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Introduction

» ‘Random Sampling’ or 'probabilistic methods’: use of ran-
dom data to solve a given problem.

» Eigenvalues, eigenvalue counts, traces, ...

» Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

» Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

» Huge interest spurred by ‘big data’

» |n this talk: A few specific applications of random sampling
iIn numerical linear algebra
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

» Arises in cross validation :

(I — A(09))gll2
Tr (I — A(0))
D == blurring operator and L is the regularization operator

with A(0) = I-D(D'D+oLL") 'D7',

» |n [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

» Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]
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Problem 2: Compute Tr[f (A)], f a certain function
Arises in many applications in Physics. Example:

» Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]

»  Will be covered in detail later in this talk.

EPASA-14 03/08/2014



Problem 3: Compute diag[inv(A)] the diagonal of the inverse
» Harder than just getting the trace

» Arises in Dynamic Mean Field Theory [DMFT, motivation for
our work on this topic].

» Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

» |n uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

» Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

» Here, f = Fermi-Dirac operator:

£(e) 1 Note: when T' — 0
€) = e— then f — a step func-
: +exp(k3_; tion d "

Note: if f is approximated by a rational function then diag[f(A)]
~ a linear combination of terms like diag[(A — ;1) ']

» Linear-Scaling methods based on approximating f(H') and
Diag(f(H)) — avoid ‘diagonalization’ of H
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» Rich litterature on ‘linear scaling’ or ‘'order n" methods

» The review paper [Benzi, Boito, Razouk, “Decay properties
of Specral Projectors with applications to electronic structure”,
SIAM review, 2013] provides theoretical foundations

» Several references on approximating Diag(f(H)) for this
purpose — See e.g., work by L. Lin, C. Yang, E. E [Code: Sellnv]
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diag(inv(A)) in Dynamic Mean Field Theory (DMFT)

» Quantum mechanical studies of highly correlated particles
» Equation to be solved (repeatedly) is Dyson’s equation
Gw)=[(w+mWI -V -%(w) +T]"

e w (frequency) and u (chemical potential) are real
e V = trap potential = real diagonal

e X (w) == local self-energy - a complex diagonal
e T'is the hopping matrix (sparse real).

» Interested only in diagonal of G(w) — in addition, equation
must be solved self-consistently and ...

» ... must do this for many w’s
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Stochastic Estimator

e A = original matrix, B = A~
¢ (B) = diag(B) [matlab notation]
Notation: I e D(B) = diagonal matrix with diagonal é (B)

e (® and @: Elementwise multiplication and
division of vectors

e {v;}: Sequence of s random vectors

Result: | 0(B) =~ ivj ©® Buw;

7=1

@ |)_viOv;
=1 _

Refs: C. Bekas , E. Kokiopoulou & YS ('05); C. Bekas, A.

Curioni, |. Fedulova '09; ...
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Typical convergence curve for stochastic estimator

» Estimating the diagonal of inverse of two sample matrices
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» Let Vy = [vy,vq,...,vs]. Then, alternative expression:

D(B) = D(BV,V, ) D~ (V.V,')

Question: | When is this result exact?

L

Answer:

elet V, € R™* with rows {v,.}; and B &€ C™*™ with
elements {b,x}

e Assume that: <’Uj’;, ’Uk,:> =0,V # k, s.t. bjk # 0

Then:
D(B)=D(BV.V,") DY (V.V,")

» Approximation to b;; exact when rows ¢z and 5 of V; are L
EPASA-14 03/08/2014



Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem: \

» Find an estimate of the number of eigenvalues of a matrix
in a given interval [a, b].

Main motivation: |

» Eigensolvers based on splitting the spectrum intervals and
extracting eigenpairs from each interval independently.

» (Contour integration-type methods, see, e,g.,:
e FEAST approach [Polizzi 2011]
e Sakurai-Sugiura - related method [2003, 2007, ..]

» Polynomial filtering, e.g.,:
e Schofield, Chelikowsky, YS'2011.
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Eigenvalue counts: Standard approach and an alternative

» Let A be a Hermitian matrix with eigenpairs (A;, u;), where
A< A <:..-.< A, anda,bsuchthat A\ < a < b < \,.

» Want number 11,5 of A;’s € |a, b].

» Standard method: Use Sylvester inertia theorem. Requires
two LD L7 factorizations — expensive!

» Alternative: Exploit trace of P = Z wu
the eigen-projector: Ai € [a b]
» We know that : Tr (P) = pia,p)

» Goal: calculate an approximation to : Tr (P)
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» P is not available ... but can be approximated by
e a polynomial in A, or
e a rational function in A.

Approximation theory viewpoint: |

» Interpret P as a step function of A, namely:

1 if t € [a b]
0 otherwise

P = h(A) where h(t) = {

» Approximate h(t) by a polynomial v

» Then use statistical estimator for approximating Tr (v (A))
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» Hutchinson’s unbiased estimator uses only matrix-vector
products to approximate the trace of a generic matrix A.

» Generate random unit vectors vy, k = 1, .., n, with zero
mean. Then

br($(A)) % S ol (A vy

U k=1

» We use degree p Chebyshev k
polynomials, with Jackson damping ~ %(t) = » gfvT;(t)
(g¥) coefficients i=0

» To compute ‘moments’ v!Ty(A)v, let v, = Ti(A)v, and
exploit 3-term recurrence Ty, 1(t) = 2tTy(t) — Tp_1(t) —
Vi1 = 2Av, — v
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Computing the polynomials: Jackson-Chebyshev

25

1 1
P = x)dx 0J;0 = Kronecker symbol
Y /1 V1o :132f( ) 0 y

7T —

» The g’'s dampen high
order terms in sum.

> Explicit expression
known [L. O. Jay, et al CPC,
118:21-30 (1999)]

» Expansion coefficients ~;
also known

-0.2
-1

Mid—-pass polynom. filter [-1 .3 .6 1]; Degree = 80

— Standard Cheb.
. —Jackson—Cheb.

EPASA-14 03/08/2014 16




Generalized eigenvalue problems

Ax = A\Bx

» Matrices A and B are symmetric and B is positive definite.

The projector P becomes

» Again: Eigenvalue count u(, 3 equals the trace of P

» Exploit relation:

inertia(A — o B) = inertia(B~'A — o)

» No need to factor or to solve systems
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» Matrix ‘Na5’ from PARSEC [see U. Florida collection]

» n = 5832, nnz = 305630 nonzero entries.

» Obtain the eigenvalue count when a = (X190 + A101)/2
and b = ()\20() -+ )\201)/2 SO Hia,b] = 100.

» Use pol. of degree 70.
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Without Jackson Damping

Chebyshev exp. deg. 70— No Jackson smoothing
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With Jackson Damping

Chebyshev exp. deg. 70— With Jackson smoothing
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An example from FEAST

» FEAST developed by Eric Polizzi (Amherst)..

» Based on a form of subspace iteration with a rational func-
tion of A

» Also works for generalized problems Au = AB.

» Example: a small generalized problem (n = 12,450, nnz =
86, 808).

» Result with standard Chebyshev shown. Deg=100, nv =
70.



Eigenvalue Count

Case: Gen2D; deg = 100; n = 70
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» A few more comments:
e Method also works with rational approximations ...

e .. and it works for nonsymmetric problems (eigenvalues in-
side a given contour).

e For detalls see paper:

E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigen-
value counts in an interval. Preprint:
arXiv: http://arxiv.org/abs/1308.4275.
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Computing Densities of States [with Lin-Lin and Chao Yang]

» Formally, the Density Of States (DOS) of a matrix A is

e 0 is the Dirac d-function or Dirac distribution
o N\ < X\ < ... < )\, arethe eigenvalues of A

» Note: pqp can be obtained from ¢

where

» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» Also known as the spectral density

» \Very important uses in Solid-State physics
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The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials
» Coefficients ~ lead to evaluating Tr (7 (A))

» Use trace estimators [discovered independently] to get these
traces

» Next: A few details
» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:

d(t) = V1 — 2¢(t) = V1 — t2 X %id(t — ).
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> Then, (full) expansion is: ¢(t) = S°2°  ppTi(t).

» Expansion coefficients u are formally defined by:

Ty (t)(t)dt

2_5k0/ 1
K —
\/1—t2

2 — Oko /
= T (t)v1 — t2¢p(t)dt
2 — 5
= <0 Z Tr(N;) with  d;; = Dirac symbol
nmw

» Note: > Ti(\;) = Trace|T(A)]

» Estimate this, e.g., via stochastic estimator

nvec

S (v Tu(A).

vec =1

Trace(Tr(A)) =
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» To compute scalars of the form v!T}(A)v, exploit again
3-term recurrence of the Chebyshev polynomial ...

18
=== Fxact |
ier | o2 -w /o Jackson

14} —w/ Jackson [
12}
10+

» Same Jackson smooth-=

=

Ing as before can be used

O N & OV ®
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An example with degree 80 polynomials

KPM, deg = 80 KPM, deg = 80
0.18f - I ! LN 02F T ¥ T T
o | —— Exact . Y —&— Exact
0.16¢ oo | —e— KPM w/ Jackson| 1 d | —e— KPM w/o Jackson
0.14} |
0.15¢
0.12¢
= 0.1r =
= = 0.1
= 0.08} <
0.06¢
0.05¢

0.04 |

0.02}

Left: Jackson damping; right: without Jackson damping.
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Issue: How to deal with Distributions

» Highly discontinuous nature — not easy to handle

» Solution for practical and theoretical purposes: replace ¢ by
a ‘blurred” (continuous) version ¢,

n

Bolt) =~ 3 ho(t = y)

where h,(t) = any C* function s.t.:  «— |
o [h,(s)ds=1 : [\
e h, has a peak at zero 30

» An example is the Gaussian:

1 2 ]Z
ha(t) — (271_0_2)1/28 202, | j \
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» How to select o? Example for S,

k=1.750 =0.35

o(t)

0.057

0.047

0.03}

0.027

0.01y

K =1.30,0 = 0.52

» Higher o0 — smoother curve

» But loss of detall ..
» Compromise: o =

» h =resolution, kK = parameter > 1

h

2\/2log(n),

k=1.150 = 0.71

0.05

0.04

0.037

o(t)

0.02¢

0.017

0.045¢
0.04¢
0.035¢
0.03¢

g 0.025¢
0.02¢
0.015¢
0.01¢
0.005¢

0

0 10 20 30
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Delta-Gauss Legendre

» |dea: Instead of approximating ¢ directly, first select a rep-
resentative ¢, of ¢ for a given o and then approximate ¢,.

» ¢ IS a ‘surrogate’ for ¢. Obtained by replacing 0, by :
(A —1)*
(2mwo2)1/2 202

» Goal: to expand into Legendre polynomials Ly ()

he(A—1) = exp

»  With normalization factor expansion is written as:

© @)

(271'01-2)1/2 > ("5 + %) YeLi(N) .

k=0

ho(A — t) =
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» To determine the ~;’'s we will also need to compute:

1
Y = / L;{(s)e_i (s=t)/7)*ds.

—1
Set ¢, = e~ 2((1=1)/0)* _ (_1)ke—2((A+1)/0)*,
» Then,fork =0,1,---,

Ye+1 — 2,5—:_11 [02(¢k — Ck) + t’)’k} — k_+17"’ 1
Vi1 = (2k 4+ 1)y + Pr—1.

Initiialization: set v_; = ¥_1 = 0 Y1 = 7, and ¥ = 0 and:
ol () +er ()]
=0
Yo = \/_0' \/_0'
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Use of the Lanczos Algorithm

» Let@;, + = 1---,m be the Ritz values obtained from
Lanczos with starting vector v

» y,;’s associated eigenvectors; Ritz vectors: {V,,y; }i—1.:m
» Ritz values approximate eigenvalues [from ‘outside Iin’]
» Could compute 6;’s then get approximate DOS from these

» Problem: 6; not good enough approximations — especially
iInside the spectrum.

» Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:

[p)dt =Y ap(©) ai= [ely]
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» See, e.g., Golub & Meurant '93, and also Gautschi’81, Golub
and Welsch ’69.

» Formula exact when p is a polynomial of degree < 2m + 1

» Consider now | p(t)dt = discrete integral =
(p(A)v,v) = 3 Bip(Ni) =< dv, p >

» Then (¢y,p) = > a;p(0;) = >_ a;{de,, p) —
Py = ) ady,

» To mimick the effect of 3; = 1, V1, use several vectors v
and average the result of the above formula over them..
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» (Goal: to compare errors for similar number of matrix-vector
products

» Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated from PARSEC; size n = 8, 219

» In all cases, we use 10 sampling vectors
» General observation: DGL, Lanczos, and KPM are best,
» Spectroscopic method does OK

» Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L' error | L?error | L™ error
KPM w/ Jackson, deg=80 |2.592e-02|5.032e-03|2.785e-03
KPM w/o Jackson, deg=80 2.634e-02|4.454e-03 |2.002e-03
KPM Legendre, deg=80 |2.504e-02|3.788e-03|1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-032.871e-03
Spectroscopic, deg=100 |4.624e-02 7.582e-03|2.447e-03
DGL, deg=80 1.998e-02 | 3.379e-03  1.149e-03
Lanczos, deg=80 2.755e-024.178e-03|1.599¢e-03
Haydock, deg=40 6.951e-011.302e-01 6.176e-02
Haydock, deg=100 2.581e-01]4.653e-02 | 1.420e-02

L', L?, and L*> error compared with the normalized “surro-
gate” DOS for benzene matrix
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Other matrices

Matrix n A1 A,
GajpAsioHso | 113,081 —1.2 1.3 x 103
PE3K 9,000 8.1 x 1079/1.3 x 102
CFD1 70,656 2.0 x 107° 6.8
SHWATER 81,920 5.8 2.0 x 10!

Description of the size and the spectrum range of the test

matrices.
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Matrix Method | L' error | L? error | L™ error
GayoAsoHag DGL 3.937e-03 3.214e-04 4.301e-05
Lanczos | 4.828e-03|3.940e-04 | 5.452e-05

PE3K DGL |4.562e-03|7.368e-04 3.143e-04
Lanczos | 5.459e-03 | 7.372e-04 | 3.294e-04

CED DGL 2.276e-031.299e-03|1.746e-03
Lanczos | 2.024e-03 | 1.286e-03 | 2.478e-03

DGL 3.779e-03 1.282e-03 9.328e-04

SHWATER Lanczos|3.047e-03|9.829e-04 | 6.100e-04

L', L? and L error associated with the approximate spec-
tral densities produced by the DGL and Lanczos methods for

different test matrices.
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DGL o = 0.19, deg = 80 DGL o = 0.37, deg = 80

¢(1)

Approximate spectral densities of CFD1 and SHWATER matri-
ces obtained by DGL along with exact smoothed ones
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Conclusion

» Probabilistic algorithms provide powerful tools for solving
various problems: eigenvalue counts, DOS, Diag (f(A))..

» Most of the algorithms we discussed rely on estimating trace
of f(A) or Diag(f(A)).

» Still to do: adapt known decay bounds (Benzi al,..) to
analyze convergence.

» Also: Can we do better than random sampling [e.g., prob-
ing,..]?

» Physicists are interested in modified forms of the density of
states. — Explore extentions of what we did.
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