlight is that

$$\omega \|u\|_{L^2(\Omega)} \leq \alpha \|f\|_{L^2(\Omega)},$$

where u is the solution of the right-hand side f, α is a constant independent from
the angular frequency ω. This result implies that all the eigenvalues of A are at least
$O(\omega)$ distance away from the origin.

For the constant-coefficient case in a hypercube, we can further describe the
distribution of eigenvalues with the impedance boundary condition. In fact, we can
show that the imaginary part is at least $O(\omega)$ for eigenvalues with magnitude smaller
than ω^2. Let the wavespeed be normalized as one in the d-dimensional unit hypercube
$[0, 1]^d$. Consider the eigenvalue problem in multiple dimensions ($d \geq 2$), and an
eigenpair (λ, v) satisfies

$$\begin{cases}
-\Delta v - \omega^2 v = \lambda v & \text{in } [0, 1]^d, \\
\partial_n v - i \omega v = 0 & \text{on } \partial [0, 1]^d,
\end{cases}$$

where ∂_n means taking the directional derivative along the outward unit normal.

Theorem 5.1. For any fixed $\rho \in (0, 1)$, there exists a positive constant s such
that every eigenvalue λ of (5.1) with $|\lambda| \leq \rho \omega^2$ satisfies $|\text{Im}(\lambda)| \geq s \omega$ for sufficiently
large ω.

The theorem gives a more detailed characterization of small eigenvalues. Figure
5.1 illustrates how this compares with existing stability results. The proof is based
on a separation of variables in following form:

$$v(x) = \prod_{j=1}^d \varphi_j(x_j), \quad \varphi''_j(x_j) + \xi_j^2 \varphi_j(x_j) = 0,$$

where $\xi_j \in \mathbb{C}$ and $\text{Re}(\xi_j) \geq 0$. An eigenvalue can be written as $\lambda = \xi \cdot \xi - \omega^2$, where
$\xi = (\xi_1 \ \xi_2 \ \cdots \ \xi_d)$. The general solution of (5.2) is $\varphi_j(x_j) = a_j^+ e^{i \xi_j x_j} + a_j^- e^{-i \xi_j x_j}$.

Table 4.2

<table>
<thead>
<tr>
<th>q</th>
<th>$z = i$</th>
<th>$z = i/2$</th>
<th>$z = i/4$</th>
<th>$z = i/8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>110</td>
<td>420</td>
<td>1656</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>38</td>
<td>110</td>
<td>304</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>30</td>
<td>60</td>
<td>135</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>44</td>
<td>72</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

Estimated number of matrix-vector products for reducing the residual by 10^2. The spectrum of
A is the same as Table 4.1.
The boundary condition in (5.1) suggests
\[-\varphi'_j(0) = i\omega \varphi_j(0), \quad \varphi'_j(1) = i\omega \varphi_j(1). \] (5.3)
Substituting the general solution into (5.3), we have
\[a_j^+ (\omega + \xi_j) = -a_j^- (\omega - \xi_j), \] (5.4)
\[a_j^+ (\omega - \xi_j)e^{i\xi_j} = -a_j^- (\omega + \xi_j)e^{-i\xi_j}. \] (5.5)
Eliminating \(a_j^\pm \), we have that every \(\xi_j \) solves the same equation of \(z \)
\[\frac{\omega - z}{\omega + z} = \pm e^{-iz}. \] (5.6)
There is no root in the first quadrant \(\{ z : \text{Re}(z) \geq 0, \text{Im}(z) > 0 \} \) because
\[\left| \frac{\omega - z}{\omega + z} \right| \leq 1, \quad |e^{-iz}| > 1. \]
So we are only interested in the fourth quadrant \(\{ z : \text{Re}(z) \geq 0, \text{Im}(z) \leq 0 \} \). The following lemma will be used in the proof of Theorem 5.1.

Lemma 5.2. Given a sequence of angular frequencies \(\{ \omega_m \} \) that goes to infinity, and for a sequence of complex numbers in the fourth quadrant \(\{ z_m = a_m - ib_m : a_m, b_m \geq 0 \} \), if there exists \(c_1, c_2 > 0 \) such that \(b_m \geq c_1 \omega_m, b_m \geq c_2 a_m \), then \(z_m \) does not solve (5.6) for sufficiently large \(m \).

Proof. The lemma can be easily proved by taking the absolute value on both sides of (5.6). For the left-hand side of (5.6), we have
\[\frac{\omega_m - a_m + ib_m}{\omega_m + a_m - ib_m} \geq \frac{b_m}{\omega_m + a_m - ib_m} \geq \frac{1}{\sqrt{(1/c_1 + 1/c_2)^2 + 1}}. \]
The right-hand side of (5.6) satisfies
\[\lim_{m \to \infty} |\exp(-b_m - ia_m)| = \lim_{m \to \infty} \exp(-b_m) = 0. \]
So the equality does not hold for sufficiently large \(m \).
Proof of Theorem 5.1. If the statement is false, then there exists a \(\rho > 0 \), a sequence of angular frequencies \(\{\omega_m\} \) that goes to infinity, and a sequence of complex phase vectors \(\{\xi^{(m)} \in \mathbb{C}^d\} \) satisfying (5.2) and (5.3), but for \(\lambda_m = \xi^{(m)} \cdot \xi^{(m)} - \omega_m^2 \), we have that

\[
|\lambda_m| \leq \rho \omega_m^2, \quad \lim_{m \to \infty} \frac{\text{Im}(\lambda_m)}{\omega_m} = 0.
\]

We can assume that there exists a sequence of indices \(\{j_m \in \{1, 2, \ldots, d\}\} \) such that

\[
|\xi^{(m)}_{j_m}| \geq \omega_m \sqrt{1 - \rho \frac{d}{\omega_m^2}},
\]

because otherwise \(|\xi^{(m)}|^2 < \omega_m^2 (1 - \rho) \), and we have

\[
|\lambda_m| \geq \omega_m^2 - |\xi^{(m)}|^2 > \rho \omega_m^2,
\]

which contradicts with (5.7).

Let \(\xi^{(m)}_{j_m} = a_m - ib_m \). Because of (5.6)–(5.8), \(a_m, b_m \geq 0 \) satisfy

\[
a_m^2 + b_m^2 \geq \frac{1}{d} \left(1 - \rho \right) \omega_m^2,
\]

(5.9)

\[
\lim_{m \to \infty} \frac{a_mb_m}{\omega_m} = 0,
\]

(5.10)

\[
\frac{\omega_m - a_m + ib_m}{\omega_m + a_m - ib_m} = \pm \exp(-b_m - ia_m).
\]

(5.11)

From (5.9) and (5.10), we get

\[
\frac{\omega_m a_mb_m}{a_m^2 + b_m^2} = a_m \frac{b_m}{a_m} \frac{\omega_m}{\omega_m} \to 0.
\]

Then we can find subsequences (still denoted by \(\{a_m\}, \{b_m\} \)) such that either \(\omega_m a_m/b_m \) or \(\omega_m b_m/a_m \) goes to zero.

If \(\omega_m a_m/b_m \to 0 \), then \(a_m/b_m \to 0 \) for large \(\omega_m \). From (5.9), we also have

\[
\frac{\omega_m}{b_m} \leq \sqrt{\frac{d}{1 - \rho} \left(1 + \frac{a_m^2}{b_m^2}\right)}.
\]

(5.12)

\[
\{a_m - ib_m\} \text{ satisfies the assumptions in Lemma 5.2. Hence they are not roots of (5.6) for large } m, \text{ contradiction.}
\]

If \(\omega_m b_m/a_m \to 0 \), then from (5.10)

\[
b_m^2 = \frac{\omega_m a_mb_m}{a_m} \frac{\omega_m}{\omega_m} \to 0.
\]

From (5.9), we have

\[
\frac{a_m^2}{\omega_m^2} \geq \frac{1}{d} \left(1 - \rho \right) \frac{b_m^2}{\omega_m^2}.
\]

(5.13)

So \(a_m/\omega_m \) is bounded above zero. From (5.11),

\[
1 = \exp(-\lim_{m \to \infty} b_m) = \lim_{m \to \infty} \frac{|1 - a_m/\omega_m|}{1 + a_m/\omega_m}.
\]
So \(a_m/\omega_m \to \infty \). For the complex phase vectors \(\{\xi^{(m)}\} \),
\[
\lambda_m = (a_m^2 - b_m^2 - \omega_m^2) - 2a_mb_m + \sum_{l \neq j_m} \xi_l^{(m)} \xi_l^{(m)}.
\]
For large \(m \), we have \(a_m^2 - b_m^2 - \omega_m^2 > 2\rho \omega_m^2 \). We can find another sequence \(\{\xi_{l_m}^{(m)} : l_m \neq j_m\} \) such that
\[
\text{Re}(\xi_{l_m}^{(m)} \xi_{l_m}^{(m)}) < -\frac{\rho}{d-1}\omega_m^2.
\]
Because otherwise
\[
\text{Re}(\lambda_m) > 2\rho \omega_m^2 + \sum_{l \neq j_m} \text{Re}(\xi_l^{(m)} \xi_l^{(m)}) \geq 2\rho \omega_m^2 - (d-1)\frac{\rho}{d-1}\omega_m^2 = \rho \omega_m^2,
\]
which contradicts with (5.7). Let \(\xi_m^{(m)} = \bar{a}_m - i\bar{b}_m \) with non-negative \(\bar{a}_m \) and \(\bar{b}_m \). We have
\[
\bar{a}_m^2 - \bar{b}_m^2 < -\frac{\rho}{d-1}\omega_m^2.
\]
So \(\bar{b}_m > \bar{a}_m \) and \(\bar{b}_m > \sqrt{\rho/(d-1)}\omega_m \). Because of Lemma 5.2, this sequence does not solve (5.6) for large \(m \), which is a contradiction.

5.2. GMRES convergence. Theorem 5.1 depicts the fine structure of spectrum of discretized Helmholtz operators near the origin. For simplicity and clarity, we assume for now that the contour integration (2.3) gives the exact solution of the outer problem, and focus on the convergence of GMRES for solving the inner problem.

For the linear system \(Au = f \), recall that \(P \) is the eigenprojector defined in (2.1). After solving the outer problem, we obtain the solution \(PA^{-1}f \) and the residual \(f - APA^{-1}f = (I - P)f \).

Since the solution of the inner problem is in the range of \(I - P \), we have the following equation
\[
A(I - P)u = (I - P)f.
\]

Theorem 5.3. Assume that \(A(I - P) \) is normal, and that there exists positive constants \(\rho, s \) such that \(|\lambda| \leq \rho \omega^2 \) and \(\text{Im}(\lambda) \leq -s \omega \) for all non-zero eigenvalues \(\lambda \) of \(A(I - P) \), then for solving (5.12), the \(k \)-th GMRES residual \(r_k \) satisfies
\[
\|r_k\|_2 \leq \mu^k\|r_0\|_2, \quad \mu^2 \leq 1 - \frac{s^2}{\rho^2\omega^2}.
\]

Proof. Since \(A(I - P) \) is normal, \(A(I - P) \) can be unitarily diagonalizable. That is, there exists a matrix \(V \) with orthonormal columns such that
\[
A(I - P) = V \Lambda V^H,
\]
where \(\Lambda \) is a diagonal matrix containing non-zero eigenvalues. Then,
\[
I - P = V V^H,
\]
and (5.12) is equivalent with
\[
\Lambda(V^H u) = V^H f.
\]
It is easy to see that the smallest eigenvalue of the Hermitian part of \(i \Lambda \) is greater than or equal to \(s \omega \) and \(\|i \Lambda\|_2 \leq \rho \omega^2 \). Then the final result follows directly from the Elman estimate [10] for the matrix \(\Lambda \).
6. Techniques for improved performance. In this section, we will discuss several special techniques to improve the speed and robustness of Algorithm 2.1.

6.1. Quadrature on an ellipse. The contour γ is usually selected as a circle in existing methods. By shrinking, say, the real axis, the circle is transformed into an ellipse in the form of

$$\{ tr \cos \theta + ir \sin \theta : t, r > 0, \ \theta \in [0, 2\pi] \}. \quad (6.1)$$

For fixed r, the advantage of using a small ratio t is that there are fewer eigenvalues enclosed by the contour. Hence the contour integration (2.3) is closer to the true inverse. The disadvantage is that the shape of γ becomes irregular, so the number of quadrature points may need to increase.

One way to derive quadrature rules on an ellipse is by mapping it to the unit circle parametrized by the angle θ. Note that

$$\frac{1}{2\pi i} dz = \frac{1}{2\pi i} d(tr \cos \theta + ir \sin \theta) = (r \cos \theta + itr \sin \theta) \frac{d\theta}{2\pi}. \quad (6.2)$$

For an equispaced set of angles $\{\theta_j\}$, the quadrature weights can be chosen as

$$\sigma_j = (r \cos \theta_j + itr \sin \theta_j) / J,$$

where J is the number of quadrature points.

6.2. Shifting the center. In order to avoid an ill-conditioned shifted system, we shift the center of the ellipse according to the spectrum and choose a small number of points such as 6 so that the quadrature points are not close to any eigenvalue. This makes the contour integration method robust.

Each quadrature point z_j satisfies

$$z_j = tr(\cos(2j - 1)\phi - \cos \phi) + i(r \sin(2j - 1)\phi - \rho_2/2), \quad j \in [1, \ldots, J], \quad (6.3)$$

where $\phi = \pi / J$ and ρ_2 is the spectral radius of the skew-Hermitian part of A. The center of the contour is $-tr \cos \phi - i\rho_2/2$. For the real part,

$$\text{Re}(z_j) = tr(\cos(2j - 1)\phi - \cos \phi) \leq 0,$$

so that the shifted matrices cannot be more indefinite than the original one. We choose

$$r = (\rho_2/2 + \epsilon) / \sin \phi,$$

so that the imaginary part is

$$\text{Im}(z_j) \notin (-\epsilon - \rho_2, \epsilon).$$

According to Lemma 3.1, this choice ensures that each $A - z_j I$ is invertible. The quadrature points are visualized in Figure 6.1.

6.3. Preconditioning the inner problem. The inner problem discussed in Section 5 is an idealized case where the outer problem is exactly solved. Error in the solution and quadrature may affect the convergence of the inner problem. One can apply some standard preconditioners to improve the convergence. We find that an (approximate) discrete Laplacian usually gives a satisfactory performance by deflating the large eigenvalues of the Helmholtz problem. For the sparse case, this can be achieved by computing an ILU factorization without fill.
7. Numerical examples. To illustrate the performance of the proposed method, we present the test results for solving a challenging 3D high-frequency Helmholtz equation. Since the method has little restrictions on the type of discretization: we attempt to solve both dense linear systems from a Fourier spectral method as well as sparse ones based on finite difference methods. The solution algorithms are implemented by MATLAB. The test machine is a Linux workstation having 3.5GHz CPU and 64GB RAM. In this section, we use the following notation:
- \(\text{its} \): number of iterations;
- \(\text{mvs} \): number of matrix-vector products;
- \(\text{i-t} \): iteration time in seconds.

7.1. Test problem. The test matrix can be written formally as

\[
A = S - M + iD,
\]

for some Hermitian positive semi-definite matrices \(S, M, \) and \(D \). \(S \) is the negative discrete Laplacian, \(M \) is the mass matrix that generates the indefiniteness of \(A \), and \(D \) gives the non-Hermitian part. For solving free-space problems, \(D \) is used to reduce artificial reflections near the boundaries of the computational domain. One example is a diagonal matrix which has positive diagonal entries for points near the boundary and zero elsewhere, see for example [37].

If \(S, M, D \geq 0 \), and \(\rho(M) \leq 1 \), then \(S - M + I \geq 0 \) and \(A \) satisfies the assumptions of Lemma 3.1. It is helpful to know \(\rho_1 = \rho(S - M + I) \) and \(\rho_2 = \rho(D) \), because they characterize the spectrum of \(A \). Since \(\rho_2 \) only depends on \(D \), we study the combined effect of \(S \) and \(M \) on \(\rho_1 \) for our test problem.

Fourier spectral method can be applied because the proposed method only requires matrix-vector products of the discrete Laplacian. \(S \) can be diagonalized by a 3D fast Fourier transform (FFT):

\[
S = F^H \Lambda F,
\]

where \(F \) is the transformation matrix of a forward FFT, and \(\Lambda \) is the diagonal matrix.
consisting of the eigenvalues of S. Each eigenvalue can be written as

$$\lambda_i = \left(\frac{l_{\min}}{N}\right)^2 \sum_{j=1}^{3} \min(i_j^2, (N - i_j)^2),$$

where i is a zero-based multi-index in an N^3 grid, and l_{\min} is the minimum sampling rate (minimum number of points per wavelength). Clearly,

$$\rho(S) = \max_i |\lambda_i| \leq \left(\frac{l_{\min}}{N}\right)^2 \sum_{d=1}^{3} \left(\frac{N}{2}\right)^2 = \frac{3}{4} l_{\min}^2.$$ \hfill (7.2)

The standard seven-point stencil can also be used to generate a sparse matrix \tilde{S}, then the eigenvalues are replaced by

$$\tilde{\lambda}_i = \left(\frac{l_{\min}}{2\pi}\right)^2 \sum_{j=1}^{3} 2(1 - \cos \frac{i_j}{N} \pi).$$

The spectral radius is instead $\rho(\tilde{S}) = \max_i |\tilde{\lambda}_i| \leq \frac{3\pi}{2} l_{\min}^2$. Low-order finite difference methods may need a large sampling rate l_{\min}, which increases the size and spectral radius of A.

The mass matrix M contains the variations of the wavespeed. For the simplest diagonal case, the ith non-zero diagonal entry is simply

$$M_{ii} = \frac{l_{\min}^2}{l_i^2},$$

where l_i is the local sampling rate on the ith grid point. For this case, ρ_1 defined in Lemma 3.1 satisfies

$$\rho_1 = \rho(S - M + I) \leq \|S\|_2 + \|I - M\|_2 = O(l_{\min}^2) + \frac{l_{\max}^2 - l_{\min}^2}{l_{\max}}.$$ \hfill (7.3)

Regarding the spreading of the spectrum, the minimum sampling rate (l_{\min}) has a primary influence, and the variations of the wavespeed (l_{\max}/l_{\min}) play a secondary role.

7.2. Cost of shifted solution.

We first compare the two formulations discussed in Section 3. We test the cost of solving a pair of shifted problems corresponding to the two cases (1.2) and (3.1). In order to draw a fair comparison, we force the shifted problems to be equivalent. Let A be a Hermitian indefinite matrix, and complex numbers z, s satisfy $z + 1 = (s + 1)^2$. Then the pair of shifted problems are:

$$\begin{align*}
(A - zI)y &= f, \hspace{1cm} \text{(7.3)} \\
\begin{pmatrix}
-(s + 1)I & iy \\
-i(A + I) & -(s + 1)I
\end{pmatrix}
\begin{pmatrix}
y \\
(s + 1)y
\end{pmatrix}
&= \begin{pmatrix} 0 \\ f \end{pmatrix}. \hspace{1cm} \text{(7.4)}
\end{align*}$$

The results are tabulated in Table 7.1. Note that the cost of each matrix-vector product is roughly the same. (7.3) is more suitable for the case that the spectrum of A is compact and the imaginary shift is large, otherwise (7.4) is better suited.
Table 7.1
Number of matrix-vector products for reducing the residual by 10^2. Boldface numbers indicate a superior performance over the alternative case.

(a) Case one: solving (7.3)

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>$z = i$</th>
<th>$z = i/2$</th>
<th>$z = i/4$</th>
<th>$z = i/8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-1,8]$</td>
<td>28</td>
<td>67</td>
<td>156</td>
<td>276</td>
</tr>
<tr>
<td>$[-1,16]$</td>
<td>52</td>
<td>145</td>
<td>381</td>
<td>721</td>
</tr>
<tr>
<td>$[-1,32]$</td>
<td>97</td>
<td>436</td>
<td>861</td>
<td>1691</td>
</tr>
<tr>
<td>$[-1,64]$</td>
<td>331</td>
<td>916</td>
<td>1831</td>
<td>3736</td>
</tr>
</tbody>
</table>

(b) Case two: solving (7.4)

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>$z = i$</th>
<th>$z = i/2$</th>
<th>$z = i/4$</th>
<th>$z = i/8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-1,8]$</td>
<td>67</td>
<td>121</td>
<td>209</td>
<td>441</td>
</tr>
<tr>
<td>$[-1,16]$</td>
<td>85</td>
<td>157</td>
<td>229</td>
<td>609</td>
</tr>
<tr>
<td>$[-1,32]$</td>
<td>113</td>
<td>193</td>
<td>397</td>
<td>681</td>
</tr>
<tr>
<td>$[-1,64]$</td>
<td>149</td>
<td>221</td>
<td>449</td>
<td>909</td>
</tr>
</tbody>
</table>

Fig. 7.1. Wavespeed function.
7.3. **Scaling test.** This scaling test checks the cost of solving (1.2) as the frequency and the problem size increase. We choose a wavespeed function that has eight high-wavespeed anomalies. Figure 7.1 visualizes the wavespeed function. Figure 7.2 shows the solution of the largest problem size.

We set up the solver based on the techniques described in Section 6. Six quadrature points are used, and their locations change with respect to the angular frequency \(\omega \). For example, for the four problems in Table 7.3(a), we fix \(t = 0.1 \) in (6.2) and select \(\epsilon \propto 1/\omega \) in (6.3), then the sets of quadrature points are

\[
\begin{pmatrix}
0.00 + 0.80i \\
-0.22 + 2.05i \\
-0.43 + 0.80i \\
-0.43 - 1.70i \\
-0.22 - 2.96i \\
0.00 - 1.70i
\end{pmatrix}
\begin{pmatrix}
0.00 + 0.40i \\
-0.15 + 1.25i \\
-0.30 + 0.40i \\
-0.30 - 1.30i \\
-0.15 - 2.16i \\
0.00 - 1.30i
\end{pmatrix}
\begin{pmatrix}
0.00 + 0.27i \\
-0.12 + 0.99i \\
-0.25 + 0.27i \\
-0.25 - 1.17i \\
-0.12 - 1.89i \\
0.00 - 1.17i
\end{pmatrix}
\begin{pmatrix}
0.00 + 0.20i \\
-0.11 + 0.85i \\
-0.23 + 0.20i \\
-0.23 - 1.10i \\
-0.11 - 1.76i \\
0.00 - 1.10i
\end{pmatrix}
\]

The first quadrature point in each set is closest to the origin. For these points, the parameters for applying (4.7) are listed in Table 7.2.

Regarding different cases in Section 3, by estimating the spectrum we find that for the spectral method one can apply Algorithm 2.1 to the original matrix \(A \) because the spectrum is more compact, and the modified matrix \(iC - I \) in (3.1) is suitable for the finite difference method. The spectral method case includes a regularized inverse Laplacian preconditioner is diagonalized by FFT with eigenvalues \(\{1/\max(\lambda_i, 1)\} \), where \(\lambda_i \) is defined in (7.2); the finite difference case includes a ILU(0) preconditioner based on the 7-point stencil discrete Laplacian.

Table 7.3 and Figure 7.3 are the test results for reducing the residual by \(10^3 \). For the spectral method, the sampling rate is 2.25 in the background, and is 4.5 inside the
Table 7.2
Parameters of the polynomial iteration (4.7) for one pole. The parameters are computed by solving (4.8). \(z \) is the complex shift. The method stops when the residual is reduced by 5.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(z)</th>
<th>(q)</th>
<th>(\delta)</th>
<th>mvs</th>
</tr>
</thead>
<tbody>
<tr>
<td>80(^3)</td>
<td>0.8i</td>
<td>2</td>
<td>0.51</td>
<td>10</td>
</tr>
<tr>
<td>160(^3)</td>
<td>0.4i</td>
<td>3</td>
<td>0.91</td>
<td>18</td>
</tr>
<tr>
<td>240(^3)</td>
<td>0.27i</td>
<td>3</td>
<td>0.88</td>
<td>27</td>
</tr>
<tr>
<td>320(^3)</td>
<td>0.2i</td>
<td>3</td>
<td>0.85</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 7.3
Scaling test for fixed sampling rate and increasing problem sizes.

(a) Fourier spectral method

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\omega/(2\pi))</th>
<th>its</th>
<th>mvs</th>
<th>i-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>80(^3)</td>
<td>35.56</td>
<td>6</td>
<td>879</td>
<td>39.8</td>
</tr>
<tr>
<td>160(^3)</td>
<td>71.11</td>
<td>8</td>
<td>1795</td>
<td>719.6</td>
</tr>
<tr>
<td>240(^3)</td>
<td>106.67</td>
<td>9</td>
<td>2670</td>
<td>4610.2</td>
</tr>
<tr>
<td>320(^3)</td>
<td>142.22</td>
<td>11</td>
<td>3754</td>
<td>14841.6</td>
</tr>
</tbody>
</table>

(b) Finite difference method

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\omega/(2\pi))</th>
<th>its</th>
<th>mvs</th>
<th>i-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>80(^3)</td>
<td>8.89</td>
<td>9</td>
<td>341</td>
<td>18.9</td>
</tr>
<tr>
<td>160(^3)</td>
<td>17.78</td>
<td>8</td>
<td>536</td>
<td>293.7</td>
</tr>
<tr>
<td>240(^3)</td>
<td>26.67</td>
<td>11</td>
<td>842</td>
<td>1649.2</td>
</tr>
<tr>
<td>320(^3)</td>
<td>35.56</td>
<td>10</td>
<td>1065</td>
<td>4954.5</td>
</tr>
</tbody>
</table>

Fig. 7.3. 3D Scaling test.
anomalies. For the finite difference approach, the frequency is reduced by four times to obtain a minimum sampling rate of 9. For both cases, the number of matrix-vector products is proportional to the angular frequency $O(\omega)$.

8. SEG/EAGE salt-dome model. The SEG/EAGE salt-dome model [1] is a 3D wavespeed model commonly used in exploration geophysics. The physical size is $12\text{km} \times 12\text{km} \times 4.5\text{km}$. The wavespeed ranges between 1500m/s and 4500m/s, see Figure 8.1 for sections of the wavespeed. At high frequency – 33.33Hz, we apply Fourier spectral discretization on a $201 \times 676 \times 676$ grid. Figure 8.2 visualizes the solution wavefield. For 10^{-2}, 10^{-4}, and 10^{-6} relative residual, the proposed method takes 17 iterations (984min), 32 iterations (1850min), and 51 iterations (2943min), respectively. Figure 8.3 shows that linear convergence of the residual still holds even when the wavespeed is rather complex.

9. Conclusions. An iterative method was proposed to solve the discretized 3D high-frequency Helmholtz equation. In the framework of contour integration method which implicitly decomposes the original problem into an inner and outer problem, a fixed-point iteration was introduced to solve the outer problem. GMRES is suitable for solving the inner problem because of our theoretical estimates on the distribution of eigenvalues. 3D numerical examples show that the computational cost of this method scales as $O(\omega^4)$ or $O(n^{4/3})$. The method is especially suitable for solving high-frequency problems when combined with spectral methods.

Acknowledgements. Maarten V. de Hoop gratefully acknowledges support from the Simons Foundation under the MATH + X program, the NSF under grant DMS-1559587, and the corporate members of the Geo-Mathematical Group at Rice University and Total. Yuanzhe Xi and Yousef Saad acknowledge support from NSF DMS-1521573 and the Minnesota Supercomputing Institute.

REFERENCES
Fig. 8.2. 33.33Hz solution wavefield corresponding to Figure 8.1.
Fig. 8.3. Residual history of FCI iterations of SEG/EAGE salt-dome model.

