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Introduction

ä ‘Random Sampling’ or ’probabilistic methods’: use of ran-
dom data to solve a given problem.

ä Eigenvalues, eigenvalue counts, traces, ...

ä Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

ä Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

ä Huge interest spurred by ‘big data’

ä In this talk: A few specific applications of random sampling
in numerical linear algebra
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

ä Arises in cross validation :
‖(I −A(θ))g‖2

Tr (I −A(θ))
with A(θ) ≡ I−D(DTD+θLLT)−1DT ,

D == blurring operator and L is the regularization operator

ä In [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

ä Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]
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Problem 2: Compute Tr [ f (A)], f a certain function

Arises in many applications in Physics. Example:

ä Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]

ä Will be covered in detail later in this talk.
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

ä Harder than just getting the trace

ä Arises in Dynamic Mean Field Theory [DMFT, motivation for
our work on this topic].

ä Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

ä In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

ä Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

ä Here, f = Fermi-Dirac operator:

f(ε) =
1

1 + exp(ε−µ
kBT

)

Note: when T → 0
then f → a step func-
tion.

Note: if f is approximated by a rational function then diag[f(A)]
≈ a linear combination of terms like diag[(A− σiI)−1]

ä Linear-Scaling methods based on approximating f(H) and
Diag(f(H)) – avoid ‘diagonalization’ of H
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ä Rich litterature on ‘linear scaling’ or ’order n’ methods

ä The review paper [Benzi, Boito, Razouk, “Decay properties
of Specral Projectors with applications to electronic structure”,
SIAM review, 2013] provides theoretical foundations

ä Several references on approximating Diag(f(H)) for this
purpose – See e.g., work by L. Lin, C. Yang, E. E [Code: SelInv]
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diag(inv(A)) in Dynamic Mean Field Theory (DMFT)

ä Quantum mechanical studies of highly correlated particles

ä Equation to be solved (repeatedly) is Dyson’s equation

G(ω) = [(ω + µ)I − V − Σ(ω) + T ]−1

• ω (frequency) and µ (chemical potential) are real

• V = trap potential = real diagonal

• Σ(ω) == local self-energy - a complex diagonal

• T is the hopping matrix (sparse real).

ä Interested only in diagonal of G(ω) – in addition, equation
must be solved self-consistently and ...

ä ... must do this for many ω’s
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Stochastic Estimator

Notation:

•A = original matrix, B = A−1.

• δ(B) = diag(B) [matlab notation]

•D(B) = diagonal matrix with diagonal δ(B)

•� and �: Elementwise multiplication and
division of vectors

• {vj}: Sequence of s random vectors

Result: δ(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


Refs: C. Bekas , E. Kokiopoulou & YS (’05); C. Bekas, A.
Curioni, I. Fedulova ’09; ...
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Typical convergence curve for stochastic estimator

ä Estimating the diagonal of inverse of two sample matrices
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ä Let Vs = [v1, v2, . . . , vs]. Then, alternative expression:

D(B) ≈ D(BVsV
>
s )D−1(VsV

>
s )

Question: When is this result exact?

Answer:

• Let Vs ∈ Rn×s with rows {vj,:}; and B ∈ Cn×n with
elements {bjk}

• Assume that: 〈vj,:, vk,:〉 = 0, ∀j 6= k, s.t. bjk 6= 0

Then:
D(B)=D(BVsV

>
s )D−1(VsV

>
s )

ä Approximation to bij exact when rows i and j of Vs are⊥
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Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem:

ä Find an estimate of the number of eigenvalues of a matrix
in a given interval [a, b].

Main motivation:

ä Eigensolvers based on splitting the spectrum intervals and
extracting eigenpairs from each interval independently.

ä Contour integration-type methods, see, e,g.,:
• FEAST approach [Polizzi 2011]
• Sakurai-Sugiura - related method [2003, 2007, ..]

ä Polynomial filtering, e.g.,:
• Schofield, Chelikowsky, YS’2011.
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Eigenvalue counts: Standard approach and an alternative

ä LetA be a Hermitian matrix with eigenpairs (λi, ui), where
λ1 ≤ λ2 ≤ · · · ≤ λn and a, b such that λ1 ≤ a ≤ b ≤ λn.

ä Want number µ[a,b] of λi’s ∈ [a, b].

ä Standard method: Use Sylvester inertia theorem. Requires
two LDLT factorizations→ expensive!

ä Alternative: Exploit trace of
the eigen-projector:

P =
∑

λi ∈ [a b]

uiu
T
i .

ä We know that : Tr (P ) = µ[a,b]

ä Goal: calculate an approximation to : Tr (P )
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ä P is not available ... but can be approximated by
• a polynomial in A, or
• a rational function in A.

Approximation theory viewpoint:

ä Interpret P as a step function of A, namely:

P = h(A) where h(t) =

{
1 if t ∈ [a b]
0 otherwise

ä Approximate h(t) by a polynomial ψ

ä Then use statistical estimator for approximating Tr (ψ(A))
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ä Hutchinson’s unbiased estimator uses only matrix-vector
products to approximate the trace of a generic matrix A.

ä Generate random unit vectors vk, k = 1, .., nv with zero
mean. Then

tr(ψ(A)) ≈
n

nv

nv∑
k=1

v>k ψ(A)vk.

ä We use degree p Chebyshev
polynomials, with Jackson damping
(gki ) coefficients

ψ(t) =
k∑
i=0

gki γiTi(t)

ä To compute ‘moments’ vTTk(A)v, let vk ≡ Tk(A)v, and
exploit 3-term recurrence Tk+1(t) = 2tTk(t)− Tk−1(t)→

vk+1 = 2Avk − vk−1
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Computing the polynomials: Jackson-Chebyshev

γi =
2− δi0
π

∫ 1

−1

1
√

1− x2
f(x)dx δi0 = Kronecker symbol

ä The gki ’s dampen high
order terms in sum.
ä Explicit expression
known [L. O. Jay, et al CPC,
118:21–30 (1999)]
ä Expansion coefficients γi
also known
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Generalized eigenvalue problems

Ax = λBx

ä MatricesA andB are symmetric andB is positive definite.

The projector P becomes

P =
∑

λi ∈ [a b]

uiu
T
i B

ä Again: Eigenvalue count µ[a, b] equals the trace of P

ä Exploit relation:

inertia(A− σB) = inertia(B−1A− σI)

ä No need to factor or to solve systems
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An example

ä Matrix ‘Na5’ from PARSEC [see U. Florida collection]

ä n = 5832, nnz = 305630 nonzero entries.

ä Obtain the eigenvalue count when a = (λ100 + λ101)/2
and b = (λ200 + λ201)/2 so µ[a,b] = 100.

ä Use pol. of degree 70.
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Without Jackson Damping
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With Jackson Damping
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An example from FEAST

ä FEAST developed by Eric Polizzi (Amherst)..

ä Based on a form of subspace iteration with a rational func-
tion of A

ä Also works for generalized problems Au = λB.

ä Example: a small generalized problem (n = 12, 450, nnz =
86, 808).

ä Result with standard Chebyshev shown. Deg=100, nv =
70.
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ä A few more comments:

• Method also works with rational approximations ...

• .. and it works for nonsymmetric problems (eigenvalues in-
side a given contour).

• For details see paper:

E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigen-
value counts in an interval. Preprint:
arXiv: http://arxiv.org/abs/1308.4275.
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Computing Densities of States [with Lin-Lin and Chao Yang]

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where
• δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä Note: µ[ab] can be obtained from φ

ä φ(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

ä Also known as the spectral density

ä Very important uses in Solid-State physics
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The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Coefficients γk lead to evaluating Tr (Tk(A))

ä Use trace estimators [discovered independently] to get these
traces

ä Next: A few details

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√

1− t2φ(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).
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ä Then, (full) expansion is: φ̂(t) =
∑∞
k=0µkTk(t).

ä Expansion coefficients µk are formally defined by:

µk =
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)φ̂(t)dt

=
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)

√
1− t2φ(t)dt

=
2− δk0

nπ

n∑
j=1

Tk(λj). with δij = Dirac symbol

ä Note:
∑
Tk(λi) = Trace[Tk(A)]

ä Estimate this, e.g., via stochastic estimator

Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).
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ä To compute scalars of the form vTTk(A)v, exploit again
3-term recurrence of the Chebyshev polynomial ...

ä Same Jackson smooth-
ing as before can be used
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An example with degree 80 polynomials
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Issue: How to deal with Distributions

ä Highly discontinuous nature – not easy to handle

ä Solution for practical and theoretical purposes: replace φ by
a ‘blurred” (continuous) version φσ:

φσ(t) =
1

n

n∑
j=1

hσ(t− λj),

where hσ(t) = any C∞ function s.t.:
•
∫ +∞
−∞ hσ(s)ds = 1

• hσ has a peak at zero
ä An example is the Gaussian:

hσ(t) =
1

(2πσ2)1/2
e−

t2

2σ2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

h
σ
 (t), σ = 0.1

EPASA-14 03/08/2014 29



ä How to select σ? Example for Si2
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Delta-Gauss Legendre

ä Idea: Instead of approximating φ directly, first select a rep-
resentative φσ of φ for a given σ and then approximate φσ.

ä φσ is a ‘surrogate’ for φ. Obtained by replacing δλ by :

hσ(λ− t) =
1

(2πσ2)1/2
exp

[
−

(λ− t)2

2σ2

]
.

ä Goal: to expand into Legendre polynomials Lk(λ)

ä With normalization factor expansion is written as:

hσ(λ− t) =
1

(2πσ2)1/2

∞∑
k=0

(
k +

1

2

)
γkLk(λ) .
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ä To determine the γk’s we will also need to compute:

ψk =

∫ 1

−1
L′k(s)e

−1
2
((s−t)/σ)2

ds.

Set ζk = e−
1
2
((1−t)/σ)2 − (−1)ke−

1
2
((1+t)/σ)2

.

ä Then, for k = 0, 1, · · · ,:{
γk+1 = 2k+1

k+1

[
σ2(ψk − ζk) + tγk

]
− k

k+1
γk−1

ψk+1 = (2k + 1)γk + ψk−1.

Initiialization: set γ−1 = ψ−1 = 0 ψ1 = γ0, and ψ0 = 0 and:

γ0 = σ

√
π

2

[
erf
(

1− t
√

2σ

)
+ erf

(
1 + t
√

2σ

)]
,

EPASA-14 03/08/2014 32



Use of the Lanczos Algorithm

ä Let θi, i = 1 · · · ,m be the Ritz values obtained from
Lanczos with starting vector v

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues [from ‘outside in’]

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially
inside the spectrum.

ä Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
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ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub
and Welsch ’69.

ä Formula exact when p is a polynomial of degree≤ 2m+ 1

ä Consider now
∫
p(t)dt = discrete integral≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä To mimick the effect of βi = 1, ∀i, use several vectors v
and average the result of the above formula over them..
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Experiments

ä Goal: to compare errors for similar number of matrix-vector
products

ä Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated from PARSEC; size n = 8, 219

ä In all cases, we use 10 sampling vectors

ä General observation: DGL, Lanczos, and KPM are best,

ä Spectroscopic method does OK

ä Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L1 error L2 error L∞ error
KPM w/ Jackson, deg=80 2.592e-02 5.032e-03 2.785e-03
KPM w/o Jackson, deg=80 2.634e-02 4.454e-03 2.002e-03
KPM Legendre, deg=80 2.504e-02 3.788e-03 1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-03 2.871e-03
Spectroscopic, deg=100 4.624e-02 7.582e-03 2.447e-03
DGL, deg=80 1.998e-02 3.379e-03 1.149e-03
Lanczos, deg=80 2.755e-02 4.178e-03 1.599e-03
Haydock, deg=40 6.951e-01 1.302e-01 6.176e-02
Haydock, deg=100 2.581e-01 4.653e-02 1.420e-02

L1, L2, and L∞ error compared with the normalized “surro-
gate” DOS for benzene matrix
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Other matrices

Matrix n λ1 λn
Ga10As10H30 113,081 −1.2 1.3× 103

PE3K 9,000 8.1× 10−6 1.3× 102

CFD1 70,656 2.0× 10−5 6.8
SHWATER 81,920 5.8 2.0× 101

Description of the size and the spectrum range of the test
matrices.
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Matrix Method L1 error L2 error L∞ error

Ga10As10H30
DGL 3.937e-03 3.214e-04 4.301e-05

Lanczos 4.828e-03 3.940e-04 5.452e-05

PE3K
DGL 4.562e-03 7.368e-04 3.143e-04

Lanczos 5.459e-03 7.372e-04 3.294e-04

CFD1
DGL 2.276e-03 1.299e-03 1.746e-03

Lanczos 2.024e-03 1.286e-03 2.478e-03

SHWATER
DGL 3.779e-03 1.282e-03 9.328e-04

Lanczos 3.047e-03 9.829e-04 6.100e-04

L1, L2, and L∞ error associated with the approximate spec-
tral densities produced by the DGL and Lanczos methods for
different test matrices.
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Conclusion

ä Probabilistic algorithms provide powerful tools for solving
various problems: eigenvalue counts, DOS, Diag (f(A))..

ä Most of the algorithms we discussed rely on estimating trace
of f(A) or Diag(f(A)).

ä Still to do: adapt known decay bounds (Benzi al,..) to
analyze convergence.

ä Also: Can we do better than random sampling [e.g., prob-
ing,..]?

ä Physicists are interested in modified forms of the density of
states.→ Explore extentions of what we did.
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